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Abstract. This paper proposes a numerical investigation of a controlled
loudspeaker designed to absorb acoustic plane waves at a duct termina-
tion. More precisely, a nonlinear control for a current-driven loudspeaker
is presented, that relies on (i) measurements of velocity and acoustic
pressure at the membrane, (ii) a linear electroacoustic loudspeaker model
and (iii) a nonlinear finite-time control method. Numerical tests are car-
ried out by a passive-guaranteed simulation of the loudspeaker dynamics
in the port-Hamiltonian systems formalism. The sound absorption ef-
ficiency is evaluated up to 300Hz by computing the reflected pressure
at the membrane. The results are compared with a similar control ar-
chitecture: the finite-time control for sound absorption proves effective,
especially in the low frequency range.

Keywords: Finite-time control, Port-Hamiltonian Systems, Electroa-
coustic transducer

1 Introduction

One limitation of passive sound absorbers is the bad efficiency at low frequencies
due to the required size of the material. Electrically controlled loudspeakers used
as active absorbers have shown to be a way to extend the frequency bandwidth
of absorption. A possible approach consists in controlling the loudspeaker dy-
namics in order to match the membrane impedance to the acoustic characteristic
impedance of the medium, thus forcing the system to behave like an acoustic
transmission line [1]. In particular, Rivet et al. [2] propose an active absorber
that uses a feedback based on pressure or velocity for a current-driven boxed
loudspeaker, showing broadband absorption results. The present paper restates
the model and the impedance matching approach proposed in [2] and describes
a new feedback law that combines (i) passive-guaranteed control based on the
port-Hamiltonian systems formalism [5,7] and (ii) a (nonlinear) finite-time con-
trol law [3,4], an alternative to asymptotic or exponential control methods. The
efficiency of the proposed controller in terms of sound absorption is evaluated
numerically.
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2 Open-loop electroacoustic system

This section presents the considered models for the acoustic propagation (§2.1)
and the current-driven loudspeaker (§2.2).

2.1 Plane wave propagation in a tube

Consider a semi-infinite duct with a loudspeaker located at z = 0, with a mem-
brane modeled as a flat piston (see Fig. 1). Acoustic plane wave propagation is
assumed, therefore the pressure field can be decomposed into progressive waves
p+(t−z/c) and p−(t+z/c), where c is the speed of sound. At z = 0, the particle
velocity field equals the piston velocity, leading to the following relation between
the pressure field pac(t) at z = 0 and the piston velocity ξ̇(t),

pac(t) = 2p+(t)− ρc ξ̇(t), (1)

where ρ is the air density.

ξ(t)
p+(t − z/c)

p−(t + z/c)

0 z

∞

Fig. 1. Plane wave propagation in a semi-infinite duct. A loudspeaker, modeled as a
flat piston, is located at z = 0.

2.2 Current-driven electrodynamic loudspeaker model

Physical model. A lumped model of boxed loudspeaker is adopted, considered
as a mechanical oscillator with displacement ξ(t) and momentum p(t) = Mmξ̇(t),
where Mm is the moving mass. The oscillator is excited by the Lorentz force
Bl i(t) and the force due to the acoustic pressure Sd pac(t). This yields the
following mechanical equation that states the force balance of the system,

Km ξ(t) +Rm ξ̇(t) + ṗ(t) +Bl i(t) = Sd pac(t), (2)

where Km (N/m) is the stiffness coefficient associated with the suspension and
the sealed enclosure, Rm (Ns/m) is the mechanical damping coefficient, Bl (N/A)
is the electromechanical coupling factor and i is the input electric current. The
current drive enables rejection of undesired electric behaviour due to induction
effect of the coil, usually described by a resistance Re (Ω) and an inductance Le
(H).
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Port-Hamiltonian formulation. The loudspeaker model described in (2) is
restated in the port-Hamiltonian formalism [5], that relies on the expression of
the system energy,

H(ξ, p) =
Kmξ

2

2
+

p2

2Mm
, (3)

namely the sum of the potential and kinetic energy stored by the system. De-
noting the state and input of the system by, respectively,

x(t) =

[
ξ(t) : displacement
p(t) : momentum

]
, u(t) =

[
i(t) : electric current

pac(t) : acoustic pressure

]
,

a state-space representation of the loudspeaker dynamics can be derived:

{S} :

ẋ =

([
0 1
−1 0

]
︸ ︷︷ ︸

J

−
[
0 0
0 Rm

]
︸ ︷︷ ︸

R

)
∇H(x) +

[
Gi Gp

]︸ ︷︷ ︸
G

u,

y =

[
Gᵀ
i

Gᵀ
p

]
︸ ︷︷ ︸
Gᵀ

∇H(x),

(4)

where J is skew-symmetric, R is positive semi-definite, Gi =
[
0 −Bl

]ᵀ
and

Gp =
[
0 Sd

]ᵀ
. The outputs are defined as the dual quantities of the inputs u(t):

y(t) =

[
e(t) : back-EMF voltage

vac(t) : acoustic outflow

]
.

The port-Hamiltonian formulation (4) ensures the passivity property of the phys-
ical system through its power balance

dH (x(t))

dt
= ∇H(x)ᵀẋ︸ ︷︷ ︸

Pstored

= −∇H(x)ᵀR∇H(x)︸ ︷︷ ︸
Pdiss

+ yᵀu︸︷︷︸
Pext

, (5)

where Pstored, Pdiss and Pext are respectively the stored, dissipated and external
power.

3 Closed-loop system

This section describes the derivation of a controller that provides an input cur-
rent i?(t) given (i) a target membrane motion ξ?(t), ξ̇?(t) and (ii) the measure-
ment of the acoustic pressure pac(t) and the velocity ξ̇(t) at the loudspeaker
membrane. The target membrane velocity can be deduced from the measured
pressure

ξ̇?(t) =
pac(t)

ρc
(6)
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so that the acoustic impedance at the membrane equals the characteristic specific
acoustic impedance ρc. First, a nonlinear control law that reaches the target ξ̇?(t)
in finite-time is presented in §3.1. Then the law is recast as a port-Hamiltonian
system in order to guarantee the passivity of the controller, and thus of the
closed-loop system, in §3.2.

3.1 Finite-time control law

A system controlled in finite-time will reach an equilibrium point in a finite time
(see [6] for a formal definition). Thus, finite-time stability is a stronger property
than asymptotic or exponential stability. It is useful for time-constrained and
robust control. We first state following result.

Theorem 1 (Finite-time control of a double integrator [3]) Consider the
double integrator ż1 = z2, ż2 = v. The origin is a finite-time stable equilibrium
point of this system when it is controlled by the input v = −k1bz1e

α
2−α −k2bz2eα,

with k1, k2 > 0, α ∈ ]0, 1[ and bxeα , sgn(x)|x|α.

By identification (cf. [4]), one can find a transformation between the system (4)
and the double integrator controlled in finite-time. We thus obtain the resulting
nonlinear law on the input current that reads

i
?
(t) =

Sdpac(t)−Kmξ(t)− Rmξ̇(t) +Mm

(
k1 bξ(t)− ξ?(t)e

α
2−α + k2

⌊
ξ̇(t)− ξ̇?(t)

⌉α)
Bl

. (7)

3.2 Passive finite-time control law

Principle. The aim of this part is the derivation of a controller that guarantees
(i) convergence towards specific system dynamics ξ?(t) and (ii) stability in case of
badly tuned control parameters. In order to meet these requirements, we impose
to the controller the following port-Hamiltonian structure,

{C} : ẋc = (Jc −Rc)∇Hc(xc) + Gcuc

yc = Gᵀ
c∇H(xc),

(8)

with Jc skew-symmetric and Rc positive semi-definite. The power-preserving
interconnection [7] of {C} with {S} is achieved by (see Fig. 2)[

i(t)
uc(t)

]
=

[
0 −1
1 0

] [
e(t)
yc(t)

]
, (9)

allowing the closed-loop system to be written as a port-Hamiltonian system

{S + C} :
[
ẋ
ẋc

]
=

([
J −GiG

ᵀ
c

GcG
ᵀ
i Jc

]
−
[

R 02×2

02×2 Rc

])[
∇H(x)

∇Hc(xc)

]
+

[
Gp

02×1

]
pac

vac =
[
Gᵀ
p 01×2

] [ ∇H(x)
∇Hc(xc)

]
.

(10)

In the sequel, we choose the same states for the system and the controller:
x = xc. Modifying the total energy Hs+c(x) and the interconnection matrices in
(10) corresponds to an IDA-PBC control [8].
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{S}

+1
−1

{C}

pac(t)

i(t)

vac(t)

e(t)

uc(t)yc(t)

Fig. 2. Block diagram of the proposed control architecture.

The controller {C} is derived by following the steps below :

1. Choose an energy Hs+c(x) ≥ 0 for the closed-loop system that has a mini-
mum at a desired target state x?, so that it converges to x?.

2. Deduce the energy of the controller by Hc(x) = Hs+c(x)−H(x) ≥ 0.
3. The control law is provided by the second line of (8) : yc = Gᵀ

c∇Hc(x).

Application to the proposed finite-time control law. The closed-loop
energy is chosen as

Hs+c(q, p) = Mmk1
2− α

2
|ξ − ξ?| 2

2−α +
Mmk2
Rm

1

α+ 1

∣∣∣∣p− p?

Mm

∣∣∣∣α+1

+
β

2
(ξ − ξ?)2 +

γ

2Mm
(p− p?)2.

(11)

It has a minimum at ξ = ξ? and p = p? so that this energy expression is a good
candidate to control the closed-loop system {S + C} towards the desired targets
ξ?, p?. The energy of the controller is deduced by subtracting (3) from (11),
leading to

Hc(q, p) = Mmk1
2− α

2
|ξ − ξ?| 2

2−α +
Mmk2
Rm

1

α+ 1

∣∣∣∣p− p?

Mm

∣∣∣∣α+1

+
β

2
(ξ − ξ?)2 +

γ

2Mm
(p− p?)

2 − 1

2Mm
p2 − Km

2
ξ2,

(12)

where β > Km and γ > 1 ensure that Hc(ξ, p) has a global minimum. Finally,
by imposing the following port-Hamiltonian formulation:

{C} :
ẋ =

([
0 0
0 0

]
︸ ︷︷ ︸

Jc

−
[
0 0
0 0

]
︸ ︷︷ ︸
Rc

)
∇Hc(x) +

[
1
Bl
Rm

Bl

]
︸ ︷︷ ︸

Gc

uc

yc =
[

1
Bl

Rm

Bl

]︸ ︷︷ ︸
Gᵀ

c

∇H(xc),

(13)
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the controller output yields

yc =
1

Bl

[
Mmk1 bξ − ξ?e

α
2−α +Mm k2

⌊
p− p?

Mm

⌉α
−Km ξ −Rm

p

Mm

+ γRm

(
p− p?

Mm

)
+ β(ξ − ξ?)

]
.

(14)

The proposed finite-time control law (14) is a passive version of (7) presented
in §3.1, whatever its parameter values satisfying β > Km and γ > 1.

4 Numerical results

Two control laws are assessed for an up-chirp pressure excitation pac(t) from
20Hz to 300Hz at levels 94dB and 106dB.

Law 1: passive finite-time control law (14). The law is evaluated through
simulations of the closed-loop system {S+C} based on a dedicated numerical
scheme [9,10] that preserves the power balance in discrete time.

Law 2: proposed in [2]. The law relies on a modification of the inherent elec-
tromechanical properties of the loudspeaker, taking the form of a transfer
function between the measured acoustic pressure and the electric current,

I?(s) =
Sd ρc− sMm(1− µ)−Rm − Km

s (1− µ)

Bl
(
µsMm

Sd
+ ρc+ µKm

sSd

) P (s), (15)

where P (s) and I?(s) are respectively the Laplace transforms of pac(t) and
i?(t) and µ ∈ [0, 1] is a control parameter that adjusts the absorption band-
width.

Simulations take the total acoustic pressure pac(t) as input and provide electric
currents generated by the control laws and the induced membrane velocities as
outputs. Then the reflected pressure at the membrane is calculated as

p−(t) =
pac(t)− ρc ξ̇(t)

2
. (16)

The control parameters are set to k1 = 750000, k2 = 50, α = 0.8, β = 1.1Km,
γ = 1.1, µ = 0.15 and the loudspeaker model parameters are those used in [2].
The sampling rate is set to fs = 44100Hz.

Time domain simulations of the reflected pressure p−(t) at the loudspeaker
membrane for an input pac(t) at 94dB are depicted in Figure 3. The weak value
of the reflected pressure p−(t) compared to the total pressure pac(t) reveals an
efficient sound absorption for both control laws.

The absorption capabilities are also evaluated in the frequency domain by
calculating the absorption coefficient as a function of the frequency f defined as

α(f) = 1−
∣∣∣∣Z(f)− ρc
Z(f) + ρc

∣∣∣∣2 , (17)
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Fig. 3. Time domain simulations of the reflected pressure p−(t) at the loudspeaker
membrane for an input pac(t) at 94dB, for both control laws.

where Z(f) = P (f)/V (f) and P (f) and V (f) are respectively the Fourier trans-
form of the pressure signal pac(t) and the velocity signal ξ̇(t).

The coefficient α(f) is depicted in Figure 4. It can be noted that Law 2
achieves the best sound absorption (α very close to 1) around the resonance
frequency of the loudspeaker (84 Hz). The proposed Law 1 is especially efficient
at lower frequencies below and has a slightly broader frequency bandwidth. Note
that the closed loop consisting of a linear model (4) and a nonlinear controller
(14) is nonlinear. Thus its performance varies with the amplitude of the control
input, as illustrated in Figure 4 for pac(t) at levels 94dB and 106dB.
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Fig. 4. Absorption coefficient versus frequency for both controls laws at 94dB and
106dB. The (nonlinear) Law 1 is calculated for two input pressure levels, whereas the
(linear) Law 2 does not depend on the input amplitude.
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5 Conclusion

This work deals with sound absorption in a duct by a current-driven loudspeaker
control. A passive nonlinear control that provides an electric current from the
measurements of the acoustic pressure and the membrane velocity has been pre-
sented, based on a finite-time control method. Its passivity property ensures
robustness against modelling errors. Numerical evaluation of the proposed non-
linear control law shows an efficient sound absorption, especially below the reso-
nance frequency of the loudspeaker. Further study will focus on a passive control
that handles a one-sample delay between the controller input and output, to-
wards its application on a test bench.
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