N

N
N

HAL

open science

High availability of VNF Orchestrator
Dmytro Shytyi, Luigi lannone

» To cite this version:

‘ Dmytro Shytyi, Luigi lannone. High availability of VNF Orchestrator. 2019. hal-02046053

HAL Id: hal-02046053
https://hal.science/hal-02046053

Preprint submitted on 13 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02046053
https://hal.archives-ouvertes.fr

High availability of VNF Orchestrator

Dmytro Shytyi (SFR, Paris, France) and Luigi lannone (Telecom Paris-Tech, Paris, France)

Abstract—Network Function Virtualization allows transformation from physical proprietary hardware to general purpose servers with
virtual services. Depending on the available resources in the network, virtual services (functions) could be placed accordingly. The
special entity is required too place functions and manage resources in the network. This entity is an Orchestrator. Usage of
Orchestrator raises the problem of which action to undertake in case of orchestrator failure. The problem transforms into questions like:
where to place these instances? How to manage fail overs? How many instances should be placed? The Orchestrator has risk of
failure thus, to provide the high availability, this paper consider the fail over and placement problems.

Index Terms—NFV, Tacker, resiliency, nodes recovery, placement.

1 INTRODUCTION

NCREASING demand on different network services makes
Inetwork operators and big companies to increase the
number and variety of complex proprietary hardware. The
combination of increasing operational costs, complex inte-
gration and maintenance of such hardware is strong limi-
tation of increasing services. Network function vitalization
introduces the different way to architect networks. This
technology aims to convert different network hardware with
specific functions as a virtual services that are running on
the general purpose servers (GPS), network nodes such that
those services could be moved to a different locations in the
network instead of needing the installation of new equip-
ment. To make available the transition from the various
complex proprietary hardware to easy managed software
(virtual functions/services) on the GPS, Network Function
Virtualization platforms as OpenStack [1] appeared.

While services require to be properly managed, coor-
dinated, arranged and resources require to be aggregated,
problems related to automation of network, storage, per-
formance and provisioning appear. Frequently automation
closely relates to an orchestration (coordination of the re-
sources and networks needed to set up cloud-based services,
applications). Correspondingly the entity responsible for or-
chestration tasks without requiring direct human interaction
is defined as orchestrator.

To be able to perform orchestration tasks OpenStack
includes the Tacker (Manegement and Orchestration) ser-
vice [14] based on MANO framework [2]. Normally Tacker
server could be responsible (supervision) for multiple Open-
Stack clusters. As any component it has risk of failure and
in case of Tacker instance failure further operations on NFV
will be impossible to perform. Thus our goal is to provide
high availability for Tacker, that we are going to achieve
with appropriate placement of Tacker servers and recovery
method in case of failure.

2 RELATED WORK

The latest related studies on controller placement performed
in Software Defined Networks. The most common objective
for the problem is to minimize controller-switch latency

studied by Heller et al. [3], where they presented the correla-
tion between number of SDN controlers, their locations, and
controller-to-switch latency’s. Jimenez et al. [5] performed
study on controller placement in SDN with k controllers
by taking into account metrics such as latency. Yao et al.
[4] presents placement algorithm by taking into account
capacity of SDN controller. Particularly, it has been widely
studied to locate a controller close to switches. Finally,
mechanisms to perform failover were studied by Obadia et
al. [6]. They described and tested a greedy failover strategy
for neighbor active SDN controllers to take over the control
of orphan switches in SDN netowrks.

2.1 Topology Model

In terms of methodology that includes fail tolerance ap-
proach and controller placement, also creation of network
topology model considered in the section 5.1 to perform
simulations. Related work in this area includes a list of
models that were studied and helped to define our model.

Balanced tree model gave an inspiration to use structure
inside domains as balanced tree. However it did not satisfy
desired parameters of model as presented tree has one root
node.

Dorogovtsev-Goltsev-Mendes graph [16] that starts by
creating three nodes and tree edges, making a triangle, and
then add one node at a time. In this model each time a
node is added, an edge is chosen randomly and the node
is connected via two new edges, however even with a fact
that this model distribution follows Power Law, it does not
consider the case when Tacker servers could reach each
other through intermediate nodes (OpenStack clusters).

Margulis-Gabber-Galil model [17] satisfied clustering
structure and not directly connected Tacker instances, how-
ever it does not present tree-type structure of OpenStack
clusters for each Tacker Server.

Caveman graph model [18] satisfied multiple domains
and Tacker servers were not connected directly, however it
still did not allow to obtain tree structure. There were more
models analyzed that could satisfy some requirements but
not all of them. Those models are Waxman graph model [19],
Random Powerlaw Tree model [21], Watts-Strogatz Graph
model [20].



Therefore we propose our tree relaxed model that in-
spired from the tree model and has a feature similar to
Caveman relaxed graph model [22].

2.2 Placement algorithm

The part of Tacker resiliency methodology is a placement
algorithm. Popular algorithms, similar to the algorithm
proposed in this paper, such as k-means, k-medioids, k-
center are specializing on specific metric or properties thus
have some differences. For example k-means generally is
used on the euclidean space and taking into account special
unknown data. These clustering algorithms are from the set
of algorithms that are splitting the dataset .S into several
parts (1,..N € S) and try to minimize the distances d(u, c)
from units u € St of the part S; to the unit c € S;

Main advantages of presented in this paper algorithm is
the simplicity and execution time. However as a heuristic
algorithm it does not always give an optimal solution.
Also the number of domains to split the dataset should
be predetermined. Finally the algorithm spends redundant
processing time to calculate distances between arch of the
k domains and N vertexes. Since most nodes after several
iterations stay in the same domains, there are unnecessary
redundant computation of shortest paths. Thus the pre-
sented algorithm could be improved during further work.

To cope with unknown number of domains there exist
approaches that could be applied. Such approaches are sil-
houette method, the elbow method [15].The Elbow method
could be described as a function of the number of clusters:
the final number of clusters will be the one, that does not
give a much better result if another cluster is added. Another
way is the Silhouette method, that provides a graphical
representation of how well each object lies within its cluster.

One of the most recent active field where related work
appears - is the Software Defined Networks (SDN) con-
troller resiliency. However, some parameters such as time
constrains and frequency of operation execution/message
exchange in SDN highly differs from Tacker and OpenStack
clusters message exchange density. For example the SDN
controller placement highly depends on optimal placement
of the controller. For example OpenFlow switches ask con-
troller with high frequency how to operate on new pack-
ets. Density of data exchange between OpenStack clusters
- Tacker server (to orchestrate, to manage vitalized ser-
vices, resources) and density of packets exchanges in SDN
between controller and switches (while new “unknown”
packet appears on switch) is significantly differs. Thus
Tacker-OpenStack cluster communication model is less sen-
sitive for close to optimal placement than SDN communica-
tion model.

There exist different approaches to determine domains
such as Girvan-Newman method and Louivan method.
Both of them try to distinguish domains by using different
techniques. However they still require modifications to pro-
vide the center of domains. The Girvan-Newman method
[10] focuses on the edges that are less central, those that
are between domains. Instead of adding the strongest edges
to empty vertex set, they are constructed by progressively
removing edges from the original graph. Where edge e € I/
betweenness is defined as the number of shortest path

2

between pairs of the vertices that run through the e. It is a
measure of influence of a node over the flow of information
between the nodes. However it does not give proper results
as it determines some of nodes from different physical
locations (different domains) as those that should be carried
by the same Tacker server.

Another popular algorithm is based on Louvain method
[11]. It is divided in two phases that are repeated iteratively.
First, a different community is assigned to each node of the
network. So, in this initial partition there are as many com-
munities as there are nodes. Then, for each node considered
the neighbours j of i and evaluated the gain of modularity
that would take place by removing i from its community
and by placing it in the community of j. The node i is then
placed in the community for which this gain is maximum
(in case of a tie we use a breaking rule), but only if this
gain is positive. If no positive gain is possible, i stays in its
original community. This process is applied repeatedly and
sequentially for all nodes until no further improvement can
be achieved and the first phase is then complete. However
it also could not provide the proper domains determination,
in term of current presented approach (network topology)

Contrary to the partitioning algorithm type (Our al-
gorithm), hierarchical clustering is another basic type of
domain determinition.. Hierarchical clustering create a de-
composition of D such that the decomposition is represented
by a tree that iteratively splits D into smaller subsets until
each subset consists of only one object. In such a tree, each
node represents a cluster of D.

Hierarchical algorithms do not require number of do-
mains as an input. However as shown in paper M. Kaur et
al. [12] hierarchical algorithms are slower than "K-Means”-
type algorithms, thus slower than our algorithm. As a
hierarchical algorithms there exists Density-based spatial
clustering of applications with noise (DBSCAN) [13] that
also does not require to specify the number of clusters
in the data as Hierarchical algorithms. Another algorithm
is “Ordering points to identify the clustering structure”
(OPTICS). The basic approach of OPTICS is similar to DB-
SCAN, but instead of maintaining a set of known, but so far
unprocessed cluster members, a priority queue (e.g. using
an indexed heap) is used.

2.3 Contribution

Our contribution is a methodology that provides high
availability for Tacker service, more precisely the combina-
tion of different techniques that together give desired result
specifically to the Tacker service.

The methodology consists of combination of 3 parts:

1) first part answers the question: “"How to handle the
failure of Tacker server(s).”;

2) second part consider the appropriate location of
Tacker Service to perform NVF management and
orchestration.

3) last part includes creation of model where network
topology represented by a graph to estimate the first
two parts.

Moreover as in the studied case the Tacker service has
specific requirements, parts of methodology have differ-
ences from general cases. Specifically to Tacker as many



OpenStack clusters as possible should be connected directly
to the Tacker servers, however the case where OpenStack
clusters are connected to the Tacker server through another
OpenStack cluster also should be considered. Therefore we
propose the modification in placement algorithm: a central
node of each domain on each step in our algorithm we
chose according to the Relative Point Centrality (Algorithm
2) of the node in the network, for example another metric
like “degree centrality” does not satisfy the Tacker service
requirement, as in the last case the central node will be
chose according to the biggest degree, but in our case we
also have to consider 2 and more hops connections between
OpenStack clusters and Tacker servers.

3 WHAT IS TACKER

Tacker —is an implementation of ETSIMANO (Management
and Orchestration) architectural framework whose mission
is to Orchestrate network services [24]. Tacker identifies the
next blocks: Network Function Virtualization (NFV) Orchestra-
tor,Virtual Network Function (VNF) Manager, NFV Catalogue
(NFVCQ).

The NFV Orchestator (NFVO) manages the lifecycle
of network services and performs the orchestration of re-
sources across multiple VIMs. More precisely, the NFVO
functions are: network service installation and lifecycle
management (update, scale, collection of performance statis-
tics and events); management of network services deploy-
ment templates; validation of virtual resource requests from
VNF Managers; create, update, delete VNF Forwarding
Graphs (network services topology); vitalized resources
management based on geolocation, resource usage and allo-
cation policies; collect the information about resource usage
by VNF instances.

The VNF Manager (VNFM) manages the lifecycle of
VNF instances. Each VNF instance has an association with
VNEM and VNEM can be assigned to a multiple instances.
The functions of VNFM on assigned VNFs are: item up-
date or upgrade the VNF ( i.e. VNF’s software update
and configuration changes); create VNF; change the VNF’s
configuration/capacity; release associated to VNF resources;
automated or assisted healing of VNF instance.

The NFV Catalogue (NFVC) is representation of the
repository with all VNF packages. It supports the manage-
ment of the VNFD by the NFVO operations.

Another module Virtualised Infrastructure Manager
(VIM) is used for managing and controlling the network,
computing and storage resources. The VIM is not a Tacker
block, however it is important to mention that OpenStack
acts as a VIM. The VIM directly interconnects with Tacker
participates in orchestration of the upgrade, release, al-
location and usage optimization of resources. This block
manages the the association of physical resources such as
storage, network and computational facilities to the virtu-
alised resources.

4 ORCHESTRATOR RESILIENCY/PROBLEM STATE-
MENT
As mentioned before Tacker servers supervise the Open-

stack clusters and in case of Tacker instance failure fur-
ther management and orchestration on NFV in supervised

3

OpensStack clusters will be impossible. Resilience to Tacker
orchestator failure could be achieved by deploying addi-
tional Tacker instances on the network. When several Tacker
instances should be deployed among domains (set of Open-
Stack Clusters), we consider “resource allocation” problem.
Where Tacker instances are “resources” that should be
“allocated” among competing domains. To allocate Tacker
instances appropriately we need to consider the next ques-
tions:

e Where to place Tacker orchestrators among several
competing domains? Also taking into account af-
fordable expenses on service provisioning; appro-
priate latency bounds between Tacker instances and
members of domains (that are carried by Tacker
instances).

e How to cope with orphan OpenStack clusters after
Tacker server failure? Appropriate REassociation of
orphane clusters between the Tacker instances in case
of one particular instance failure?.

5 TACKER RESILIENCY

We believe that a methodology that is used to achieve the
goal (to provide high availability for Tacker) should consists
of several elements.

Firstly we have to consider the development of the
model that represents the network environment. Further
we have to consider the simulation of recovery of orphan
switches by alive Tacker instances that requires existing
model of network environment.

Secondly we should consider an approach to assign the
orphan switches to the Tacker servers. The approach is
presented in subsection 5.

Thirdly the position of Tacker nodes should be taken
into account to place 1, N Tacker servers in the simulated
network environment such that they could benefit from
their location (for example low latency’s from Tacker severs
to OpenStack clusters).

5.1 Model of network environment

Normally in the network environment we have differ-
ent distances (thus latency’s) between OpenStack clusters,
Tacker servers.. Therefore it is more desirable to connect
new OpenStack clusters to existing OpenStack clusters such
that delays (thus distances) to the Tacker server would
be minimal. Also it was important to have Tacker servers
not connected directly between each other, but through the
intermediate nodes, as domains (set of OpenStack Clusters)
could be located in different places. Consequently the last
requirement to the model is to organize Tacker Servers and
OpenStack clusters into domains.

Edges (links) that connect different domains have higher
latency than edges which connect OpenStack clusters and
Tacker inside domains. In current model for the sake
of simplicity all off the links between domains have
weight/latency = 20. If create the model without links with
weight = 20, each domain is represented by tree [9], where
the head of the tree is an orchestrator.

Due to the model features OpenStack clusters linked to
the node of the domain d € D which has the minimum



) " — ? 20 ! ,1/”® @\
@?éi%(é/%m@‘z\ ;2/5 —8 ®§@%:1m N 18- 7?4\5@ /%\QQ \@/‘@
I s o
L) g \g@g@ v e b m

(a) Initial state.3 domains (with 3 Tackers)
were allocated.

(b) Intermediate state. It represents orphan
penStack clusters that were assigned to

alive Tacker Servers.

(c) Final state. It shows that all orphan
switches of red domain are assigned to
alive Tacker servers

Fig. 1: Demo of Recovery method is presented, where nodes 0,1,2 are Tacker instances thus there are 3 domains and all

other nodes are OpenStack clusters.

distance between such OpenStack cluster and node from
domain d € D. As each node in domain has some limited
degree, i.e. while the number of neighbours of each node is
less than limit, the OpenStack Clusters want to be connected
to the head of the tree to have shortest distance.

After analysis of existing models in section 2 and net-
work topology with Tacker servers, we discovered that it is
required to create a different model. Our model is inspired
from tree model as it could represent the separated domains
of the network. (Above we described that each domain itself
without links with weight = 20 is a tree).

The difference of our model from tree model that we
propose tree relaxed model, which has a feature similar to
Caveman relaxed graph model [22]. When graph is formed
from each community randomly chose one edge. The next
step is delete this edge that connects nodes inside of domain
and add it in the way such that it would connect 2 different
domains. In the presented model, we skip the deletion of
edge that connects the vertices inside of domain and add
the new edge with weight = 20 between domains.

An example of the model that presents random topology
(nodes and weights) with some constrains (parameters) is
presented in the figure 1. Where initial parameters are:

e Ny —total number of nodes in the network topology
(32 elements in the figure);

e N, — number of Tacker servers (number of domains
is 3);

e Ngegree — number of neighbours per node (limit is
11).

Finally our model allows to run Tacker services place-
ment algorithms and assign orphan switches algorithms on
the generated graphs.

5.2 Recovery method

This subsection presents an approach to restore control on
orphan OpenStack clusters by acting Tacker instances in
case of one particular instance failure. The way to perform
reassignment between the Tacker instances is presented
below:

1)
2)

Each Tacker instances carries a set of clusters.
When particular Tacker instance become offline:

a)

b)

Tackers are informed that there exists orphan
switches.

Tacker instances compare to which Tacker
server from particular OpenStack cluster the
distance is smaller.

Orphan OpenStack cluster is assigned to the
Tacker with shortest distance.

<)

Simulation of algorithm to assign the orphan switches
to the Tacker Domains was performed in Python language
and presented in the figure 1. For example when we have 3
Tacker in the network. 1 Tacker went down. 2 other servers,
each after another assign orphaned nodes to their domain.

5.3 Tacker placement

Firstly we want to introduce latency metric in networks.
For a network represented by a graph G(V, E). Latency
represented by distance from source s € V to the Tacker
teV-d(s,t).

We distinguish several types of distance bounds from
OpenStack clusters to the Tacker server:

¢ maximum distance bound;
e average distance bound.

Maximum distance bound

The goal of current problem is to select suitable place-
ment p € Placements in such way to minimize the maximal
distance from OpenStack cluster s to the Tacker server ¢.

dmaz (p) B pEPlrgclenment r.snea‘ii d(S t)

Average distance bound

This problem relates to the difficulty of choosing k €
K € V, where k is a set of Tacker servers that should be
placed from the pool K of Tacker servers and V is a subset of
all vertexes, c € C' € V are OpenStack clusters, n - number
of vertex in the graph G(E, V). Where the average distance
from Tacker servers to OpenStack clusters represented by
the formula:

d 1 d(k,t
average( ) S%;/peplg;g%wnts ( ’ )

Lower value of dgyerage gives lower latency between
OpenStack clusters and Tacker servers.



Placement algorithm

In practice, the most common approach to solve the
type of such problems, is described in method that is called
“Lloyd’s Algorithm” [8]. This method could give an optimal
solution with NP-hard complexity. On each iteration the
the center of mass of the k domains that are represented
by k Tackers is a solution. These centers are used for a
re-clustering. The iterations repeat until the algorithm is
converged.

We combine ”“Voronoi iteration” solution [8] with the
Relative Point Centrality (RPC). Where:

1)  ”Voronoi iteration” - is a partitioning of a plane into
regions based on distance to points in a specific
subset of the plane.

2) relative point centrality was
Beauchamp in [7].

suggested by

The combination of ”“Voronoi iteration” solution and
RPC is presented as the pseudo code below.

Algorithm 1 Placement algorithm

1: N < number of domains

2 G+ V,E

3: Dinitial < to, --tyinDomains

4: while peyrr! = Ppres do

5. while Not Assigned Vertexes is not () do
6 Shortest Path < oo

7: Choose random vertex Z

8 Calculate dist(u, other_vertexes)
9: foreach d € Domains do

10: foreach Y € d do

11: Find the vertex Y with dist(Z,Y )shortest
12: if dist(Z,Y) < shortestPath then

13: shortestPath = dist(Z,Y)

14: Memorize d

15: end

16: Add Z tothed of Y

17: end

18: foreach d; € Domains do

19: Add nodes from d; to the subgraph of G;
20: end

21: foreach g € Subgraphs do

22: Calculate RPC

23: P; < Choose vertex with RPC'max as tacker,
24: end

25:  end

26: end.

The placement algorithm proposed in this section works
as follows: we repeat algorithm until Tacker placement
does not change. Firstly we randomly choose initial Tacker
placement. Secondly in main loop we assign not assigned
vertexes to the domains that are located closer based on
the distance. Distance is shortest path that consider edge
values. After we calculate the RCP for all nodes in domain,
and choose one node per domain with the highest RPC as
a Tacker Server. Thirdly the Tacker placements obtained in
the end of algorithm we will use in next iteration of main
loop as initial Tacker placement, if the placement is different
from previous.

5

The RPC is used to determine suitable placement for
Tacker server based on the distance to OpenStack Clusters.
As each subgraph G is connected graph, the relative point
centrality of each node is a measure of centrality of the node
in the G based on distances to the neighbours in subgraph
G. For vertice u the relative point centrality is the sum
of the shortest path distances from « to all n — 1 other
vertices. Thus higher RPC node has, the more central it is
and the closer it is to all other nodes. Therefore higher RPC
- the better result. The relative point centrality formula is
presented below:

n—1
Yooy d(v,u)
The sum of d(v,u) depends on the number of nodes in the

G therefore closeness is normalized by the sum of minimum
possible d(v,u).

Relative point centrality(u) =

Algorithm 2 Relative Point Centrality (RPC)

1. G« VE

2: foreach v € V do

3. SPiength < ShortestPath(v, other vertexes)
4 Spsum = Z SPiength

5. #normalization to N = all nodes — 1

6:  RPClu] = (len(spiength) — 1.0)/SDsum

7. s = (len(spiengtn) — 1.0)/len(G) — 1

8: RPClulx ==s

9: end.

Algorithm performance analysis is presented in the fig-
ure 2

On each iteration the new tacker instance is choose by
algorithm according to RPC. Where RPC monotonically in-
creases (or not changes) after each iteration. When the tacker
placement set does not change anymore the algorithm is
converged to a local optimum as it has similar behaviour to
algo that is presented in K-Means Clustering documentation
[23].

To converge to a global optimum the algorithm should
be iteratively executed with estimation of RPC up to infinity
number of times. On each turn the average RPC between the
domains should be recorded. Within next iteration initial
placement of Tacker servers changes or not based on the
RPC and with more iterations we have gain a better result
that could be expressed by formula below.

to,..tN - tacker placements.

P« ty,..txyinDomains.

w - current candidate configuration based on P.

w’ - new candidate configuration based on P’.

if RPC(w') — RPC(w) <=0
else

R A C

6 DISCUSSION

The simulations performed with using of our network
model show that proposed method i.e. the combination
of proposed network model, placement and recovery al-
gorithms answer the questions raised in section 4. With



0
12

Node dégree”

(a) Dependency of ratio (expected re-(b)

number or nodes (100,200,400) ters

Number of algorithm iterations re-
sult/obtained result) of algorithm to thequired to satisfy the average latency be-
node degree on the topology with differenttween Tacker server and OpenStack clus-

®, 250

e == I .
* -
0 25 ® 200
e
K100 nodes 2
giﬁi 22325 = Av. \,mJ.W from T to all OC
101
100
of
—
30 4 0 60

s 100 150 200 50

0
Execution time (sec.) 300

400
Number of nodes 500

(c) Dependency of execution time, number
of nodes, average latency on node degree

Fig. 2: Performance analysis of placement algorithm

the proposed method we may provide Tacker resiliency
when the real network topology is similar to our network
model. The method includes definition of where to place
Tacker orchestrators among several domains and provide
the method that defines the behaviour of system in case of
Tacker server failure.

Also we present in figure 2 the performance of placement
algorithm. The figure 2a shows how frequently algorithm
gives the result that is expected given different degree
and number of nodes. It is supposed that more that few
OpensStack Clusters normally connected to a Tacker Servers
(Tacker servers have big degree), so we could see that figure
la shows that with bigger degree algorithm give better
ratio of expected/obtained result. The figure 2b shows how
many iterations (0-25) of the algorithm should be performed
to satisfy the average latency between Tacker servers and
OpenStack clusters. We repeatedly execute the placement
algorithm and we stop when the latency bound (30, 40, 50,
60 units) is achieved. The figure 2c shows the dependency
of number of nodes in network topology, average latency
between Tacker servers and OpenStack clusters and exe-
cution time of the algorithm. The experiments were per-
formed with different number of node degree and figure 2c
shows that bigger degree 5 versus 50 does not significantly
affect the performance that means that with using of this
algorithm we are not obliged to consider constrains such
as "How many OpenStack clusters we may connect to the
Tacker” or "THow many OpenStack clusters we may connect
to other OpenStack clusters”.

7 CONCLUSION

This paper presents a methodology to achieve Tacker re-
siliency. As an outcome we present a combination of el-
ements that together give a method to achieve Tacker re-
siliency. More precisely the way to recover orphan switches
and the way of proper placement of the Tacker servers
were proposed. With our model of network topology the
simulations of placement and recovery algorithms were per-
formed. Presented results of proposed placement algorithm
are in agreement with expectations and further it is be pos-
sible to improve the speed of the algorithm. At present, the
placement algorithm is a NP-hard and it’s basic principle is
focusing on the core of domains and by calculating Relative

Point Centrality for each vertex - the sum of all shortest
path distances from u to all n-1 other vertices. A further
work direction, due to the simplicity of ideas, could be their
application in the network analysis not only to solve the
problems related to Tacker resiliency.

REFERENCES

[1] O. Sefraoui, M. Aissaoui, M. Eleuldj. OpenStack: Toward an Open-
Source Solution for Cloud Computing.

[2] R. Mijumbi, J. Serrat, J.-L.Gorricho, S. Latr, M. Charalambides,
D. Lopez. Management and Orchestration Challenges in Network
Functions Virtualization.

[3] B. Heller, R. Sherwood, N. McKeown. The Controller Placement
Problem.

[4] G. Yao,].Bi, Y. Li, L. Guo. On the Capacitated Controller Placement
Problem in Software Defined Networks.

[5] Y. Jimenez, C. Cervello-Pastor, A. J. Garcia. On the controller
placement for designing a distributed SDN control layer.

[6] Y. Obadia, M. Bouet, J. Leguay, K.Phemius, L. Iannone. Failover
Mechanisms for Distributed SDN Controllers.

[7] Linton C. Freeman. Centrality in Social Networks Conceptual Clar-
ification

[8] Adrian Secord. Weighted Voronoi Stippling.

[9] Douglas Comer.The Ubiquitous B-Tree.

[10] M. Girvan, M. E. J. Newman. Community structure in social and
biological networks.

[11] V.Blondel, J. Guillaume, R. Lambiotte., E. Lefebvre. Fast unfolding
of communities in large networks

[12] M. Kaur, U. Kaur. Comparison Between K-Mean and Hierarchical
Algorithm Using Query Redirection.

[13] M. Ester, H. Kriegel, J. Sander, X. Xu. A Density-Based Algorithm
for Discovering Clusters inLarge Spartial Databases with Noise.

[14] https://docs.openstack.org/developer/tacker

[15] T. M. Kodinariya ,P. R. Makwana. Review on determining number
of Cluster in K-Means Clustering

[16] S.N. Dorogovtsev, A.V. Goltsev, ]. EF. Mendes. Pseudofractal Scale-
free Web.

[17] O. Goldreich. Basic Facts about Expander Graphs.

[18] S. E. Schaeffer. Graph clustering

[19] Megan Thomas, E. W. Zegura. Generation and Analysis of Ran-
dom graphs to model internetworks.

[20] D. J. Watts, S. H. Strogatz. Collective dynamics of small-world
networks.

[21] A. Carvalhoa, N. Crato, C. Gomes .A generative power-law search
tree model.

[22] Judd S., Kearns M., Vorobeychik Y. Behavioral Conflict and Fair-
ness in Social Networks.

[23] NCSS Data Analysis. K-Means Clustering Documentation.

[24] ETSI Network Functions Virtualisation (NFV); Management and
Orchestration.



