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Abstract

The real-time Railway Traffic Management problem consists in

finding suitable train routes and schedules to minimize delay propa-

gation due to traffic perturbations. RECIFE-MILP is a mixed integer

linear programming based heuristic for this problem which has proven

to be effective in various contexts. However, when instances are very

large or difficult, the performance of the algorithm may worsen. In

this paper, we propose valid inequalities to boost the performance of

RECIFE-MILP. These valid inequalities link the routing and schedul-

ing binary variables and, at least in some cases, they are able to repre-

sent all the facets of the projection of the convex hull of the problem in

the subspace of the binary variables. Moreover, they allow the defini-

tion of a model reformulation based on a reduced number of scheduling
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binary variables. In an experimental analysis based on realistic in-

stances representing traffic in four French infrastructures, we observe

that the addition of valid inequalities must be done thoroughly not to

add too much computational burden to the solution process, and that

the reduction of the number of binary variables in general boosts the

performance of RECIFE-MILP significantly.

Keywords: transportation; real-time railway traffic management prob-

lem; train re-routing and rescheduling; mixed-integer linear program-

ming; valid inequalities

1 Introduction

Rail transport demand has been quite steadily increasing in recent years in

many European countries. This is due to several reasons. One of them is the

political efforts made to push users (passengers and freights) towards this

green mode of transport. Another important one is the construction of high

performance infrastructure (e.g., high speed passenger lines and dedicated

freight corridors) which make railway more and more competitive with re-

spect to other modes. To accommodate the increasing traffic, timetables

extensively exploit the available infrastructure, especially at peak hours and

at critical locations. This extensive exploitation often translates into many

trains traveling through critical junctions within short time horizons, where

junctions are physical areas in which multiple lines cross. Indeed, unex-

pected events, even of apparently negligible entity, may cause a relevant

deviation with respect to the scheduled timetable. In fact, according to the

timetable, trains may be scheduled to traverse the same track segment at a

very short time distance. If one of them is delayed due to an unexpected

event, conflicts may emerge: multiple trains traveling at the planned speed

would claim one or more track segments concurrently, and hence some of

them have to stop or slow-down for ensuring safety. Conflicts may gen-

erate a severe delay propagation. In the practice, conflicts are tackled by

dispatchers, who decide how to locally route and schedule trains based on

their experience and on quite basic visual support tools. Due to the absence

of advanced decision support tools, the decisions made by dispatchers may

often be of a rather low quality if compared to what may be possible thanks

to optimization.
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In the literature, the selection of the train routes and schedules for min-

imizing delay propagation has been formalized as the real-time Railway

Traffic Management Problem (rtRTMP) (Pellegrini et al., 2014). Several

algorithms have been presented to tackle this problem (Cacchiani et al.,

2014; Corman and Meng, 2015). Among them, let us mention Caimi et al.

(2011); Corman et al. (2012); D’Ariano et al. (2007); Lamorgese and Man-

nino (2015); Meng and Zhou (2014); Törnquist and Persson (2007), who

apply linear programming approaches to this problem. All these studies pro-

pose specific formulations, modeling the infrastructure considering various

levels of detail, aiming at different objectives and using commercial solvers

or ad-hoc solution procedures. Recently, Fischetti and Monaci (2017) have

shown that commercial solvers can be suitable to solve the rtRTMP de-

spite the strong requirements on computational time due to the nature of

this problem. Along with this branch of the literature, we have proposed

RECIFE-MILP (Pellegrini et al., 2015). RECIFE-MILP is an algorithm

based on the solution of a mixed-integer linear programming (MILP) formu-

lation previously proposed (Pellegrini et al., 2014). It differentiates form the

other cited approaches for some of the hypothesis considered (e.g., represen-

tation of train speed variation dynamics) and the model of the infrastructure

(e.g., macroscopic or microscopic).

RECIFE-MILP models the infrastructure at the microscopic level and

it implements the route-lock sectional-release interlocking system (Pachl,

2008). Although very often RECIFE-MILP quickly finds the optimal solu-

tion to realistic instances, it fails sometimes in delivering it within a com-

putational time in line with real-time purposes (typically three minutes). If

RECIFE-MILP finds and proves the optimal solution before this computa-

tional time elapses, then it stops the search process and returns the optimal

solution. Otherwise, it stops the search process after the available time has

elapsed and returns the best solution identified, together with the optimal-

ity gap. Since its proposal, RECIFE-MILP has been validated on several

case-studies coming from France (Pellegrini et al., 2016; Samà et al., 2016),

Sweden, the UK and the Netherlands (Quaglietta et al., 2016). Despite the

good performance achieved in all these case-studies, it is indeed possible to

define instances for which RECIFE-MILP finds it difficult to return a high

quality solution in real-time. The difficulty is very often linked to the size of
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the formulation describing the instances, which may easily include several

tens of thousands of binary variables (Pellegrini et al., 2015).

The aim of this work is the strengthening of the RECIFE-MILP model1,

with the objective of improving the algorithm performance in difficult in-

stances. To understand the general idea behind our proposal, consider that

in the rtRTMP three different kinds of decisions are made. The route, the

precedences and the timing of each train has to be decided. The first two sets

of decisions are intrinsically binary. A train does or does not take a given

route, a train does or does not take precedence over another one in accessing

to some block section. Clearly, the different decisions are interdependent.

As an example, a precedence decision has to be made only if two trains use

routes sharing some track segments. Exploiting this interdependency, we

define a set of valid inequalities. Specifically, we first show that the rela-

tions between the variables associated to route and precedence decisions in

the RECIFE-MILP model have a bilinear nature. Then, starting from these

bilinear relations, we generate a family of linear inequalities generalizing and

customizing the McCormik approach (McCormick, 1976) in the light of the

specific constraints that characterize the rtRTMP. The inequalities that we

obtain are faces of the convex hull of the projection of the RECIFE-MILP

feasible solution set in the space of the variables associated to route and

precedence decisions. In particular, at least in some cases, they are suffi-

cient to describe all the facets of this convex hull. We report the example

of an instance representing traffic in a real-world control area where this

holds. To try to attain the objective of strengthening the RECIFE-MILP

model, we exploit these inequalities in a two-fold way. On the one hand,

we use them to reduce the number of binary variables necessary to express

all precedence relations between trains. On the other hand, we add some

of them in the branch and bound procedure. To assess the performance of

the boosted RECIFE-MILP, we run a thorough experimental analysis based

on instances representing traffic in four French infrastructures to assess the

performance of these two ways for exploiting the new inequalities. The re-

sults obtained are in general positive as regards the reduction of the number

of binary variables, but not as regards the inequalities addition. A possible

1In the rest of the paper we will use the wording “RECIFE-MILP model” to indicate

the MILP formulation at the basis of RECIFE-MILP, for sake of readability.
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reason for the non-encouraging results is that in this paper we do not con-

sider the opportunity of dynamically generating the inequalities in a branch

and cut fashion. Indeed, the problem of defining an oracle capable of de-

termining which inequalities of the considered family can cut a non feasible

solution is out of the scope of this paper as well as the possibility of piece-

wise tightening our inequalities as in Castro (2015). However, we reckon

that it is possible that the conclusions on the merits of these inequalities

might change if this was done.

The rest of the paper is organized as follows. Section 2 describes the

standard RECIFE-MILP model. Section 3 reports some fundamental con-

cepts that are necessary for the definition of the valid inequalities, which

makes the object of Section 4. Section 5 analyzes some dominance relations

between inequalities, and Section 6 presents our reformulation of RECIFE-

MILP. Section 7 shows that the inequalities may represent all the facets

of the projection of the convex hull of the problem in the subspace of the

binary variables, at least for some instances. Section 8 reports the experi-

mental analysis performed. Finally, Section 9 concludes the paper.

2 Standard RECIFE-MILP model

In this section, we describe the main characteristics of the RECIFE-MILP

model introduced in Pellegrini et al. (2015), in the next sections referred as

to standard RECIFE-MILP.

RECIFE-MILP considers the infrastructure in terms of track-circuits,

that is, in terms of track sections on which the presence of a train is au-

tomatically detected. Thanks to this fine representation, the route-lock

sectional-release interlocking system typically deployed in the practice can

be modeled. Specifically, sequences of track-circuits are grouped into block

sections, which are opened by a signal indicating their availability. Before

a train can enter (start the occupation of) a block section, all the track-

circuits belonging to the same block section must be reserved for the train

itself. In the following, we will name utilization time the sum of reservation

and occupation time.

We define the routes in terms of sequences of track-circuits and by the

intermediate stops. Hence, as an example, a sequence of track-circuits de-

fines two or more different routes if it can be traversed performing or not
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intermediate stops. The running times for a route with intermediate stops

include the appropriate deceleration and acceleration times, but not the

dwell times.

In the MILP formulation, we use the following notation:

T ≡ set of trains,

wt ≡ weight associated to train t’s delay,

ty t ≡ type corresponding to train t (indicating train characteristics),

init t, sched t ≡ earliest time at which train t can be operated given the

timetable and the primary delay, and earliest time at which train t can

reach its destination given init t, the route assigned to t in the timetable and

the intermediate stops,

i(t′, t) ≡ indicator function: 1 if trains t′ and t use the same rolling stock

and t results from the turnaround, join or split of train t′, 0 otherwise,

ms ≡ minimum separation time between the arrival of a train and the de-

parture of another train which uses the same rolling stock,

Rt,TC t ≡ set of routes and track-circuits which can be used by train t,

TC r ≡ set of track-circuits composing route r,

OTC tyt,r,tc ≡ set of consecutive track-circuits preceding tc which are occu-

pied by t traveling along route r if its head is on tc, depending on t’s and

tc’s length,

TC (tc, tc′, r) ≡ set of track-circuits between tc and tc′ along route r,

pr,tc , sr,tc ≡ track-circuits preceding and following tc along route r,

rt ty,r,tc , ct ty,r,tc ≡ running and clearing time of tc along r for a train of type

ty ,

ref r,tc ≡ reference track-circuit for the reservation of tc along route r,

e(tc, r) ≡ indicator function: 1 if track-circuit tc belongs to an extreme (ei-

ther the first or the last) block section on route r, 0 otherwise,

bsr,tc ≡ block section including track-circuit tc along route r,

forbs , relbs ≡ formation and release time for block section bs,

St,TCS t,s ≡ set of stations where train t has a scheduled stop and set of

track-circuits that can be used by t for stopping at station s,

dw t,s, arr t,s, dept,s ≡ minimum dwell time, scheduled arrival and scheduled

departure times for train t at station s,

M ≡ large constant.
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The MILP formulation includes the following non-negative continuous vari-

ables:

• for all triplets of train t ∈ T , route r ∈ Rt and track-circuit tc ∈ TC r:

ot,r,tc : time at which t starts the occupation of tc along r,

lt,r,tc : longer stay of t’s head on tc along route r,

due to dwell time and scheduling decisions (delay);

• for all pairs of train t ∈ T and track-circuit tc ∈ TC t:

sU t,tc : time at which tc starts being utilized by t;

eU t,tc : time at which tc ends being utilized by t;

• for all pairs of train t ∈ T and track-circuit tc∞

Dt,tc∞ : delay suffered by train t when exiting the

infrastructure considered.

In addition the MILP formulation includes the following binary variables:

• for all pairs of train t ∈ T and route r ∈ Rt:

xt,r =

{
1 if t uses r,

0 otherwise,

• for all triplets of train t, t′ ∈ T such that the index t is smaller than

the index t′, and track-circuit tc ∈ TC t ∩ TC t′ :

yt,t′,tc =

{
1 if t utilizes tc before t′ (t ≺ t′),
0 otherwise (t � t′).

The objective function to be minimized is the total weighted delays suffered

by trains at their exit from the infrastructure:

min
∑
t∈T

wtDt,tc∞ . (1)

The sets of constraints considered impose the following conditions:

• A train t cannot be operated earlier than init t:

ot,r,tc ≥ init t xt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r. (2)
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• The start time of track-circuit occupation along a route is zero if the

route itself is not used:

ot,r,tc ≤Mxt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r. (3)

• A train starts occupying track-circuit tc along a route after spending

in the preceding track-circuit its running time, if the route is used, and

its longer stay.

ot,r,tc = ot,r,pr,tc + lt,r,pr,tc + rtr,tyt,pr,tcxt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r; (4)

remark that these constraints imply that lt,r,pr,tc equals 0 if t does not

use r.

• A train t with a scheduled stop at station s and using route r does

not enter the track-circuit following tc before the scheduled departure

time from s if tc is in TCS t,s:

ot,r,sr,tc ≥
∑

s∈St:tc∈TCS t,s∩TC r

dept,sxt,r ∀t ∈ T, r ∈ Rt, tc ∈
⋃
s∈St

TCS t,s. (5)

• A train t with a scheduled stop at station s and using route r has a

longer stay in tc of at least dw t,s if tc is in TCS t,s:

lt,r,sr,tc ≥
∑

s∈St:tc∈TCS t,s∩TC r

dw t,sxt,r ∀t ∈ T, r ∈ Rt, tc ∈
⋃
s∈St

TCS t,s. (6)

• A train t must use exactly one route:∑
r∈Rt

xt,r = 1 ∀t ∈ T. (7)

• The value of a delay Dt,tc∞ cannot be less than the difference between

the actual and the scheduled arrival times at the exit of the infrastruc-

ture:

Dt,tc∞ ≥
∑
r∈Rt

ot,r,tc∞ − sched t ∀t ∈ T. (8)

• A minimum separation time ms must separate the arrival and depar-

ture of trains using the same rolling stock:∑
r∈Rt,tc∈TC r:

pr,tc=tc0

ot,r,tc ≥
∑

r∈Rt′ ,tc∈TC r:
sr,tc=tc∞

ot′,r,tc + (ms+rtr,tyt′ ,tc)xt′,r

∀t, t′ ∈ T : i(t′, t) = 1. (9)
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• If trains t′ and t use the same rolling stock and t results from the

turnaround, join or split of train t′, the track-circuit tc where the

turnaround, join or split takes place must be utilized for the whole time

between t′’s arrival and t’s departure. Thus, tc starts being reserved

by t at the latest when t′ ends its utilization:∑
tc∈TC t:∃r∈Rt,pr,tc=tc0

sU t,tc ≤
∑

tc∈TC t′ :∃r∈Rt′ ,sr,tc=tc∞

eU t′,tc

∀t, t′ ∈ T : i(t′, t) = 1. (10)

Here, the inequality must be imposed since, in case of a join, two

trains arrive and are connected to become a single departing one. The

utilization of the departing train must then immediately follow the

utilization of the first train arriving, being strictly smaller than the

one of the second train.

• A train’s utilization of a track-circuit starts as soon as the train starts

occupying the track-circuit ref r,tc along one of the routes including it,

minus the formation time:

sU t,tc =
∑

r∈Rt:tc∈TC r

(
ot,r,ref r,tc − forbsr,tc xt,r

)
(11)

∀t ∈ T, tc ∈ TC t :(@ t′ ∈ T : i(t′, t) = 1) ∨ (∀ r ∈ Rt : ref r,tc 6= sr,tc0).

Constraints (11) are imposed as inequalities (≤) when they concern

a track-circuit of the first block sections of the route (ref r,tc = sr,tc0)

and the train t results from the turnaround, join or split of one or

more other trains. This fact is a consequence of the need of keep-

ing platforms utilized. Indeed, if train t results from the turnaround

of train t′, Constraints (10) ensure that the track-circuit where the

turnaround takes place starts being reserved by t as soon as t′ arrives.

As a consequence, Constraints (10) impose that t’s reservation of the

track-circuit starts much earlier than its occupation. Indeed, t needs to

wait at least for a time ms before departing and, in order to guarantee

the coherence with the constrains imposed by (4) on the occupation

variables and the running time, the occupation of the track-circuit

starts only on t actual departure.

• The utilization of a track-circuit tc lasts till the train utilizes it along
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any route, plus the formation and the release time:

eU t,tc =
∑

r∈Rt:tc∈TC r

ot,r,ref r,tc + (forbsr,tc + relbsr,tc )xt,r + ul t,r,tc

∀t ∈ T, tc ∈ TC t.

(12)

Here ul t,r,tc is the total utilization time:

ul t,r,tc =
∑

tc′∈TC (ref r,tc ,tc,r)

(rtr,tyt,tc
′xt,r + lt,r,tc′)+

+
∑

tc′∈TC t:tc∈OTC tyt,r,tc
′

lt,r,tc′ + ctr,tyt,tcxt,r.

It includes: the running time of all track-circuits between ref r,tc and

tc, the longer stay of the train’s head on each of these track-circuits

lt,r,tc and the clearing time of tc. Moreover, it includes the longer stay

on all track-circuits tc′ such that tc ∈ OTC tyt,r,tc
′ . As mentioned in

the definition of OTC tyt,r,tc
′ , if the head of the train is on one of these

track-circuits, then its tail has not yet exited tc: the train is longer

than tc′, or of the sequence of track-circuits between tc and tc′. Hence,

if the train suffers a longer stay when its head is on one of these track-

circuits, such a longer stay must be counted in the utilization time

of tc.

• The track-circuit utilizations by two trains must not overlap.

eU t,tc −M(1− yt,t′,tc) ≤ sU t′,tc

∀t, t′ ∈ T, idx t < idx t′, tc ∈ TC t ∩ TC t′ :

i(t, t′)
∑
r∈Rt

e(tc, r) = 0 ∧ i(t′, t)
∑
r∈Rt′

e(tc, r) = 0, (13)

eU t′,tc −Myt,t′,tc ≤ sU t,tc

∀t, t′ ∈ T, idx t < idx t′, tc ∈ TC t ∩ TC t′ :

i(t, t′)
∑
r∈Rt

e(tc, r) = 0 ∧ i(t′, t)
∑
r∈Rt′

e(tc, r) = 0. (14)

3 Fundamentals of route and precedence decisions

Before proposing our ideas to strengthen the RECIFE-MILP model, let us

introduce some concepts which will be useful in the rest of the paper.
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First of all, given two trains t and t′ and two routes r ∈ Rt and r′ ∈
Rt′ , we define the following relation in the set of track-circuits TC r ∩ TC r′

common to the two routes:

tc ∼r,r′ t̂c if tc, t̂c ∈ TC r∩TC r′ and t ≺ t′ on tc ⇔ t ≺ t′ on t̂c for any feasible schedule.

In words, in any feasible solution of RECIFE-MILP such that xt,r = xt′,r′ =

1, if tc ∼r,r′ t̂c then yt,t′,tc = yt,t′,t̂c .

This relation is an equivalence one, i.e., it is reflexive, symmetric and

transitive. Accordingly, it induces a partition of the set TC r ∩ TC r′ into

equivalence classes. Here, an equivalence class S is a maximal subset of

TC r ∩ TC r′ defined by the equivalence relation ∼r,r′ : it includes all track-

circuits linked to each other by ∼r,r′ . Hereafter, we call section any of these

equivalence classes S.

Example 1 To show examples of sections, let us consider Figure 1. It

depicts a simple infrastructure traversed by two trains t and t′, using r ∈
Rt = {r1,r2} and r′ ∈ Rt′ = {r3, r4, r5}, respectively. There, relation

∼r1,r3 defines section S1={tc1, tc2, tc3, tc4, tc5, tc6, tc7, tc8, tc9}. Indeed,

in every feasible solution where t uses r1 and t′ uses r3, if t precedes t′

(respectively, t′ precedes t) on tc1 then t (respectively, t′) must necessarily

traverse all the other track-circuits between tc1 and tc9 before t′ (respectively,

t). Relation ∼r2,r5 defines S2={tc10, tc11, tc12} and S3={tc15, tc16, tc17}.
In this second situation, we have two sections as, if t uses r2 and t′ uses r5,

t may pass first through S2 and second through S3, if it is in tc13 while t′

is in tc5. In the rest of the paper we will use the italics font to proceed with

this example.

Based on sections, we define the following sets for any pair of trains t

and t′ in T :

• Sr,r′ = {S ⊆ TC r ∩TC r′ : S equivalence class of ∼r,r′} for all r ∈ Rt

and r′ ∈ Rt′ , i.e., Sr,r′ is the set of sections associated to the pair of

routes r and r′;

• St,t′,tc = {S ∈ Sr,r′ : tc ∈ S, r ∈ Rt, r
′ ∈ Rt′} for all tc ∈ TC t ∩ TC t′ ,

i.e., St,t′,tc is the set of all the sections which include tc given all the

possible pairs of routes r and r′ that t and t′ may choose, respectively;
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r1

r2r5
r4

r3

tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9

tc10 tc11 tc12 tc13 tc15 tc16 tc17

S1

S5

S4

S2 S3tc14

Figure 1: Two sets of routes for two trains on a simple infrastructure: t

can use routes r1 and r2 and t′ can use routes r3, r4 and r5. In orange, the

sections for the pairs of routes of the two trains.

• St,t′ = ∪tc∈TC t∩TC t′St,t′,tc , i.e., St,t′ is the set of all the sections for

the two trains.

Example 2 In Figure 1, we have already seen that set Sr1,r3 includes S1

and Sr2,r5 includes S2 and S3. The other non empty sets Sr,r′ are Sr1,r5 =

{S5={tc4, tc5, tc6}} and Sr2,r4 = {S4={tc10, tc11, tc12, tc13, tc14, tc15,

tc16, tc17}}. Here, possible sets St,t′,tc are, for example, St,t′,tc1 = {S1},
St,t′,tc5 = {S1, S5} and St,t′,tc10 = {S2, S4}. Finally, St,t′ = {S1, S2, S3,

S4, S5}.

Assumption 1 For a pair of trains t and t′ and a track-circuit tc ∈ TC t ∩
TC t′, let yt,t′,tc = 1 if t does not choose a route which includes tc. Formally,∑
r∈Rt:tc 6∈TCr

xt,r = 1⇒ yt,t′,tc = 1 ∀t, t′ ∈ T, idx t < idx t′, tc ∈ TC t ∩TC t′ .

With Assumption 1 we state a relation between x and y-variables. In

particular, we state that we choose to set yt,t′,tc = 1 if no train uses tc, with

no loss of optimality. Indeed, in the explanation of Constraints (13) and (14)

of the standard RECIFE-MILP model, we discussed how, if only t′ chooses

a route which includes tc, then yt,t′,tc must be equal to 1. Conversely, if no

train uses tc, values 0 and 1 are indifferent as they are both feasible and

induce the same objective function value.

Further relations between binary variables are underlined with the fol-

lowing lemma and corollaries. Specifically, Lemma 1 states sufficient condi-

tions for which, depending on the route choices, the values of two y-variables

yt,t′,tc1 and yt,t′,tc2 are not independent. Then, Corollary 1 goes one step

12



further, formalizing a relation between the y-variables concerning several

track-circuits given some route choices. Finally, Corollary 2 generalizes the

results for any possible choice of the train routes.

Lemma 1 Consider two trains t and t′ and two track-circuits tc1, tc2 ∈
TC t∩TC t′. Let t choose route r ∈ Rt and t′ choose r′ ∈ Rt′. The RECIFE-

MILP model requires the inequality

yt,t′,tc1 − yt,t′,tc2 ≤ 0 (15)

to hold if at least one of the following conditions is verified:

1. tc1 ∈ TC r, tc1 6∈ TCr′;

2. tc2 6∈ TC r;

3. tc1, tc2 ∈ TC r ∩ TC r′ and they belong to a same section S ∈ Sr,r′;

4. tc1, tc2 ∈ TC r ∩ TC r′ and the trains run in opposite directions, with

tc2 ≺ tc1 along r and tc1 ≺ tc2 along r′.

Proof. If either Conditions 1 or 2 are verified, Inequality (15) is trivially

satisfied. In fact, in the first case, yt,t′,tc1 = 0 as train t′ does not traverse

tc1 but t does. In the second case, yt,t′,tc2 = 1 by Assumption 1 as train t

does not use tc2 along the route r chosen. In Condition 3, Inequality (15)

becomes yt,t′,tc2 = yt,t′,tc1 since the order in which the two trains traverse

all the track-circuits in a section is necessarily the same (by definition of

S ∈ Sr,r′). Finally, in Condition 4, Inequality (15) holds as yt,t′,tc1 = 1

implies yt,t′,tc2 = 1. Indeed, yt,t′,tc1 = 1 means that t traverses tc1 before

t′. Since, t must have traversed tc2 to reach tc1, it must have done so

before t′. Hence yt,t′,tc2 = 1. For the specular reasoning, yt,t′,tc2 = 0 implies

yt,t′,tc1 = 0.

�

Example 3 In the example in Figure 1, consider tc1 =tc15 and tc2 =tc10.

Condition 1 holds if t uses r2 and t′ r3: only the former includes tc15.

Condition 2 holds if t uses r1 (it does not include tc10), whatever route

is used by t′. Conditions 3 and 4 hold if the trains use routes r2 and r4,

respectively. Indeed, if t passes first on tc10, it will be first also on tc15,

and vice-versa. Condition 4 holds also for routes r2 and r5, since tc10≺tc15

along r2 and tc15≺tc10 along r5.
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In summary, at least one condition of Lemma 1 verifies whatever pair of

routes the trains use.

Next, we use the result of Lemma 1 and in particular that: Condition 1

implies yt,t′tc1 = 0, Condition 2 implies yt,t′,tc2 = 1, Condition 3 implies

yt,t′,tc1 = yt,t′,tc2 and Condition 4 implies yt,t′,tc1 ≤ yt,t′,tc2 . Specifically, we

generalize Lemma 1, which deals with pairs of track-circuits tc1 and tc2, to

a condition on two sets of track-circuits Q+ and Q−. To do so, we introduce

parameter γr,r′ . It is the number of times the lemma holds when each track-

circuit in Q+ and Q− is used to satisfy at most one condition and the two

trains use routes r and r′, respectively. We also introduce the two sets

Φ1(r, r′) = {tc1 ∈ Q+ : tc1 satisfies Condition 1 of Lemma 1 for (r, r′)},

Φ2(r, r′) = {tc2 ∈ Q− : tc2 satisfies Condition 2 of Lemma 1 for (r, r′)}.

We can define the following corollary to formalize the generalized relation.

Corollary 1 Consider two trains t and t′ and two subsets of track-circuits

Q+, Q− ⊂ TC t ∩ TC t′ , Q
+ ∩ Q− = ∅. Let t choose route r ∈ Rt and t′

choose r′ ∈ Rt′. The following inequality holds∑
tc∈Q+

yt,t′,tc −
∑

tc∈Q−
yt,t′,tc ≤ |Q+| − γr,r′ (16)

when: i) |Φ1(r, r′)|+ |Φ2(r, r′)| ≤ γr,r′ and ii) there are γr,r′ − (|Φ1(r, r′)|+
|Φ2(r, r′)|) different pairs of track-circuits (tc1, tc2) ∈ (Q+\Φ1(r, r′))×(Q−\
Φ2(r, r′)), that satisfy either Condition 3 or Condition 4 of Lemma 1 and

such that each tc1 and each tc2 belong at most to one of these pairs.

Example 4 In the example in Figure 1, suppose t uses r2 and t′ uses r3. Let

Q+ = {tc10} and Q− = {tc5}. We have Φ1(r2,r3) = Q+ ⇒ yt,t′,tc10 = 0:

all the track-circuits in Q+, i.e., tc10, satisfy Condition 1 of Lemma 1, as

tc10 belongs to r2 and not to r3, and this implies that the y−variable is

equal to 0 due to the RECIFE-MILP constraints. Moreover, Φ2(r2,r3) =

Q− ⇒ yt,t′,tc5 = 1, following a reasoning similar to the one mentioned

for tc10. Since |Φ1(r2,r3)| = |Φ2(r2,r3)| = 1 and there cannot be pairs of

track-circuits to satisfy point ii), then, we obtain the inequality of type (16)

yt,t′,tc10 − yt,t′,tc5 ≤ −1

where the r.h.s. is equal to −1 as |Q+| = 1 and γr2,r3 = 2.
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Note that (16) implies γr,r′ ≤ |Q+|+ |Q−|. The equality holds when each

track-circuit alone meets a condition of Lemma 1. This is possible when

Φ1(r, r′) = Q+ and Φ2(r, r′) = Q−. Hereafter, when, given a pair of routes

(r, r′) ∈ Rt × Rt′ and two sets of track-circuits Q+ and Q− ⊆ TC t ∩ TC t′ ,

conditions of Corollary 1 hold for the value γr,r′ , we say that Lemma 1 holds

γr,r′ times for (r, r′).

In Inequality (16) we consider a specific pair of routes for the two trains.

We now generalize the reasoning to account that the two trains may choose

their routes among several pairs of alternatives. This requires to compute a

possibly different γr,r′ for each pair (r, r′) ∈ Rt ×Rt′ .

Example 5 In the example in Figure 1, suppose Q+ = {tc10} and Q− =

{tc15}. The following matrices report, for all pairs of routes (r, r′) ∈ Rt ×
Rt′, the track-circuits or pairs satisfying at least one condition of Lemma 1

and the values of γr,r′ according to Corollary 1, i.e., the number of times

that Lemma 1 holds for the pair of routes (r, r′):

tc satisfying at least one condition of Lemma 1

Rt ↓ Rt′ → r3 r4 r5

r1 tc15 tc15 tc15

r2 tc10 (tc10, tc15) -

γr,r′

Rt ↓ Rt′ → r3 r4 r5

r1 1 1 1

r2 1 1 0

Indeed, consider first route r1 for train t, since tc15 does not belong to route

r1 Condition 2 of the lemma is satisfied whatever route we consider for t′.

Then consider route r2 for train t, Condition 1 of the lemma is satisfied

if t′ chooses r3, since tc10 belongs to r2 and not to r3. If t′ chooses r4,

then tc10 and tc15 belong to the same section S4 and Condition 3 of the

lemma is satisfied. Finally, if t′ chooses r5, no condition is satisfied and

γr2,r5 = 0: the track-circuits tc10 and tc15 belong to both routes, which

excludes Conditions 1 and 2; they do not belong to the same section, which

excludes Condition 3; r2 uses tc10 before tc15, which excludes Condition 4.

Remark that in this example it never happens that both the pair of track-

circuits and a single one of them satisfy conditions of Lemma 1. Hence the

issue of each track-circuit being considered at most once for the counting of

the number of times the lemma is satisfied (γr,r′) does not apply.

Corollary 2 Consider two trains t and t′ and two subsets of track-circuits

Q+ and Q− of TC t ∩TC t′ , Q
+ ∩Q− = ∅, and a set of values γr,r′ for which

15



Lemma 1 holds γr,r′ times for each pair (r, r′). The following inequality holds∑
tc∈Q+

yt,t′,tc −
∑

tc∈Q−
yt,t′,tc ≤ |Q+| −

∑
r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ . (17)

Example 6 Continuing Example 5, the matrix of γr,r′ reported there allows

us to derive the following inequality of type (17):

yt,t′,tc10−yt,t′,tc15 ≤ 1−xt,r1xt′,r3−xt,r1xt′,r4−xt,r1xt′,r5−xt,r2xt′,r3−xt,r2xt′,r4.

4 Valid inequalities

As pointed out in the Introduction, the aim of this work is to exploit the

interdependence of the route and precedence decisions to try to strengthen

the RECIFE-MILP model. In this section, we introduce a family of valid

inequalities that describes how route choices may restrict the feasible prece-

dence relations of pairs of trains on possibly common track-circuits, using

the concepts introduced in Section 3.

Specifically, given two trains t and t′ in T , we are interested in inequalities

where the algebraic sum of precedence decision variables {yt,t′,tc : tc ∈ TCt∩
TCt′} are bounded by an affine combination of route decision variables {xt,r :

r ∈ Rt} and {xt′,r′ : r′ ∈ Rt′} as the following ones:∑
tc∈Q+

yt,t′,tc −
∑

tc∈Q−
yt,t′,tc ≤ |Q+| − (

∑
r∈Rt

l1rxt,r +
∑

r′∈Rt′

l2r′xt′,r′ − k). (18)

In (18):

• Q+ and Q− are two disjoint subsets of the sets of track-circuits that

may be traversed by both trains, i.e., Q+, Q− ⊆ TCt ∩ TCt′ such that

Q+ ∩Q− = ∅
•
∑

r∈Rt
l1rxt,r +

∑
r′∈Rt′

l2r′xt′,r′ − k is an affine combination of the vari-

ables {xt,r : r ∈ Rt} and {xt′,r′ : r′ ∈ Rt′}, whose constant factor k

and coefficients l1r and l2r′ may depend on Q+ and Q−.

Inequalities (18) are of interest only if for some values of xt,r and xt′,r′∑
r∈Rt

l1rxt,r +
∑

r′∈Rt′

l2r′xt′,r′ − k > 0.

If this condition does not apply, Inequalities (18) are trivially dominated by

conditions 0 ≤ yt,t′,tc ≤ 1, for tc ∈ Q− ∪Q+.
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Hereinafter, we will simply refer to a pair of trains t and t′ to indicate a

generic pair of trains in T that share some track-circuits tc’s in TC t ∩ TC t′ .

Example 7 In the example in Figure 1, a possible valid inequality for RECIFE-

MILP of type (18), not dominated by condition 0 ≤ yt,t′,tc ≤ 1, is:

yt,t′,tc10 − yt,t′,tc15 ≤ 1− xt′,r3 − xt′,r4. (19)

This condition, where Q+ = {tc10} and Q− = {tc15} and
∑

r∈Rt
l1rxt,r +∑

r′∈Rt′
l2r′xt′,r′ − k = xt′,r3 + xt′,r4, states that the values of yt,t′,tc10 and

yt,t′,tc15 are not independent when t′ uses either r3 or r4. In the former

case (xt′,r3 = 1), yt,t′,tc10 = yt,t′,tc15 = 0 because t′ is not using either track-

circuit. Instead, if t′ uses r4, the y-variables must assume identical values:

if t uses r2, the tc’s are in the same section (yt,t′,tc10 = yt,t′,tc15 = 0 or 1);

if t uses r1, it does not pass through the tc’s (yt,t′,tc10 = yt,t′,tc15 = 1).

In the definition of the valid inequalities of type (18), Lemma 1 and

Corollaries 1 and 2 turn useful for determining the values that should be

assumed by the parameters l1r , l2r′ and k. In particular, Lemma 1 states

sufficient conditions for which two y-variables yt,t′,tc1 and yt,t′,tc2 are linked

by a stronger condition than yt,t′,tc1 − yt,t′,tc2 ≤ 1. Then, Corollary 1 helps

us finding an upper bound of the value for
∑

r∈Rt
l1rxt,r +

∑
r′∈Rt′

l2r′xt′,r′−k
once the routes r and r′ are chosen by the two trains and the sets Q+ and

Q− are fixed. Finally, Corollary 2 provides a bilinear function that upper

envelops this value for any possible choice of the train routes.

In the following we exploit Equation (17) of Corollary 2 to derive a family

of valid inequalities for the RECIFE-MILP model by setting coefficients l’s

such that the bilinear function
∑

r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ upper envelops∑
r∈Rt

l1rxt,r +
∑

r′∈Rt′
l2r′xt′,r′ − k. To do so, we require that inequality∑

r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ ≥
∑
r∈Rt

l1rxt,r +
∑

r′∈Rt′

l2r′xt′,r′ − k (20)

i) holds for all (r, r′) ∈ Rt ×Rt′ and ii) is tight for some choice of routes.

Note that, from McCormick conditions (Castro, 2015; McCormick, 1976),

γr,r′xt,rxt′,r′ ≥ γr,r′xt,r + γr,r′xt′,r′ − γr,r′ ∀(r, r′) ∈ Rt ×Rt′ . (21)
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Then, consider that Constraints (7) on the uniqueness of the route choice

for each train impose that

γr,r′xt,rxt′,r′ =

γr,r′ if r is chosen by t and r′ is chosen by t′,

0 otherwise.
(22)

Then, for each k such that minr∈Rt,r∈Rt′ (γr,r′) ≤ k ≤ maxr∈Rt,r′∈Rt′
(γr,r′) ≤

|Q+| + |Q−|, we can define two sets Ψk
t ⊆ Rt and Ψk

t′ ⊆ Rt′ , such that

γr,r′ ≥ k for all pairs of routes (r, r′) ∈ Ψk
t ×Ψk

t′ , and we can write∑
r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ ≥
∑
r∈Ψk

t

∑
r′∈Ψk

t′

γr,r′xt,rxt′,r′ ≥

≥
∑
r∈Ψk

t

kxt,r +
∑

r′∈Ψk
t′

kxt′,r′ − k. (23)

The first inequality depends on the sets on which the sums are made, which

are larger in the l.h.s. than in the r.h.s.. The second one derives from (21)

and (22), and from the fact that k ≥ γr,r′ by definition.

To strengthen Condition (23), we aim to include additional xt,r and xt′,r′

to the r.h.s.. To do so, we loosen the requirements on the associated γr,r′ .

Indeed, given the definition of k, the requirement for all the pairs of routes

in Ψk
t × Ψk

t′ is that γr,r′ is at least k. As a first step in this requirements

loosening, we define two additional sets Ψk−1
t ⊆ Rt\Ψk

t and Ψk−1
t′ ⊆ Rt′\Ψk

t′ ,

such that for all pairs of routes (r, r′) ∈ Ψl1
t ×Ψl2

t′ (l1, l2 ∈ {k−1, k}) it holds

that γr,r′ ≥ max{0, l1 + l2 − k}. With these sets we obtain∑
r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ ≥
∑

r∈Ψk−1
t ∪Ψk

t

∑
r′∈Ψk−1

t′ ∪Ψk
t′

γr,r′xt,rxt′,r′ ≥

≥
∑
r∈Ψk

t

kxt,r +
∑

r′∈Ψk
t′

kxt′,r′ +
∑

r∈Ψk−1
t

(k − 1)xt,r +
∑

r′∈Ψk−1
t′

(k − 1)xt′,r′ − k.

(24)

Indeed the above inequalities holds as, whenever trains t and t′ choose a

pair of routes (r, r′) ∈ Ψk
t ×Ψk

t′ we have γr,r′ ≥ k by definition of k, and the

r.h.s. of (24) assumes value k. Differently, whenever trains t and t′ choose

a pair of routes (r, r′) ∈ Ψk−1
t × Ψk

t′ or Ψk
t × Ψk−1

t′ we have γr,r′ ≥ k − 1

and the r.h.s. of (24) assumes value k − 1. Finally, whenever trains t and t′

choose a pair of routes (r, r′) ∈ Ψk−1
t ×Ψk−1

t′ , we have γr,r′ ≥ k − 2 and the

r.h.s. of (24) assumes value k − 2.
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As further steps in the strengthening of the conditions, and hence in the

γr,r′ requirements loosening, we can iterate the above argument by defining

two additional sets for each 0 ≤ l ≤ k − 2 as Ψl
t ⊆ Rt \

⋃k
l̂=l+1

Ψl̂
t and

Ψl
t′ ⊆ Rt′ \

⋃k
l̂=l+1

Ψl̂
t′ , such that for all pairs of routes (r, r′) ∈ Ψl1

t × Ψl2
t′

(l1, l2 ∈ {l, ..., k − 1, k}) it holds that γr,r′ ≥ max{0, l1 + l2 − k} . We then

obtain∑
r∈Rt

∑
r′∈Rt′

γr,r′xt,rxt′,r′ ≥
∑

r∈
⋃k

l̂=l
Ψl̂

t

∑
r′∈

⋃k
l̂=l

Ψl̂
t′

γr,r′xt,rxt′,r′ ≥

≥
k∑

l1=0

l1
∑
r∈Ψ

l1
t

xt,r +

k∑
l2=0

l2
∑

r′∈Ψ
l2
t′

xt′,r′ − k. (25)

We observe that, without loss of generality, we can assume that Ψ0
t and Ψ0

t′

include all the routes of Rt and Rt′ , respectively, which are not included in

other sets Ψl1
t and Ψl2

t′ . Hence, by their definition, for any fixed value of

k, the sets Ψl1
t , for 0 ≤ l1 ≤ k, partition Rt; respectively, the sets Ψl2

t′ , for

0 ≤ l2 ≤ k, partition Rt′ . Hereinafter, we say that the sets Ψl1
t and Ψl2

t′ ,

for 0 ≤ l1 ≤ k and 0 ≤ l2 ≤ k, define a k-double partition of Rt × Rt′ . In

addition, we say that a k-double partition is maximal if there is no route

r ∈ Ψl1
t , 0 ≤ l1 ≤ k, such that γr,r′ ≥ max{0, l1 + 1 + l2 − k} for all

0 ≤ l2 ≤ k and r′ ∈ Ψl2
t′ . Symmetrical conditions must hold for all routes

r′ ∈ Ψl2
t′ , 0 ≤ l2 ≤ k. In words, all routes are in the set with the highest

possible index l1 or l2, respectively for t and t′. Note that different maximal

k-double partitions may exist for the same value of k and the same pair of

sets Q+ and Q−.

The next theorem formalizes the above arguments.

Theorem 1 Consider two trains t and t′ and two subsets of track-circuits

Q+ and Q− of TCt∩TCt′. The following inequality is valid for the RECIFE-

MILP model, for any k ≥ 0 and k-double partition composed of Ψl1
t and Ψl2

t′ ,

with 0 ≤ l1 ≤ k and 0 ≤ l2 ≤ k:∑
tc∈Q+

yt,t′,tc−
∑

tc∈Q−
yt,t′,tc ≤ |Q+|− (

k∑
l1=0

l1
∑
r∈Ψ

l1
t

xt,r +
k∑

l2=0

l2
∑

r′∈Ψ
l2
t′

xt′,r′−k).

(26)

Proof. Assume, without loss of generality, that train t chooses route r̂ ∈ Ψl̂1
t

(xt,r̂ is the only x-variable valued 1 for t) and train t′ route r̂′ ∈ Ψl̂2
t′ (xt′,r̂′

19



is the only x-variable valued 1 for t′). Indeed, (26) r.h.s. is equal to

|Q+| − (l̂1 + l̂2 − k).

Then, the theorem is proven as (26) l.h.s. satisfies the following chain of

inequalities:∑
tc∈Q+

yt,t′,tc −
∑

tc∈Q−
yt,t′,tc ≤ |Q+| − γr̂,r̂′ ≤ |Q+| − (l̂1 + l̂2 − k).

The first one is due to Corollary 2. The second one follows the definition of

the k-double partition since γr̂,r̂′ ≥ max{0, l̂1 + l̂2 − k}.
�

Example 8 Consider Figure 1 and Q+ = {tc10} and Q− = {tc15}. The

matrix reported in Example 7 induces two possible 1-double partitions:

• the 1-double partition Ψ1
t = {r1,r2}, Ψ0

t = ∅, Ψ1
t′ = {r3,r4}, Ψ0

t′ =

{r5} that induces valid inequality (19):

yt,t′,tc10 − yt,t′,tc15 ≤ 1 − (xt,r1 + xt,r2 + xt′,r3 + xt′,r4 − 1) = 1 −
xt′,r3 − xt′,r4;

• the 1-double partition Ψ1
t = {r1}, Ψ0

t = {r2}, Ψ1
t′ = {r3,r4,r5}, Ψ0

t′ =

∅ that induces the valid inequality

yt,t′,tc10−yt,t′,tc15 ≤ 1−(xt,r1 +xt′,r3 +xt′,r4 +xt′,r5−1) = 1−xt,r1.

Observe that the results of Theorem 1 can be generalized considering Q+

and Q− as multisets, including multiple instances of the same track-circuits.

In this case, two or more instances of a same track-circuit tc∗ have to be

regarded as they were different track-circuits when computing how many

times Lemma 1 holds for each pair of routes (r, r′) ∈ Rt×Rt′ . Indeed, these

tc∗’s will appear with coefficient two or more in the valid inequality.

5 Cases of dominance between valid inequalities

Inequalities (26) are valid for any possible choice of the sets Q+ and Q−

and k-double partition. Then, an exponential number of these inequalities

can be generated. Indeed, we have 3|TC t∩TC t′ | − 1 different choices for the
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subsets of track-circuits Q+ and Q− included in TC t ∩TC t′ , Q
+ = Q− = ∅

excluded.

For given sets Q+ and Q−, Inequalities (26) are of interest only in case

of maximal k-double partitions, being dominated otherwise. Indeed, if for

some 0 ≤ l̂1 ≤ k there is a route r̂ ∈ Ψl̂1
t such that γr̂,r′ ≥ max{0, l̂1 +

1 + l2 − k} for all r′ ∈ Ψl2
t′ and 0 ≤ l2 ≤ k, i.e., which can be moved to

Ψl̂1+1
t , we can obtain a stronger inequality by actually moving r̂ to this

set. Remark that, in general, the inequality obtained for a maximal k-

double partition does not dominate the one obtained for a different maximal

k̂-double partition. However, some conditions which imply a dominance

relation can be identified.

The next lemma that states a sufficient condition under which the dom-

inance relation holds when k̂ = k − 1.

Lemma 2 Consider a maximal k-double partition made of the sets Ψl1
t and

Ψl2
t′ for l1, l2 ∈ [0, k] and a maximal (k-1)-double partition made of the sets

Ψ̂l1
t and Ψ̂l2

t′ for l1, l2 ∈ [0, k − 1]. If they are such that: i) Ψ0
t′ = ∅, ii)

Ψ̂l2
t′ = Ψl2+1

t′ for l2 ∈ [0, k − 1] and iii) Ψ̂l1
t ⊆

⋃
l∈[l1,k] Ψl

t for l1 ∈ [0, k − 1],

then the Inequality (26) based on the k-double partition dominates the one

based on the (k-1)-double partition.

Proof. Indeed, the inequalities based on the two double partitions are for-

mulated as

∑
tc∈Q+

yt,t′,tc−
∑

tc∈Q−
yt,t′,tc ≤ |Q+|+k−

k∑
l=0

l

∑
r∈Ψl

t

xt,r +
∑

r′∈Ψl
t′

xt′,r′

 (27)

and

∑
tc∈Q+

yt,t′,tc−
∑

tc∈Q−
yt,t′,tc ≤ |Q+|+ (k−1)−

k−1∑
l=0

l

∑
r∈Ψ̂l

t

xt,r +
∑

r′∈Ψ̂l
t′

xt′,r′

 .

(28)

Inequality (27) dominates (28) if the r.h.s. of the former is less than or equal

to the r.h.s. of the latter. By hypothesis ii), in (28),

k−1∑
l=0

l
∑

r′∈Ψ̂l
t′

xt′,r′ =

k∑
l=1

(l − 1)
∑
r∈Ψl

t′

xt′,r′ =

k∑
l=1

l
∑

r′∈Ψl
t′

xt′,r′ −
k∑

l=1

∑
r′∈Ψl

t′

xt′,r′ .
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Hence the comparison between the two r.h.s.’s reduces to

−
k∑

l=0

l
∑
r∈Ψl

t

xt,r ≤ −1 +
k∑

l=1

∑
r′∈Ψl

t′

xt′,r′

︸ ︷︷ ︸
1−

∑
r′∈Ψ0

t′
xt′,r′=1 for hypothesis i)

−
k−1∑
l=0

l
∑
r∈Ψ̂l

t

xt,r

that is

k∑
l=0

l
∑
r∈Ψl

t

xt,r ≥
k−1∑
l=0

l
∑
r∈Ψ̂l

t

xt,r. (29)

Inequality (29) holds as for all r ∈ Rt as the coefficient of variable xt,r in the

r.h.s. is by hypothesis iii) less than or equal to its coefficient in the l.h.s..

�

Next, we present some situations of dominance between instances of In-

equalities (26) characterized by the same value of k, but possibly considering

different sets Q+ and Q−.

Initially consider two instances of Inequalities (26) associated to the same

k-double partition and respectively to the sets Q+
1 , Q

−
1 and Q+

2 , Q
−
2 , with

Q+
1 ⊇ Q+

2 or Q−1 ⊇ Q−2 . The second inequality dominates the first one.

Indeed, the difference of the r.h.s.’s of the two inequalities is |Q+
1 | − |Q

+
2 |,

whereas the differences of the l.h.s.’s is
∑

tc∈Q+
1 \Q

+
2
yt,t′,tc−

∑
tc∈Q−1 \Q

−
2
yt,t′,tc ,

which is certainly less than or equal to |Q+
1 | − |Q

+
2 |.

When k = l1 = l2 = 0 Inequality (26) becomes trivially satisfied. Indeed,

for Q+ = ∅ and |Q−| = 1, it corresponds to −yt,t′,tc ≤ 0, and for |Q+| = 1

and Q− = ∅, it corresponds to yt,t′,tc ≤ 1. These two inequalities dominate

all the other instances defined by a 0-double partition.

Consider now Inequality (26) associated to Q+ = ∅, but for k ≥ 1.

Lemma 1 may hold only with respect to Condition 2 for all tc ∈ Q−: all the

other conditions of the lemma require the presence of at least a track-circuit

in Q+. As a consequence, Ψk
t′ = Rt′ and Ψl

t′ = ∅ for 0 ≤ l ≤ k − 1. In turn,

this implies
∑

r′∈Ψk
t′
xt′,r′ = 1 and

∑
r′∈Ψl

t′
xt′,r′ = 0 for 0 ≤ l ≤ k − 1. Also,

each Ψl
t is made up of routes of t that do not include at least l track-circuits

of Q−, for 0 ≤ l ≤ k. Then, if Q+ = ∅, the instances of Inequality (26) have
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the following structure:

−
∑

tc∈Q−
yt,t′,tc ≤ −

k∑
l=0

l
∑
r∈Ψl

t

xt,r. (30)

In particular, when |Q−| = 1 and k = 1, (30) becomes

−yt,t′,tc ≤ −
∑

r∈Ψ1
t={r∈Rt:tc 6∈TC r}

xt,r. (31)

These last instances define the circumstances for which yt,t′,tc is necessarily

equal to one. Similarly, for |Q−| > 1, (30) imposes that for r ∈ Ψl
t the sum

of yt,t′,tc is necessarily greater than or equal to l, for 0 ≤ l ≤ k. Hence, each

inequality obtained for a set Q− such that |Q−| > 1 is dominated by the

collection of Inequalities (31), one for each tc ∈ Q−.

However, consider the symmetrical situation, i.e., instances of Inequal-

ity (26) with Q− = ∅: for all tc ∈ Q+ Lemma 1 may hold only with respect

to Condition 1. All the other conditions of the lemma require the presence

of at least a track-circuit in Q−. Then, for |Q+| = 1 and k = 1, we have:

yt,t′,tc ≤ 2−
∑

r∈Ψ1
t={r∈Rt:tc∈TC r}

xt,r −
∑

r′∈Ψ1
t′={r

′∈Rt′ :tc 6∈TC r′}

xt′,r′ . (32)

These instances define the circumstances for which yt,t′,tc is necessarily equal

to 0. Differently from the previous case, they do not dominate inequalities

for |Q+| > 1 and Q− = ∅, when k < |Q+|.
Finally, consider instances of Inequality (26) with k = |Q+|+ |Q−| ≥ 2.

Indeed, conditions Φ1(r, r′) = Q+ and Φ2(r, r′) = Q− must hold for any pair

of routes (r, r′) ∈ Ψk
t ×Ψk

t′ , as any track-circuit in Q+ ∪Q− can be used to

satisfy at most one condition of Lemma 1. Following what mentioned before

the definition of Φ1(r, r′) and Φ2(r, r′), the value of the y-variables is deter-

mined (0 and 1 respectively) if a pair of routes in Ψk
t ×Ψk

t′ is chosen. This

implies that these instances are dominated by instances of (31) and (32).

6 Binary variables reduction

In this section, we show how inequalities of type (26), together with the

equivalence between track-circuits defined in Section 3, may allow a reduc-

tion of the number of variables yt,t′,tc in the RECIFE-MILP model. Specif-

ically, in Section 3, after the introduction of the track-circuit equivalence
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relation, we have observed that, if tc ∼r,r′ t̂c, variable yt,t′,t̂c can play the

role of variable yt,t′,tc provided that the two trains t and t′ respectively

choose routes r and r′. Next, we extend the concept of equivalence to cover

all the possible route choices.

To do so, we first introduce the concept of representative track-circuit.

Then we illustrate the reformulation of the RECIFE-MILP model which

allows the reduction of the number of binary variables exploiting represen-

tativeness, and we discuss how this number can be minimized.

6.1 Representative track-circuit

For any tc ∈ TC t ∩ TC t′ , we say that t̂c ∈ TC t ∩ TC t′ is representative of

tc if it satisfies the following conditions:

• there exists at least a pair of routes r ∈ Rt and r′ ∈ Rt′ such that

tc, t̂c ∈ TC r ∩ TC r′ ;

• for all pairs of routes r ∈ Rt and r′ ∈ Rt′ such that tc, t̂c ∈ TC r∩TC r′ ,

there exists S ∈ Sr,r′ such that tc, t̂c ∈ S, or equivalently tc ∼r,r′ t̂c.

In words, both track-circuits are included in one or more pairs of routes and,

when this happens, the precedence relation on the two must be the same.

Remark that any tc is always representative of itself, and that it may have

several different representatives.

Example 9 In Figure 1, for example, consider tc12, tc14 and tc17 as can-

didate representatives of tc10. They all belong to TC r2 ∩ TC r4 and tc10

∼r2,r4 tc12, tc10 ∼r2,r4 tc14, tc10 ∼r2,r4 tc17. Then, observe that tc10,

tc12, and tc17 also belong to TC r2∩TC r5, but it only holds that tc10 ∼r2,r5
tc12 (tc10 6∼r2,r5 tc17). In addition, note that there is no other pair of

routes r and r′ such that both tc10 and any of the other track-circuits belong

to TC r ∩ TC r′. Hence, tc12 and tc14 are representative of tc10 but tc17 is

not. Extending this reasoning to all track-circuits, we can say that all the

representatives of tc10 are: tc10, tc11, tc12, tc13, tc14.

Give the above definition, if t̂c is representative of tc then yt,t′,t̂c can

play the role of yt,t′,tc for any pair of routes r ∈ Rt r
′ ∈ Rt′ such that

tc, t̂c ∈ TC r ∩TC r′ . In what follows, we show how inequalities of type (26)
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Table 1: Conditions of Lemma 1 that hold when Q+ = {tc} and Q− = {t̂c}
where t̂c is representative of tc.

tc 6∈ TC r′ tc ∈ TC r′ ∧ t̂c ∈ TC r′ tc ∈ TC r′ ∧ t̂c 6∈ TC r′

t̂c 6∈ TC r Condition 2 Condition 2 Condition 2

tc ∈ TC r ∧ t̂c ∈ TC r Condition 1 Condition 3 -

tc 6∈ TC r ∧ t̂c ∈ TC r - - -

for k = 1 allow the substitution of yt,t′,tc with yt,t′,t̂c whatever pair of routes

is used by the two trains.

Consider Q+ = {tc} and Q− = {t̂c} where t̂c is representative of tc and

let us define a 1-double partition composed by

Ψ1
t = {r ∈ Rt : tc ∈ TC r ∨ t̂c 6∈ TC r}

Ψ1
t′ = {r′ ∈ Rt′ : tc 6∈ TC r′ ∨ t̂c ∈ TC r′}

Ψ0
t = {r ∈ Rt : (tc 6∈ TC r ∧ t̂c ∈ TC r)}

Ψ0
t′ = {r′ ∈ Rt′ : (tc ∈ TC r′ ∧ t̂c 6∈ TC r′)}.

Indeed, as summarized in Table 1,

• for (r, r′) such that t̂c 6∈ TC r, Condition 2 of Lemma 1 holds;

• for (r, r′) such that tc ∈ TC r ∧ t̂c ∈ TC r and tc 6∈ TC r′ , Condition 1

of Lemma 1 holds;

• for (r, r′) such that tc ∈ TC r ∧ t̂c ∈ TC r and tc ∈ TC r′ ∧ t̂c ∈ TC r′ ,

Condition 3 of Lemma 1 holds since, by definition of representative

track-circuit, tc and t̂c are in the same section;

• for (r, r′) such that tc ∈ TC r ∧ t̂c ∈ TC r and tc ∈ TC r′ ∧ t̂c 6∈ TC r′

no condition of Lemma 1 applies;

• for (r, r′) such that tc 6∈ TC r ∧ t̂c ∈ TC r, no condition of Lemma 1

applies.

With this 1-double partition, Inequality (26) becomes:

yt,t′,tc − yt,t′,t̂c ≤ 2−
∑
r∈Ψ1

t

xt,r −
∑

r′∈Ψ1
t′

xt′,r′ . (33)
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Then, we observe that the l.h.s. of (33) can be transformed as:

2−
∑
r∈Ψ1

t

xt,r −
∑

r′∈Ψ1
t′

xt′,r′ = (1−
∑
r∈Ψ1

t

xt,r) + (1−
∑

r′∈Ψ1
t′

xt′,r′) =

=
∑

r∈Rt\Ψ1
t

xt,r +
∑

r′∈Rt\Ψ1
t′

xt′,r′ =
∑
r∈Ψ0

t

xt,r +
∑

r′∈Ψ0
t′

xt′,r′ =

=
∑

r∈Rt:tc 6∈TC r∧t̂c∈TC r

xt,r +
∑

r′∈Rt′ :tc∈TC r′∧t̂c 6∈TC r′

xt′,r′

and, hence we can rewrite the whole Inequality (33) as

yt,t′,tc ≤ yt,t′,t̂c +
∑

r∈Rt:tc 6∈TC r∧t̂c∈TC r

xt,r +
∑

r′∈Rt′ :tc∈TC r′∧t̂c 6∈TC r′

xt′,r′ . (34)

By setting Q+ = {t̂c} and Q− = {tc} and using symmetric arguments, we

can derive also the following inequality from (26):

yt,t′,t̂c −
∑

r∈Rt:tc∈TC r∧t̂c 6∈TC r

xt,r −
∑

r′∈Rt′ :tc 6∈TC r′∧t̂c∈TC r′

xt′,r′ ≤ yt,t′,tc (35)

Remark that a track-circuit tc may have several representative t̂c’s. Each

t̂c covers a specific set of route pairs for t and t′, i.e., all the pairs of routes

(r, r′) such that both tc and t̂c belong to both r and r′. We say that a

set of track circuits is a representative set of tc if it is a minimal set that

includes at least one representative t̂c in TC r ∩TC r′ for any pair of routes

r ∈ Rt and r′ ∈ Rt′ that include tc. In other words, let Rept,t′(tc) be the

set of all possible representative sets of tc, the generic i-th representative

set Repi
t,t′(tc) ∈ Rept,t′(tc) is a minimal set such that Repi

t,t′(tc) ∩ S 6= ∅
for any S ∈ St,t′,tc . Consequently, for any pair of routes, we can find a

t̂c ∈ Repit,t′(tc) such that yt,t′,t̂c plays the role of yt,t′,tc . Remark that at least

the representative set {tc} exists for any tc ∈ TC t ∩ TC t′ . Let Rept,t′(tc)

be the set of all possible representative sets of tc.

Example 10 In Figure 1, for example, possible representative sets are Rep0
t,t′(tc10) =

{tc10, tc11, tc12, tc13, tc14}, Rep1
t,t′(tc10) = {tc11, tc13, tc14} and Rep2

t,t′(tc10) =

{tc10}. Indeed, tc10 belongs to two sections: S2 and S4. To be sure of cov-

ering both, any representative set of tc10 needs to include at least one of

tc10, tc11 or tc12.
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6.2 Constraints reformulation and variables reduction

Now observe that the combination of Constraints (13) concerning a track-

circuit tc and Inequalities (35) implies

eU t,tc −M(1− yt,t′,t̂c +
∑
r∈Rt:

tc∈TC r

∧t̂c 6∈TC r

xt,r +
∑

r′∈Rt′ :

tc 6∈TC r′

∧t̂c∈TC r′

xt′,r′) ≤ sU t′,tc . (36)

Analogously, the combination of Constraints (14) and Inequalities (34) im-

plies

eU t′,tc −M(yt,t′,t̂c +
∑
r∈Rt:

tc 6∈TC r

∧t̂c∈TC r

xt,r +
∑

r′∈Rt′ :

tc∈TC r′

∧t̂c 6∈TC r′

xt′,r′) ≤ sU t,tc . (37)

The following theorem holds

Theorem 2 Let two trains t and t′ in T be given. Consider track-circuit

tc ∈ TC t ∩ TC t′ and a track-circuit t̂c representative of tc. Then, Con-

straints (36) and (37) are logically equivalent to Constraints (13) and (14).

The former constraints can substitute the latter ones in imposing the prece-

dences between times eU t,tc and sU t′,tc, respectively eU t′,tc and sU t,tc, if

the routes chosen by t and t′ include both track-circuits. Otherwise, Con-

straints (36) and (37) are trivially satisfied.

Proof. Throughout this proof, let r and r′ be the routes chosen by trains t

and t′, respectively, i.e., the routes for which xt,r = 1 and xt′,r′ = 1.

First, consider the case in which both r and r′ include tc and t̂c. In

this case, the theorem holds for the following reasons. By definition of

representative track-circuit, yt,t′,tc = yt,t′,t̂c since both tc and t̂c are used.

In addition, the sum of x-variables in (36) and (37) cancels out. Indeed, in

Constraints (36), the sum of the x-variables for train t on the routes which

include tc and not t̂c is zero, since the chosen r (for which the x-variable

is set to 1) includes both. The same holds for t′ and r′: the sum of the

x-variables on the routes including t̂c and not tc is zero:

∑
r∈Rt:tc∈TC r∧t̂c 6∈TC r

xt,r +
∑

r′∈Rt′ :tc 6∈TC r′∧t̂c∈TC r′

xt′,r′ = 0.
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Analogous argument holds for Constraints (37).

Then, suppose that the route chosen by at least one train does not

include both tc and t̂c. In this case, we show that Constraints (36) and (37)

become negligible: they are either equivalent or dominated by sU t′,tc ≥ 0

and sU t,tc ≥ 0, respectively. We discuss only Constraints (36), as symmetric

arguments hold for Constraints (37).

• If tc 6∈ TC r, i.e., t does not use tc, then (36) is negligible as eUt,tc = 0

and the rest of the l.h.s. of the inequality is at most 0, whether t uses

of not t̂c and t′ uses or not tc or t̂c.

• If tc ∈ TC r, t̂c 6∈ TC r, then (36) is negligible as
∑

r∈Rt:tc∈TC r∧t̂c 6∈TC r xt,r =

1 and the second part of the l.h.s. of the inequality is for sure negative,

whether t′ uses or not tc or t̂c.

• If tc ∈ TC r, t̂c ∈ TC r, t̂c 6∈ TC r′ , then (36) is negligible as yt,t′,t̂c = 0

as remarked right above this theorem.

• If tc ∈ TC r, t̂c ∈ TC r, t̂c ∈ TC r′ , tc 6∈ TC r′ , then (36) is negligible

as
∑

r′∈Rt′ :tc 6∈TC r′∧t̂c∈TC r′ xt′,r′ = 1.

�

If Constraints (36) and (37) are replicated for all t̂c ∈ Repi
t,t′(tc), what-

ever i, then for any route choice of t and t′ at least a pair of them will be

stringent. In this case, Theorem 2 allows to replace Constraints (13) and (14)

with the newly defined ones and variable yt,t′,tc can be eliminated. The so

obtained reformulation, on the one side, may have significantly less binary

variables than the standard model. On the other side, it may have more con-

straints, if several representative track-circuits are necessary to capture the

precedence relation on a single tc depending on the route choices. Moreover,

this new formulation may be slightly weaker than the original one, as Con-

straints (36) and (37) are a surrogate relaxation of Constraints (13) and (14)

and Inequalities (34) and (35). However, remark that the presence of big M

constants in both types of constraints make in any case the RECIFE-MILP

model somehow weak. Then, from a computational perspective, the oper-

ation of reducing the number of binary variables appears promising if the

consequent number of additional constraints is limited.
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6.3 Selection of representative track-circuits

To limit as much as possible the number of variables and constraints of

the reformulated RECIFE-MILP model, in this final part of the section,

we present a possible approach to minimize the cardinality of the specific

Repi
t,t′(tc) used in the reformulation for each t, t′ and tc. Specifically, we

are interested in determining the minimal set H∗t,t′ of representative track-

circuits in TC t ∩ TC t′ such that there exists a Repi
t,t′(tc) ⊆ H∗t,t′ for all

tc ∈ TC t ∩ TC t′ . To this end, for all tc ∈ TC t ∩ TC t′ , S ∈ St,t′,tc , let

atc,t̂c,S =

1 if t̂c is a representative of tc and t̂c ∈ S,

0 otherwise.

The optimal solution of the following binary programming problem, in the

variables

zt̂c =

1 if t̂c ∈ H∗t,t′

0 otherwise

with t̂c ∈ TC t ∩ TC t′ , identifies the elements of H∗t,t′ :

min
∑

t̂c∈TC t∩TC t′

zt̂c∑
t̂c∈S

atc,t̂c,Szt̂c ≥ 1, ∀tc ∈ TC t ∩ TC t′ , S ∈ St,t′,tc (38)

zt̂c ∈ {0, 1} ∀t̂c ∈ TC t ∩ TC t′

For each tc ∈ TC t ∩ TC t′ , we define the representative set for the refor-

mulation of RECIFE-MILP, Rep∗t,t′(tc), as the minimum cardinality subset

of H∗t,t′ such that for all S ∈ St,t′,tc , S ∩ Rep∗t,t′(tc) 6= ∅. In words, it is a

minimal subset of H∗t,t′ that includes a representative track-circuit of tc for

each section S that includes tc itself.

Example 11 In Figure 1, problem (38) has several possible solutions. As

an example, one of them is H∗t,t′ = {tc5, tc10, tc15}.

Problem (38) is NP-hard as it reduces to the hitting set problem (Karp,

1972). However, our experience suggests that its instances can be solved

in a fraction of a second by any commercial solver even for rather large

infrastructures. Indeed, all the operations involving the definition of set H∗t,t′
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Figure 2: Infrastructure of the Pierrefitte-Gonesse junction, in France, with

the indication of the routes available for two trains: 0, 1, 2, 3, 4, 5 and 6 for

t, and 7, 8 and 9 for t′. The track-circuits in H∗t,t′ are circled in red.

can be performed off-line, once the alternative routes for the trains which

may travel along the infrastructure are established a priori. Moreover, if

two trains t′ and t′′ share the same set of alternative routes, for any other

train t we only need to compute H∗t,t′ and set H∗t,t′ = H∗t,t′′ . At maximum,

we need to solve problem (38) (|T | × (|T | − 1))/2 times.

Hereinafter, we refer as the boosted RECIFE-MILP the reformulation of

RECIFE-MILP where only the yt,t′,t̂c-variables associated to track-circuits

t̂c ∈ H∗t,t′ are defined for each pair of trains t, t′ ∈ T , and where we

replace Constraints (13) and (14) with Constraints (36) and (37) for all

t̂c ∈ Rep∗t,t′(tc), tc ∈ TC t ∩ TC t′ .

7 Description of facets by valid inequalities

In this section, we present an instance of the rtRTMP representing traffic

in a real-world control area, where inequalities of type (18) describe all the

facets of the convex hull of the projection of the boosted RECIFE-MILP

feasible solution sets in the space of the variables associated to route and

precedence decisions.

Consider the infrastructure of the Pierrefitte-Goenesse junction, in France,

shown in Figure 2. Let two trains traverse this infrastructure, t and t′. Train

t goes from Paris to Chantilly along one of the following seven routes: 0, 1,

2, 3, 4, 5, 6. Train t′ goes from Chantilly to Grande Ceinture along one of

the following three routes: 7, 8, 9. Given these alternative routes, the min-

imal set of representative track-circuits H∗t,t′ includes the four track-circuits
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Figure 3: Schematic representation of the track-circuits traversed by trains

t and t′ traveling in the infrastructure shown in Figure 2. Only the track-

circuits in H∗t,t′ are considered.

circled in red in the figure, namely, a, b, c, d. Figure 3 depicts a schematic

representation of the routes of the trains indicating their passing or not

through the track-circuits in H∗t,t′ .

Next we introduce Inequalities (39) to (74). These inequalities, obtained

through Polymake Gawrilow and Joswig (2000), are the facets of the con-

vex hull that includes all the combinations of x and y-variables for track-

circuits in H∗t,t′ which satisfy Assumption 1. Clearly, these combinations

satisfy also Constraints (7) of RECIFE-MILP, and hence Lemma 1, and the

non-negativity constraints for variables xt,r ≥ 0. As we will show, Inequali-

ties (39) to (74) are all instances of Inequality (26).

We preliminarily note that, having 4 representative track-circuits, we

can have 34 − 1 = 80 different choices for the sets |Q+| and |Q−|. Not all

of them induce some facets. In the following, we report the inequalities in

ascending order of |Q+|+ |Q−| and of k.

Let us first consider the inequalities where |Q+|+ |Q−| = 1.

Inequality (26) for Q+ = {tc}, tc ∈ {a, b, c, d} and k = 0 becomes

yt,t′,tc ≤ 1 tc ∈ {a, b, c, d}. (39)

Differently, any choice Q− = {tc}, tc ∈ {a, b, c, d}, and k = 0 would induce

inequalities of type yt,t′,tc ≥ 0, which do not turn out to be facet as they are

dominated by the ones that follow.

31



In Inequalities (40)-(43), Q+ = ∅, Q− = {tc}, tc ∈ {a, b, c, d}, and k = 1.

yt,t′,a ≥xt,0 + xt,1 + xt,6 (40)

yt,t′,b ≥xt,0 + xt,1 + xt,2 + xt,3 (41)

yt,t′,c ≥xt,0 + xt,1 + xt,2 + xt,4 (42)

yt,t′,d ≥xt,0 + xt,3 + xt,5 + xt,6 (43)

Note that these inequalities are particular instances of (31). Consider as an

example Inequality (40): it imposes yt,t′,a = 1 when t does not use a route

that includes a.

In Inequalities (44) and (45), Q− = ∅ and Q+ = {tc}, tc ∈ {a, d}, and

k = 1.

yt,t′,a ≤2− xt,2 − xt,3 − xt,4 − xt,5 − xt′,7 (44)

yt,t′,d ≤2− xt,1 − xt,2 − xt,4 − xt′,7 − xt′,8 (45)

These inequalities are particular instances of (32). Consider as an exam-

ple (45): Ψ1
t = {1, 2, 4} and Ψ1

t′ = {7, 8}. It imposes yt,t′,d = 0 when t uses

a route that includes d whilst t′ does not. Note that we do not have similar

conditions on track-circuits b and c as any route of train t′ includes both

these track-circuits.

Hereafter, we present inequalities for |Q+| + |Q−| ≥ 2. Then, the last

argument of Section 5 guarantees that we will not encounter a facet defined

by a k-double partition with k = |Q+|+ |Q−|.
Consider the inequalities where |Q+|+ |Q−| = 2.

In the following one, Q+ = {a, d}, Q− = ∅ and k = 1.

yt,t′,a + yt,t′,d ≤3− xt,1 − xt,2 − xt,3 − xt,4 − xt,5 − xt′,7 (46)

Inequality (46) imposes that at least one between yt,t′,a and yt,t′,d is equal to

zero when t uses a route that includes at least one between a and d, whilst t′

uses a route that includes none of them. Note that Q+ = {a, d} is the only

set whose cardinality is greater than 1 such that {r′ ∈ Rt′ : TC r′ ∩Q+ = ∅}
is not empty, as any route r′ of t′ includes both b and c.

In Inequalities (47)-(54), |Q+| = |Q−| = 1 and k = 1. From (47) to (51)

the constant in the inequality is 1 since Ψk
t′ = Rt′ for the particular sets Q+
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and Q− considered.

yt,t′,a − yt,t′,b ≤ 1− xt,0 − xt,1 − xt,2 − xt,3 − xt,4 − xt,5 (47)

yt,t′,a − yt,t′,c ≤ 1− xt,0 − xt,1 − xt,2 − xt,3 − xt,4 − xt,5 (48)

yt,t′,b − yt,t′,c ≤ 1− xt,0 − xt,1 − xt,2 − xt,4 − xt,5 − xt,6 (49)

yt,t′,d − yt,t′,a ≤ 1− xt,0 − xt,1 − xt,2 − xt,4 − xt,6 (50)

yt,t′,d − yt,t′,b ≤ 1− xt,0 − xt,1 − xt,2 − xt,3 − xt,4 (51)

yt,t′,a − yt,t′,d ≤ 2− xt,0 − xt,2 − xt,3 − xt,4 − xt,5 − xt,6 − xt′,7 − xt′,9 (52)

yt,t′,b − yt,t′,a ≤ 2− xt,0 − xt,1 − xt,4 − xt,5 − xt,6 − xt′,8 − xt′,9 (53)

yt,t′,b − yt,t′,d ≤ 2− xt,0 − xt,3 − xt,4 − xt,5 − xt,6 − xt′,9 (54)

Next, consider the inequalities where |Q+|+ |Q−| = 3.

In Inequalities (55) and (56), |Q+| = 2, |Q−| = 1 and k = 1. Observe that

when Q+ = {a, b} and Q− = {c}, we can have a k-double partition including

Ψk
t = Rt and Ψk

t′ = Rt′ , from which the constant value 1 at the r.h.s. of (55).

yt,t′,a + yt,t′,b − yt,t′,c ≤ 1 (55)

yt,t′,b + yt,t′,d − yt,t′,a ≤ 3− xt,0 − xt,1 − xt,2 − xt,4 − xt,5 − xt,6 − xt′,8 − xt′,9
(56)

In Inequalities (57)-(61), |Q+| = 2, |Q−| = 1 and k = 2. In particular,

|Ψ0
t | = |Ψ0

t′ | = 0 in (57) and (58), whilst |Ψ0
t | = 1 and |Ψ0

t′ | = 0 in (59)-(61).

yt,t′,a + yt,t′,c − yt,t′,b ≤ 2− xt,2 − xt,3 − xt′,7 (57)

yt,t′,c + yt,t′,d − yt,t′,a ≤ 2− xt,1 − xt′,8 (58)

yt,t′,c + yt,t′,d − yt,t′,b ≤ 2− xt,1 − xt,2 − xt′,7 + xt,5 (59)

yt,t′,d + yt,t′,c − yt,t′,b ≤ 2− xt,1 − xt,2 − xt′,8 + xt,6 (60)

yt,t′,d + yt,t′,a − yt,t′,b ≤ 2− xt,1 − xt,2 − xt,3 − xt,4 − xt′,7 + xt,6 (61)

Let us study Inequality (57) as it is the first one obtained for k = 2. Here,

Q+ = {a, c} and Q− = {b}. Looking at Figures 2 and 3, we can observe

that Condition 1 of Lemma 1 is satisfied for track-circuit a for the pairs

of routes (r, r′) with r ∈ {2, 3, 4, 5} and r′ = 7: a belongs to r and not to

r′. For track-circuit c, the same condition is never satisfied since c belongs

to all r′ ∈ Rt′ . Condition 2 of Lemma 1 is satisfied for track-circuit b for

all pairs (r, r′) with r ∈ {0, 1, 2, 3} and r′ ∈ Rt′ : it is only necessary that
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Table 2: Validity of Lemma 1 for Q+ = {a, c} and Q− = {b}, for Inequal-

ity (57).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 b b b

1 b b b

2 a, b b b

3 a, b b b

4 a (a, b) (a, b)

5 a (a, b), (c, b) (a, b)

6 (c, b) - -

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 1 1 1

1 1 1 1

2 2 1 1

3 2 1 1

4 1 1 1

5 1 1 1

6 1 0 0

b does not belong to r. The pair (a, b) satisfies Condition 3 of Lemma 1

for (r, r′) with r ∈ {4, 5} and r′ ∈ {8, 9}. The pair (c, b) satisfies the same

conditions for the pairs of routes (5, 8) and (6, 7). Finally, Condition 4 of

Lemma 1 is never satisfied because b never precedes either a or c along a

route r ∈ Rt. Table 2 summarizes these observations on the track-circuits

and pairs of track-circuits for which at least one condition of Lemma 1 holds

given a pair of routes r ∈ Rt and r′ ∈ Rt′ (left-hand side of the table). The

right-hand side of the table reports the consequent number of times the

lemma holds for each pair of routes, which are needed for computing the

k−double partitions. Remark that Lemma 1 holds only once for the pair of

routes (5,8), since both pairs of track-circuits satisfying one of its conditions

include b, and Corollary 1 states that they cannot both be counted. As a

consequence, in the 2-double partition, Ψ2
t = {2, 3} and Ψ2

t′ = {7}: there

are all the routes which, when paired, make Lemma 1 hold at least twice.

Since all the pairs of routes make the lemma hold at least once, and exactly

once in many cases, Ψ1
t = {0, 1, 4, 5, 6} and Ψ1

t′ = {8, 9}. Then the r.h.s. of
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the inequality can be written as:

|Q+|+ k −

∑
r∈Ψ1

t

xt,r +
∑

r′∈Ψ1
t′

xt′,r′

− 2

∑
r∈Ψ2

t

xt,r +
∑

r′∈Ψ2
t′

xt′,r′

 =

= 2 + 2− xt,0 − xt,1 − xt,4 − xt,5 − xt,6 − xt′,8 − xt′,9 − 2xt,2 − 2xt,3 − 2xt′,7 =

= 4−
∑
r∈Rt

xt,r −
∑

r′∈Rt′

xt′,r′ − xt,2 − xt,3 − xt′,7 = 2− xt,2 − xt,3 − xt′,7

For ease of visualization, we use a similar trick for expressing Inequali-

ties (57)-(74), exploiting the fact that, in general, the r.h.s. of (26) can

be rewritten as

|Q+|−(k−2)−
∑
r∈Ψk

t

xt,r−
∑

r′∈Ψk
t′

xt′,r′+
k−1∑
l=0

(k−1−l)

∑
r∈Ψl

t

xt,r +
∑

r′∈Ψl
t′

xt′,r′

 .

In Inequalities (62)-(66), |Q+| = 1, |Q−| = 2 and k = 2. In particular,

|Ψ0
t | = |Ψ0

t′ | = 0 in (62)-(64), whilst |Ψ0
t | = 1 and |Ψ0

t′ | = 0 in (65) and (66).

Moreover, Ψ2
t′ = Rt′ in (65), which explains the absence of the coefficient

1 at the r.h.s.. As an example, Table 3 reports the track-circuits satisfying

a condition of Lemma 1 and the value of γr,r′ for the construction of the

2-double partition used in Inequality (65): Ψ2
t = 0, 1, 2, 3, 4 and Ψ2

t′ = Rt′ ;

Ψ1
t = 5 and Ψ1

t′ = ∅; Ψ0
t = 6 and Ψ0

t′ = ∅.

yt,t′,a − yt,t′,b − yt,t′,d ≤ 1− xt,0 − xt,2 − xt,3 − xt,5 − xt′,7 − xt′,9 (62)

yt,t′,a − yt,t′,c − yt,t′,d ≤ 1− xt,0 − xt,2 − xt,3 − xt,4 − xt,5 − xt′,7 − xt′,9
(63)

yt,t′,b − yt,t′,c − yt,t′,d ≤ 1− xt,0 − xt,4 − xt,5 − xt,6 − xt′,9 (64)

yt,t′,a − yt,t′,b − yt,t′,c ≤ −xt,0 − xt,1 − xt,2 − xt,3 − xt,4 + xt,6 (65)

yt,t′,b − yt,t′,a − yt,t′,c ≤ 1− xt,0 − xt,1 − xt,4 − xt,6 − xt′,8 − xt′,9 + xt,3

(66)

In Inequalities (67)-(69), |Q+|+ |Q−| = 4. Specifically, |Q+| = 3, |Q−| =
1 and k = 2 in (67) and (68), and |Q+| = 2, |Q−| = 2 and k = 2 in (69). In

this latter case, |Ψ0
t | = |Ψ0

t′ | = 0.
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Table 3: Validity of Lemma 1 for Q+ = {a} and Q− = {b, c}, for Inequal-

ity (65).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 b, c b, c b, c

1 b, c b, c b, c

2 a, b, c b, c b, c

3 a, b b, (a, c) b, (a, c)

4 a, c c, (a, b) c, (a, b)

5 a (a, b), (a, c) (a, b), (a, c)

6 - - -

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 2 2 2

1 2 2 2

2 3 2 2

3 2 2 2

4 2 2 2

5 1 1 1

6 0 0 0

yt,t′,c + yt,t′,d + yt,t′,a − yt,t′,b ≤ 3− xt,1 − xt,2 − xt,3 − xt,4 − xt′,7 (67)

yt,t′,c + yt,t′,d + yt,t′,b − yt,t′,a ≤ 3− xt,1 − xt,4 − xt′,8 (68)

yt,t′,a + yt,t′,b − yt,t′,c − yt,t′,d ≤ 2− xt,0 − xt,2 − xt,3 − xt,4 − xt,5 − xt,6 − xt′,7 − xt′,9
(69)

In Inequality (70), Q− = {b}, k = 2 and Q+ is a multiset including two

instances of track-circuit a and one of c:

2yt,t′,a + yt,t′,c − yt,t′,b ≤ 3− xt,2 − xt,3 − xt,4 − xt,5 − xt′,7 (70)

Let us build the k-double partition for this first occurrence of a multiset.

Indeed, a belongs to Φ1(r, r′) if r ∈ {2, 3, 4, 5} and r′=7. Since a appears

twice in the multiset Q+, this implies that the Lemma holds twice for all

these routes when paired. For no pairs of routes c belongs to Φ1(r, r′),

since it is in all routes of t′. Finally, b belongs to Φ2(r, r′) if r ∈ {0, 1, 2, 3}
whatever r′ ∈ Rt′ . With k = 2, then, we can set Ψ2

t = {2, 3, 4, 5} and

Ψ2
t′ = {7}. Indeed, for r′ = 7 and r ∈ {0, 1}, Lemma 1 holds exactly

once, and these routes of t are in Ψ1
t . Moreover, the pair (c, b) satisfies
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Table 4: Validity of Lemma 1 for Q+ = {c, d, d} and Q− = {a}, for Inequal-

ity (71).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 a a a

1 a, d, d a, d, d a

2 d, d d, d (d, a)

3 - (c, a) -

4 d, d d, d (d, a)

5 - (c, a) -

6 a a a

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 1 1 1

1 3 3 1

2 2 2 1

3 0 1 0

4 2 2 1

5 0 1 0

6 1 1 1

Condition 3 of Lemma 1 for r′ = 7 and r = 6. Hence, Ψ1
t = {0, 1, 6} and,

for the symmetric reasoning, Ψ1
t′ = {8, 9}. As a consequence, Ψ0

t = Ψ0
t′ = ∅.

In Inequality (71), k = 2, Q+ = {c, d, d} and Q− = {a}:

yt,t′,c + 2yt,t′,d − yt,t′,a ≤ 3− xt,1 − xt,2 − xt,4 − xt′,8 (71)

Indeed, we can observe that: c belongs to no Φ1(r, r′) set because it is in all

routes of t′; d ∈ Φ1(r, r′) for r ∈ {1, 2, 4} and r′ ∈ {7, 8}; a ∈ Φ2(r, r′) for

r ∈ {0, 1, 6} and r′ ∈ Rt′ ; (c, a) satisfies Condition 3 of Lemma 1 for (3,8)

and (5,8); (d, a) satisfies the same condition for (2,9) and (4,9). Table 4

summarizes these observations and helps defining the following 2-double

partition: Ψ2
t = {1, 2, 4} and Ψ2

t′ = {8}; Ψ1
t = {0, 3, 5, 6} and Ψ1

t′ = {7, 9};
Ψ0

t = ∅ and Ψ0
t′ = ∅.

For |Q+| + |Q−| = 5, we have Inequality (72) for k = 2, Q− = {b} and

Q+ multiset including two instances of track-circuit a in addition to c and

d:

2yt,t′,a + yt,t′,c + yt,t′,d − yt,t′,b ≤ 4− xt,1 − xt,2 − xt,3 − xt,4 − xt,5 − xt′,7
(72)

Here, as summarized in Table 5: c never belongs to a Φ1(r, r′) because it is

in all routes of t′; d ∈ Φ1(r, r′) for r ∈ {1, 2, 4} and r′ ∈ {7, 8}; a ∈ Φ1(r, r′)
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for r ∈ {2, 3, 4, 5} and r′ ∈ {7}; b ∈ Φ2(r, r′) for r ∈ {0, 1, 2, 3} and r′ ∈ Rt′ ;

(c, b) satisfies Condition 3 of Lemma 1 for (6,7); (a, b) satisfies the same

condition for (4,8), (4,9), (5,8) and (5,9); (d, b) does so for (4,9). Hence a

2-double partition is: Ψ2
t = {1, 2, 3, 4, 5} and Ψ2

t′ = {7} Ψ1
t = {0, 6} and

Ψ1
t′ = {8, 9} Ψ0

t = ∅ and Ψ0
t′ = ∅.

In Inequality (73), k = 3, Q− = {b, d} and Q+ is the multiset {a, a, c}.

2yt,t′,a + yt,t′,c − yt,t′,b − yt,t′,d ≤ 2− xt,2 − xt,3 − xt,5 − xt′,7 + xt,1 + xt′,8

(73)

This inequality is defined according to the following 3-double partition: Ψ3
t =

{2, 3, 5} and Ψ3
t′ = {7}; Ψ2

t = {0, 4, 6} and Ψ2
t′ = {9}; Ψ1

t = {1} and

Ψ1
t′ = {8}; Ψ0

t = ∅ and Ψ0
t′ = ∅. In fact (Table 6): a ∈ Φ1(r, r′) for

r ∈ {2, 3, 4, 5} and r′ ∈ {7}; c ∈ Φ1(r, r′) never since it is in all r′ ∈ Rt′ ;

b ∈ Φ2(r, r′) for r ∈ {0, 1, 2, 3} and r′ ∈ Rt′ ; d ∈ Φ2(r, r′) for r ∈ {0, 3, 5, 6}
and r′ ∈ Rt′ ; Condition 3 of Lemma 1 is satisfied by (a, b) for (4,8), (4,9),

(5,8), (5,9), by (a, d) for (2,9) and (4,9), and (c, b) for (6,7).

Finally, in Inequality (74), k = 3, Q+ = {a, b} and Q− is the multiset

{c, d, d}.

yt,t′,a + yt,t′,b − yt,t′,c − 2yt,t′,d ≤ 1− xt,0 − xt,3 − xt,4 − xt,5 − xt,6 −−xt′,9 + xt,1 + xt′,8

(74)

To define it, observe that: a ∈ Φ1(r, r′) for r ∈ {2, 3, 4, 5} and r′ ∈ {7}; b is

in no set Φ1(r, r′) because it is in all r′ ∈ Rt′ ; c ∈ Φ2(r, r′) for r ∈ {0, 1, 2, 4}
and r′ ∈ Rt′ ; d ∈ Φ2(r, r′) for r ∈ {0, 3, 5, 6} and r′ ∈ Rt′ ; Condition 3 of

Lemma 1 is satisfied by (a, c) for (3,8) and (5,8), by (a, d) for (2,9) and (4,9),

by (b, c) for (6,7) and (5,8), and by (b, d) for (4,9), Condition 4 of Lemma 1

is satisfied by (a, c) for (3,9) and (5,9), and by (b, c) for (6,8), (6,9) and (5,9).

Table 7 summarizes these observations and allows identifying the 3-double

partition considered in the inequality: Ψ3
t = {0, 3, 4, 5, 6} and Ψ3

t′ = {9};
Ψ2

t = {2} and Ψ2
t′ = {7}; Ψ1

t = {1} and Ψ1
t′ = {8}; Ψ0

t = ∅ and Ψ0
t′ = ∅.

8 Experimental analysis

In this section we describe the experimental analysis we performed to as-

sess the performance of three boosted versions of RECIFE-MILP taking the

standard RECIFE-MILP as a benchmark. Specifically, we consider boosted

38



Table 5: Validity of Lemma 1 for Q+ = {a, a, c, d} and Q− = {b}, for

Inequality (72).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 b b b

1 d, b d, b b

2 a, a, d, b d, b b

3 a, a, b b b

4 a, a, d d, (a, b), (a, b), (a, b),

(a, b) (d, b)

5 a, a (a, b), (a, b) (a, b), (a, b)

6 (c, b) - -

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 1 1 1

1 2 2 1

2 4 2 1

3 3 1 1

4 3 2 1

5 2 1 1

6 1 0 0
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Table 6: Validity of Lemma 1 for Q+ = {a, a, c} and Q− = {b, d}, for

Inequality (73).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 b, d b, d b, d

1 b b b

2 a, a, b b b, (a, d),

(a, d)

3 a, a, b, b, d b, d

d

4 a, a (a, b), (a, b), (a, b),

(a, b) (a, d), (a, d)

5 a, a, d d, (a, b), d, (a, b),

(a, b) (a, b)

6 b, (c, b) d d

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 2 2 2

1 1 1 1

2 3 1 2

3 4 2 2

4 2 2 1

5 3 2 2

6 1 1 1
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Table 7: Validity of Lemma 1 for Q+ = {a, b} and Q− = {c, d, d}, for

Inequality (74).

track-circuits or pairs satisfying

at least one condition of Lemma 1

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 c, d, d c, d, d c, d, d

1 c c c

2 a, c c c, (a, d)

3 a, d, d d, d, d, d,

(a, c) (a, c)

4 a, c c c, (a, d),

(b, d)

5 a, d, d d, d, d, d,

(a, c), (b, c) (a, c), (b, c)

6 d, d, d, d, d, d,

(b, c) (b, c) (b, c)

number of times γr,r′ in

which Lemma 1 holds

r′ ∈ Rt′

r ∈ Rt 7 8 9

0 3 3 3

1 1 1 1

2 2 1 2

3 3 3 3

4 2 1 3

5 3 3 3

6 3 3 3

41



RECIFE-MILP, where we reduce the number of binary variables and refor-

mulate the constraints are explained in Section 6. Then, we add to this

formulation all the inequalities of type (26) which are obtainable with sets

Q+ and Q− of total cardinality of at most one, and we obtain all-ineq.

RECIFE-MILP. Here, for each considered pair of sets Q+ and Q− we de-

fine one inequality, based on the following procedure for the identification

of a k-double partition. We consider the routes of Rt and Rt′ in increasing

order of their index, and we take the first pair (r, r′) ∈ Rt × Rt′ for which

Lemma 1 holds at least k times: we put r in Ψk
t and r′ in Ψk

t′ . Then, we

take the routes r ∈ Rt one by one, a part from the one already in Ψk
t , and

we include them in the sets Ψl1
t where l1 is the maximal value less than or

equal to k such that Lemma (1) holds at least l1 times for (r, r′), r′ being

the route previously inserted in Ψk
t′ . When no more r ∈ Rt remain, we

take the routes r′ ∈ Rt′ one by one, excluding the one already in Ψk
t′ . We

include each of them in the set Ψl2
t′ , with l2 maximal value not greater than

k such that Lemma (1) holds at least max{0, l1 + l2 − k} times for (r, r′),

for all routes r in Ψl1
t and for all 0 ≤ l1 ≤ k. It can be proven that the so

obtained k-double partition is maximal. After building these k-double par-

titions, we eliminate the ones which are dominated by others according to

Lemma 2. Moreover, to account for the fact that adding many inequalities

may strongly increase the computational burden of the solution process, we

consider ineq. RECIFE-MILP. Here, we select the inequalities to be added

to the model after the solution of the root node in the branch and bound:

we add all the inequalities obtained as in all-ineq. RECIFE-MILP including

at least one y−variable whose value in the relaxed solution is between 0.01

and 0.99.

The algorithms are implemented in C++, exploiting the IBM CPLEX

MILP solver v 12.6 through the CPLEX Concert technology. We run the

experiments on a computer with eight Intel Xeon 3.5 Ghz processors and

128 GB RAM, and we allow three wall clock minutes of computational time

to each run.

We assess the performance of the algorithms on instances representing

traffic in four French control areas. For each of them, we consider a whole-

day timetable and we create traffic perturbations by delaying the entrance

in the infrastructure of 20% of trains, between 5 and 15 minutes. The selec-
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Figure 4: Representation of the Gonesse control area.

tion of the trains and the specific delays is random, considering a uniform

probability distribution. By repeating the random selection, we obtain 100

whole-day perturbed scenarios per control area. From each of them, we

generate one instance by considering all the trains entering the control area

between 7:00 and 8:00 am, which is the morning peak-hour.

The first control area considered is the Pierrefitte-Gonesse junction (from

now on Gonesse) shown in Figure 4. It is a complex junction about 18 km

long where a freight, a conventional and a high speed line cross. The second

control area is a portion of the line around the station of Rouen-Rive-Droite

(from now on Rouen), approximately 27 km long. It is schematized in

Figure 5. Also in this case, the traffic is mix including freight, passenger

conventional and high speed trains. Six stations with two to six platforms are

included in this control area, in addition to a junction. The third control area

studied is the one including the Lille Flandres station (from now on Lille),

measuring in total 12 km. This is a terminal station linked to national and

international lines, with 17 platforms used by local, intercity and high speed

trains. It is shown in Figure 6. Finally, the fourth control area includes

the St. Lazare station in Paris (from now on St. Lazare). It is a terminal

station area of slightly more than 4 km, with 27 platforms. It is depicted in

Figure 7. Some characteristics of the instances representing traffic in each

of these control areas are reported in Table 8. Table 9 summarizes the size

of the formulation of standard, boosted, ineq. and all-ineq. RECIFE-MILP.

As it can be observed, on the one hand, the number of binary variables

obtained through the reformulation reported in Section 6 is remarkable: it

goes from 35% to 64%, Rouen being impacted the least and St. Lazare

the most. On the other hand, the increase of the number of constraints is

almost negligible: it is null for Gonesse and Rouen and it is extremely small

for Lille and St. Lazare.
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Figure 5: Representation of the Rouen control area.
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Figure 6: Representation of the Lille control area.
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Ermont

Figure 7: Representation of the St. Lazare control area.

Table 8: Characteristics of the instances for the four control areas considered
Gonesse Rouen Lille St. Lazare

track-circuits 89 190 299 212

block sections 79 176 829 197

average # trains per instance 26 12 48 101

average # routes per train 7 53 14 5
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Table 9: Average model size for the four control areas considered

Gonesse Rouen Lille St. Lazare

continuous variables 15 021 86 819 37 467 24 301

standard RECIFE-MILP

binary variables 3 299 1 282 8 004 12 158

constraints 72 217 261 427 137 875 114 606

boosted, ineq. and all-ineq. RECIFE-MILP

binary variables 1 305 838 4 121 4 381

constraints 72 217 261 427 137 927 114 695

ineq. RECIFE-MILP

inequalities 0 to 2 0 to 14 0 to 6 46 to 131

all-ineq. RECIFE-MILP

inequalities 1103 to 1944 138 to 314 4660 to 6704 4925 to 6825

Table 10: Average results over 100 instances at each control area: final

objective function value and computational time (seconds)

Gonesse Rouen Lille St. Lazare

RECIFE-MILP obj time obj time obj time obj time

standard 334 90 100 82 3178 180 9633 180

boosted 323 66 85 80 3254 180 9406 180

ineq. 321 67 94 134 3198 180 9505 180

all-ineq. 327 67 93 131 3329 180 9502 180
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Table 11: Statistical significance of the difference between algorithms be-

havior according to the Wilcoxon rank-sum test (confidence level of 0.95):

an X indicates when the algorithm corresponding to the line is significantly

better than the one corresponding to the column

Gonesse Rouen Lille St. Lazare

RECIFE-MILP 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

standard (1) - - - X X -

boosted (2) X - X X - - X X -

ineq. (3) X - X - X - X X -

all-ineq. (4) - - - X -

Table 10 summarizes the results obtained for each control area by the

four RECIFE-MILP algorithms. In particular, it reports the average objec-

tive function value and computational time. Recall that when the optimality

of a solution is proven, the algorithm stops even if it has not consumed the

whole available computational time. When this happens for some instances

the average computational time is less than 180 seconds. Table 11 shows

whether the difference in the behavior of pairs of algorithms is statistical

significant according to the Wilcoxon rank-sum test with a confidence level

of 0.95. Here, for each control area, we report an X if the algorithm indexing

the line achieves results which are significantly better than the algorithm in-

dexing the column. Recall that if the difference between two algorithms is

significant, for example in favor of the first one, it means that if we draw a

novel sample from the same distribution of results, i.e., if we solve of a fur-

ther instance with similar characteristics, we will in principle have the first

algorithm performing better than the second. If no significant difference is

observed, we have no reason to expect one to be better than the other on a

further sample.

The results show that no RECIFE-MILP variant is always better than

another. In particular, for Gonesse and St. Lazare both boosted and ineq.

RECIFE-MILP are significantly better than the standard and all-ineq. ones,

but they are not different from each other. For Rouen the only significant

difference is between boosted and standard RECIFE-MILP, with ineq. and
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all-ineq. being between the two and not really distinguishable from any

of them. Differently, for Lille standard RECIFE-MILP is, together with

the ineq. one, the best algorithm; the worst is all-ineq. RECIFE-MILP.

Finally, for St. Lazare the standard RECIFE-MILP is outperformed by

all the other algorithms, which are not distinguishable from one another in

statistical terms. In all the cases, the objective function values of boosted

and standard RECIFE-MILP are however quite similar, with an average

difference of 2 to 3% (in absolute value), but for Rouen where it gets to

16%. The corresponding figures for ineq. and all-ineq. RECIFE-MILP are

1 to 6% and 1 to 7%, respectively, for all control areas. Unfortunately, we

could not identify any characteristic of the different sets of instances which

would allow the explanation of the relative performance of the algorithms:

the reason why standard RECIFE-MILP obtains the best performance for

Lille is still object of investigation. In general, however, we think we can

conclude that boosted RECIFE-MILP is the best, since it is significantly

better than standard RECIFE-MILP in three over four control areas, and

it is outperformed by the ineq. one only in this “unlucky” case.

9 Conclusions

In this paper we have defined valid inequalities for a MILP model for the

rtRTMP. Specifically, we have focused on the model at the basis of RECIFE-

MILP, which is among the state-of-the-art algorithms for this problem. Ex-

ploiting these valid inequalities, we also proposed a reformulation which

allows a remarkable reduction of the number of binary variables. Although

the valid inequalities proposed can be, at least in some cases, able to repre-

sent all the facets of the projection of the convex hull of the problem in the

subspace of the binary variables, the inclusion of all of them in the model

does not seem a viable option. In a thorough experimental analysis, we

tested the possibility of adding some of them, according to different criteria.

Unfortunately, we could not find out how to exploit their strength without

suffering from the increased computational burden. Instead, the reduction

of the number of binary variables allows a remarkable performance improve-

ment with respect to the standard RECIFE-MILP, in almost all the cases

considered.

In future works we will focus on the design of an oracle capable of iden-
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tifying the suitable inequalities to be added during the solution process to

further improve the performance of RECIFE-MILP.
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