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1Laboratoire des Écoulements Géophysiques et Industriels (LEGI), CNRS–Université Grenoble
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When a torus oscillates horizontally in a linearly stratified fluid, the wave rays form
a double cone, one upward and one downward, with two focal points where the wave
amplitude has a maximum due to wave focusing. Following a former study on linear
aspects of wave focusing (Ermanyuk et al. 2017), we here consider experimental results on
the nonlinear aspects that occur in the focal region below the torus for higher amplitude
forcing.
A new non-dimensional number that is based on heuristic arguments for the wave

amplitude in the focal area is presented. This focusing number is defined as Fo =
A
a ǫ

−1/2f(θ), with oscillation amplitude A, f(θ) a function for the variation of the wave

amplitude with wave angle θ, and ǫ1/2 =
√

b/a the increase in amplitude due to the
focusing, with a and b respectively the minor and major radius of the torus.
Nonlinear effects occur for Fo > 0.1 with the shear stress giving rise to a mean flow

which results in the focal region in a central upward motion partially surrounded by
a downward motion. With increasing Fo the Richardson number Ri measured from the
wave steepness monotonically decreases. Wave breaking occurs at Fo ≈ 0.23, correspond-
ing to Ri = 0.25. In this regime, the focal region is unstable due to triadic wave resonance.
For the different tori sizes under consideration, the triadic resonant instability (TRI) in
these three dimensional flows ressembles closely the resonance observed by Bourget et al.
(2013) for a two-dimensional flow, with only minor differences. Application to internal
tidal waves in the ocean are discussed.

Key words: Wave focusing, internal waves, ocean mixing

1. Introduction

In view of its relevance to the tidal motion over topography in the oceans, internal wave
radiation in stratified and rotating fluids has been investigated in detail for oscillating
objects such as cylinders and spheres (see e.g. Onu et al. 2003; Flynn et al. 2003; Voisin
2003; King et al. 2009; Voisin et al. 2011). Internal waves were mainly found to diverge,
away from the source region and thus to decrease in energy. The oscillation of horizontally
curved objects causes, due to the convergence of wave beams, a well distinguishable
focusing effect (Bühler & Muller 2007; Duran-Matute et al. 2013; Ermanyuk et al. 2017).
By conservation of momentum, wave energy density increases with distance from the
location of generation, since the wave beam cross-section decreases, thus causing an

† Email address for correspondence: flor@legi.cnrs.fr
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increase in amplitude. In situ observations in ocean canyons and straits (Buijsman et al.

2012; Vlasenko et al. 2016) and curved mountains or craters (Dale & Inall 2015; Peliz
et al. 2009) do show a high increase in internal wave amplitude. The ocean inside a deep
submerged crater with a torus shape close to Portugal is found to be entirely mixed (Peliz
et al. 2009). These observations suggest that overturning due to wave focusing may be a
potential candidate for local mixing processes in the oceans.
Theoretical considerations for a ring-shaped torus with Gaussian generatrix (Bühler

& Muller 2007) suggest an amplitude amplification in the focal zone proportional to
the square root of the torus aspect ratio, as is confirmed by experiments and energy
arguments for a horizontally oscillating torus with a circular generatrix by Ermanyuk
et al. (2017). In the present study, for low and moderate oscillation amplitudes, the
focusing amplifies the internal wave amplitude almost two times in the focal zone,
implying for a same wave length a comparable increase in shear and isopycnal slopes. For
a torus of aspect ratio ǫ = 5 and oscillation amplitude A, the waves in the focal region
showed to be linear for Ke < 0.4 with Ke = A/a the Keulegan-Carpenter number,
and were compared successfully with the linear theory adapted from Hurley & Keady
(1997). When increasing the oscillation amplitude, nonlinear effects started at Ke ≈ 0.6
and breaking occurred for Ke > 0.8 mainly in the focal region and far away from the
oscillating object. Experimental and numerical investigation of inertial wave focusing in
rotating fluids showed for very high amplitudes of oscillation wave-induced turbulence in
the focal zone (Duran-Matute et al. 2013), which was used to study the effects of rotation
on turbulence in isolation.
Here, we concentrate on the nonlinear aspects of wave focusing. The streaming insta-

bility that causes a mean flow and the triadic resonant instabilities, giving rise to the
presence of lower harmonics, have recently been reviewed by Dauxois et al. (2018). For
a uniform two-dimensional wave beam Bourget et al. (2013) showed the presence of the
Triadic Resonant Instability (TRI), where in contrast to the Parametric Subharmonic
Instability, the resonant frequencies of the triad are not equal to half the dominant wave
frequency. Dauxois et al. (2018) stress the relevance of three dimensional and finite width
beam effects. Recent theoretical investigations by Fan et al. (2018) and Kataoka & Akylas
(2016) discuss the instability of two wave beams which are unstable in three dimensions
when they are separated, and/or have different angles of propagation. In the present
study on focusing wave beams, the wave frequencies are equal, but due to the geometry
of the focusing, wave beams are not parallel. The Reynolds stress increases towards the
focal point and enhances a mean flow in the focal region. For high amplitudes, a Triadic
Resonant Instability (TRI) generating two secondary waves of different frequencies and
wavelengths is observed near the focal region. We discuss the effects of focusing on the
mean flow generation and the observed triadic resonance.
The paper is organised as follows. Section 2 describes the experimental set-up and data

processing methods, section 3 introduces the new non-dimensional focusing number and
its relation to the Richardson number followed by the description of the focusing flow and
mean flow towards the focal region in section 4. The resonant triadic wave interaction is
reported in section 5, and the results are summarised and further discussed in section 6.

2. Experimental set-up and data processing

Experiments were carried out in a Plexiglas cubic tank of dimensions 97 × 97 × 97 cm3

filled with a 85 cm deep linearly salt-stratified fluid. Internal waves were generated by
the horizontal oscillations of amplitude A of a plexiglas torus of minor radius a = 1, 1.5
or 2 cm and major radius b = 34, 13.5 or 10 cm, respectively. The aspect ratio, defined
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Figure 1. Sketch of the experimental set-up: (a) front view and (b) side view with the seeded
particles as light grey dots and the laser plane shown in green.

as ǫ = b/a, has thus values of 34, 9 or 5, respectively. To avoid wave reflections, the two
side-walls of the tank perpendicular to the direction of oscillation were covered with a
mesh of wave absorbers of 5 cm thickness, (see figure 1).
The stratification was established with the standard double-bucket technique. The

density was measured at different heights in the fluid with an Anton Paar density-
meter. From these values the density profile was calculated, providing the buoyancy

frequency N = [(−g/ρ) dρ/dz]
1/2

with g the gravitational acceleration and ρ(z) the
density distribution over the vertical coordinate z. The values of N are presented in
table 1.
To measure the flow in the vertical plane of symmetry Y = 0, the Particle Image

Velocimetry (PIV) method or the Planar Laser Induced Fluorescence (P-LIF) method
was used. For the latter method, a grid of horizontally spanned cotton wires, painted
with fluorescein dye, was dragged carefully through the fluid to generate a set of about
1 mm thick and equidistant horizontal dye planes before the experiment. These dye
planes were illuminated by a vertical laser sheet. Diffusion of the dye gives a Gaussian
distribution which, with subpixel resolution, allows for a very accurate localisation of
the maximum, and therefore precise measurement of the wave motion (see Voisin et al.

2011). For the PIV measurements, prior to the experiment, the fluid was seeded with
60 µm Orgasol R© particles of density ρ=1.02 kg m−3, which were illuminated with a
vertical laser sheet through the torus centre (see figure 1). Images were taken by a
12-bit Dalsa camera with CCD of 1024 × 1024 pixels. The particle displacement was
obtained by cross-correlating two successive images using standard PIV techniques, and
in particular, the UVMAT/CIVx software packages developed at LEGI † providing the
vertical w(t) and longitudinal horizontal u(t) velocities. In some experiments, the LIF
technique that is described in detail in Voisin et al. (2011); Ermanyuk et al. (2011)
was used (see table 1), and allowed to calculate the isopycnal slopes from the vertical
displacement ζ as S(t) = arctan(∆ζ/∆x) with a very high resolution since providing a
continuous and sub-pixel signal in space. Below we are using the maximum isopycnal
slope S∗ obtained for each LIF experiment in the focal region. To select the different
wave modes and distinguish their propagation direction, the Hilbert transform method
of Mercier et al. (2008) was used.
To locate the measurement results in space, in the following we define a Cartesian

coordinate system with the origin at the centre of the torus at rest, the z-axis pointing

† http://www.legi.cnrs.fr/web/spip.php?article763&lang=en
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Exp Method ǫ
Ke

ω/N N (rad s−1) Z Zfocal(Fo)

A LIF & PIV 34
0.35; 0.75; 1.0; 1.3; 1.6

0.79 0.75 0 to -70 -45
(0.036; 0.076; 0.10; 0.13; 0.16)

B LIF 9
0.19; 0.41; 0.65; 0.84; 1.1

0.80 0.72 -1.84 to -21.8 -11.2
(0.039; 0.08; 0.13; 0.17; 0.23)

C PIV 9
0.21; 0.57; 0.78; 1.06; 1.26

0.80 0.83 -1 to -16.75 -7.8
(0.043; 0.12; 0.16; 0.22; 0.26)

D LIF 5
0.15; 0.3; 0.52; 0.72

0.81 0.72 -1.88 to -16.88 -5.5
(0.036; 0.08; 0.14; 0.20)

E PIV 5
0.19; 0.41; 0.6; 0.95; 1.2

0.80 0.83 -1 to -10.88 -4.7
(0.053; 0.11; 0.16; 0.26; 0.33)

Table 1. Experimental parameters and measurement methods used, with ǫ = b/a the torus
aspect ratio, Ke = A/a the Keulegan-Carpenter number and ω/N the non-dimensional
oscillation frequency. Z is the measured region and Zfocal corresponds to the geometrical point
of intersection of the wave rays, both non-dimensionalized with a. The focusing wave number
Fo is defined in section 3. Experiments B-E are also used in Ermanyuk et al. (2017).
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Figure 2. Maximum isopycnal slope attained during one period, against (a) Ke and (b) Fo
numbers, with squares for the torus of ǫ = 5 at Z = −6 (Exp. D), circles for the torus of ǫ = 9
at Z = −11.2 (Exp. B) and diamonds for the torus of ǫ = 34 at Z = −45 (Exp. A). The error in
the measurements is smaller than the size of the dots. The vertical grey area in (b) represents
the critical Focusing number Fo = 0.23 ± 0.01 for overturning (see text) and the horizontal
grey area the corresponding angle in isopycnal wave slope 78±3◦. Experimental parameters are
presented in table 1

.

vertically upwards, and horizontal axis x and y respectively along and perpendicular to
the direction of oscillation. These coordinates have been non-dimensionalised with the
minor radius a, so that (X,Y, Z) = (x, y, z)/a, whereas the velocity components are
normalised as (U, V,W ) = (u, v, w)/(Aω) with ω the oscillation frequency. In table 1 the
experimental parameters are presented.

3. Focusing number

To characterise the generation of internal waves by an oscillating obstacle, the non-
dimensional oscillation frequency ω/N and the Keulegan–Carpenter number, Ke = A/a
with A the oscillation amplitude are generally used. The variation of the maximum
waveslope as a function of Ke is presented in figure 2(a) for tori with ǫ = 5, 9 and
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Figure 3. Richardson numbers RiPIV from PIV data (grey symbols) for experiments Exp. C
(circles), Exp. E (squares) and Exp. A (diamonds), and RiLIF from LIF data (black symbols) for
experiments Exp. B (circles), Exp. D (squares) and Exp. A (diamonds) with parameters given
in table 1 in (a) linear and (b) logarithmic representation. The vertical grey lines denote the
value of Fo corresponding to the onset of overturning. The black dashed line in (b) represents
the average trend of data.

34, with each torus aspect ratio causing a different relation between isopycnal slope
and excitation amplitude. This number is based on the maximum vertical displacement
relative to the size of the object, and characterizes the wave amplitude close to the torus
where the effects of curvature are hardly detectable. At large distances from the torus,
however, the geometric effect of focusing causes a much larger wave amplitude. Thus
each torus causes a different amplitude in the focal region (see figure 2a). To uniformly
predict the amplitude in the focal region, the lengthscale of the torus radius b needs to
be incorporated. The wave motion due to the fluid displacement of each segment of the
torus is accumulated in the focal region. When integrated over the radius of the torus,
this implies the additional lengthscale of the torus radius, b. The lengthscale we propose
is the geometric mean

√
ab, also related to the surface of the torus π2ab, providing the

adapted Keulegan-Carpenter number

Ke′ =
A√
ab

=
A/ǫ1/2

a
. (3.1)

The value ǫ1/2 = (b/a)1/2 turns out to be the amplification of the amplitude in the focal
region, and is also obtained from the energy estimations of the vertical displacement in
the focal region of a torus (Ermanyuk et al. 2017), and Gaussian-shaped torus (Bühler
& Muller 2007).

Since the wave amplitude varies significantly with the oscillation frequency (see Voisin
et al. 2011), we also take into account this variation. Multiplying the wave amplitude
with this factor (see Voisin et al. 2011), we obtain what we will further call the focusing
number

Fo =
A

a
ǫ−1/2 sin1/2 θ cos θ. (3.2)

For ω = 0 and ω = N , the focusing effect tends to zero and it is maximal for θ = 35o.

The evolution of the maximum isopycnal slope against Fo is presented in figure 2(b).
All three tori with ǫ = 5, 9 and 34 collapse on one line. This result suggests the focusing
number as an appropriate non-dimensional parameter for converging waves. Below, we
focus on the breaking in the focal region.
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Figure 4. Flow variation in the vertical plane of symmetry, in the steady regime after 20
oscillation periods with in the first column Fo = 0.053, second column Fo = 0.16, and third
column Fo = 0.33; (a-c) instantaneous profiles of the horizontal velocity U (color) and contours
of the horizontal transverse vorticity at phase π/2 (rightmost torus position); (d-f ) shear stress

U ′W ′; (g-i) vertical mean flow W0 and (j-l) horizontal mean flow U0. The mean flow and shear
stress are averaged over one period of oscillation. In images (g-l), the contours indicate the
velocity amplitude. Exp. E from table 1.

3.1. Richardson and focusing numbers

In order to find the critical values of the focusing number for breaking, we plot the
Richardson number as a function of the focusing number. In linear approximation the
vorticity equation for internal waves can be represented by a balance with the baroclinic
torque given by

∂ωy

∂t
=

(

∇p×∇ρ

ρ2

)

y

=
1

ρ2

(

∂p

∂z

∂ρ

∂x
− ∂p

∂x

∂ρ

∂z

)

≈ −g

ρ

∂ρ

∂x

where for the latter equality the Boussinesq approximation is used. Considering the
ratio between stratification and the shear, here represented by the baroclinic torque, one
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are shown with vertical dashed lines. (b) Resonance in wave-vector space (solid line) as calculated
for a two-dimensional flow (see Bourget et al. 2013). The scaled vectors are k1
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0
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0
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x/k
0
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0

z = −1.95 (green), and black for the scaled vector k0.
Measurements of Exp. E (lines) and for Exp. C (dashed).

obtains for the Richardson number

RiLIF = N2

(

∇p×∇ρ

ρ2

)−1

y

≈ N2

−g
ρ

∂ρ
∂x

=
∆x

∆z

∣

∣

∣

ρ
=

1

tanS
. (3.3)

From the steepness ∆x
∆z of the P-LIF dye-lines the Richardson number could be

measured accurately because of the sub-pixel resolution obtained with the Gaussian dye
distribution mentioned above. In addition, the Richardson number in the focal region
was calculated as RiPIV = N2/(∂u/∂z)2 ≈ N2/(∆u/∆z)2, with N the stratification
measured prior to the experiment and the variation in velocity ∆u measured from the
PIV data over a typical grid distance of ∆z = 4 pixels corresponding to ≈ 0.15 cm. The
values of this number are displayed in grey in figure 3 (a) and in log-log in figure 3(b),
and show that the values for both Richardson numbers, RiPIV and RiLIF , collapse on
one curve.
Nonlinear effects, such as the generation of a mean flow and evanescent second har-

monics were noticed around a value of Fo ≈ 0.1, corresponding to Ri ≈ 1.5. The
asymptotic limit of Ri ≈ 0.25, corresponds to overturning in stratified shear flows (see
Miles 1961). The empirical relation between the Fo-number and the Richardson number
can be estimated with the least square approximation as (see figure 3)

Fo = (9± 0.5)Ri−2/3, (3.4)

and allows to predict the breaking in focal regions for Fo > 0.23± 0.01 as a function of
the initial forcing parameters a, b, A and the oscillation frequency given by θ. Applying
this focusing number estimation on figure 2(b) one obtains the isopycnal slope 78 ± 3◦

for breaking waves.

4. Observations

Figures 4(a-c) show the change in the instantaneous horizontal velocity of the wave
pattern in the vertical plane of symmetry Y = 0 for increasing values of Fo. One-half
period later the direction of the velocity is reversed, implying a standing wave motion
in the focal zone. The temporal motion in the focal region is therefore oscillatory, like a
standing wave. This wave motion consists of the first harmonic, with all higher harmonics
being evanescent since ω/N > 0.5, the wave structure having the same dipolar shape
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as that observed for spherical objects in Shmakova et al. (2017). The amplitude of the
converging waves remains approximately constant. With increasing Fo number from 0.053
to 0.16 (in resp. figures 4a and b), a clear increase in wave amplitude can be noticed. The
vorticity contours coincide with the wave contours as long as wave breaking is absent as
shown in figures 4(a) and (b) while for Fo = 0.33 in figure 4(c), the vorticity contours
reveal the presence of breaking wave structures.
Figures 4(d-f ) show the nondimentional shear stress, U ′W ′, averaged over one period.

In the linear regime (Fo < 0.1, see figure 4d), it is negligible for the outward moving
(diverging) wave beams but is nonzero for the converging (focusing) wave beams, sug-
gesting that the conical geometry of the focusing wave has a direct effect on the shear
stress also. Since the wave amplitude in the focusing wave beam increases, intrinsically
also U ′ and W ′ increase, giving rise to larger shear stress (see figure 4e).
It is its gradient that is responsible for the mean flow towards the focal region (Fan

et al. 2018), leading to a strong vertical motion there as shown in figure 4(h). Viscous
dissipation towards the focal region which is an essential ingredient for the streaming
instability (see Fan et al. 2018) is, however, overtaken by the effect of focusing. In the
fully nonlinear regime, for Fo > 0.23, due to wave breaking the beam looses its coherence,
and its direction is locally bended due to nonlinear interactions with the waves (figure 4f ).

The mean flow is shown in figures 4(g-i) for the Y = 0-symmetry plane. In the linear
regime Fo < 0.1, it is small but non-negligible with very small amplitudes O(0.06) for the
mean vertical velocity. In the nonlinear regime Fo > 0.1, the motion in the focal region
resembles a plume motion (see figure 4g - i). Since the torus is oscillating horizontally
there is, however, no axial symmetry but the amplitude decreases away from the mid-
plane Y = 0 (see Ermanyuk et al. 2017).
When breaking occurs for Fo > 0.23 (figures 4 right column) the structure in the mean

vertical and mean horizontal velocities remain clearly distinguishable, but the temporal
horizontal motion (see figure 4c) is affected by breaking as well as the presence of the
wave triads that are discussed further below.

5. Triadic resonance and breaking in the focal zone

Patterns of the horizontal velocity U (figure 4a-c) show that for small Fo values, the
focal zone is represented by a standing wave. For large Fo > 0.23 new internal waves are
generated, which are subharmonics as their lower angle of propagation reveals. The time-
frequency spectrum for the energy was obtained from vertical and horizontal components
of the velocity Euv = (u2 + w2)/2 defined by

QEuv
(t, ω) =

〈

∣

∣

∣

∣

∫ +∞

−∞

dτ Euv(τ) exp
−iωτ h(t− τ)

∣

∣

∣

∣

2
〉

xz

, (5.1)

where h(t) is a Hamming window, and the average is taken over an interrogation area
xz around the focal region (Flandrin 1998). The corresponding energy spectrum for
Fo = 0.33 is presented in figure 5 and shows clearly the generation of the first harmonic
and two subharmonics, that satisfy

ω0 = ω1 + ω2,

with ω0 the frequency of the first harmonic, and ω1 and ω2 the frequencies of first and
second subharmonics, respectively. Using the Hilbert transform method of Mercier et al.
(2008), the signal was filtered around a certain frequency in time for each harmonic (see
figures 6a-c), and then, to obtain the phase propagation, filtered for the direction shown

8



Figure 6. Hilbert decomposition in time and space of instantaneous horizontal velocity profile
(upper row) and phase velocity (lower row) for Fo = 0.33. (a,d) First harmonic U1 with
frequency ω1/N = 0.8 and k > 0; subharmonics with (b,e) ω1/N = 0.6, k > 0, and (c,f )
ω2/N = 0.2, k < 0. (Exp. E from table 1)

in figures 6(d-f ). In figure 6 we consider the positive direction of the first harmonic and
subharmonic waves, and the negative direction of the second subharmonic of the triad.
The standing wave motion, generated in the focal zone by the two opposite moving
waves, is thus not visible. The first harmonic with frequency ω/N = 0.8 and algebraic
amplitude of wave vector k > 0 in figure 6(a) shows an increasing amplitude towards
the focal region, a local decrease in the zone of nonlinear interaction, and a decrease
afterwards. Both subharmonic waves are generated in the focal zone, with the first
subharmonic moving downwards (kz > 0) and the second subharmonic moving upwards
(kz < 0) with frequencies of ω/N = 0.6 and ω/N = 0.2, respectively. In contrast to the
subharmonic wave with ω/N = 0.6, the structure of the second subharmonic (ω/N = 0.2)
in figure 6(c) is confined to the breaking wave region shown in the instantaneous and
the average horizontal velocities of figures 4(c) and (l), respectively, thus suggesting a
strong interaction with the wave breaking. These first harmonic and subharmonic waves
form together a triadic resonance, satisfying the condition

k
1 + k

2 = k
0,

where (k1x+k2x)/k
0
x = 0.96±0.04 and (k1z +k2z)/k

0
z = 1.01±0.01, with kx and kz selected

from the space spectrum. This triadic resonance was found in all experiments for values
of Fo > 0.23. Even though this flow differs from former studies in being fully three
dimensional and in that the waves focus, the triad interaction in wave vector space in
figure 5(b) shows a striking resemblance with figure 5 of Bourget et al. (2013) for the
Triadic Resonant Instability in a flow that was in good approximation two-dimensional.
Also the accuracy of the selected wave vectors is comparable to that in Brouzet et al.

(2016). Increasing the curvature and therewith the three dimensionality of the flow by
taking a smaller torus (i.e. smaller b) of larger cross-section (thickness a) did not change
the result, as shown for ǫ = 5 and ǫ = 9 in figure 5.
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6. Conclusions and discussion

To characterise focusing wave fields the number Fo has been introduced, indicating
a linear regime for Fo < 0.1, a non-linear regime for Fo > 0.1, and wave breaking
in the focal region for values larger than Fo ≈ 0.23. This wave breaking occurs at an
isopycnal slope of 78±3◦, in agreement with observations of Ermanyuk et al. (2017) and
corresponding to a value of the Richardson number of Ri = 0.25 for shear instability,
and coincides with presence of triadic resonance. In wave-vector space, this triad is very
similar to the triad found by Bourget et al. (2013). Indeed, the present flow with the
maximum amplitude in the symmetry plane Y = 0 (see Ermanyuk et al. 2017) is similar
to the two dimensional flow of Bourget et al. (2013) that is limited by viscous boundaries.
These results suggest that the three-dimensional effects due to the curvature of the wave
generator and consequent focusing have little qualitative effect on the triadic resonant
instability. However, the wave focusing plays an important role by creating high energy
density in the focal region, thereby providing a necessary condition for the onset of the
instability.
The focusing number allows for an estimation of the onset of breaking in real flows.

For a typical Keulegan-Carpenter number of Ke = 0.1 in the ocean we can calculate the
value of ǫ1/2 needed to reach the critical focusing number Fo = 0.23. For 12 hours M2

tidal oscillation-frequency ωM2, and typical ocean stratification N ≈ ω/0.3, we obtain
with (3.2) a value for ǫ1/2 of ≈ 4.6, implying a major radius roughly 22 times larger than
the minor radius. For large mountains, there may not be a continuity in curvature, and
the focal point may be reached after reflection at the surface. But for an internal wave
amplitude of 50 m and mountain of 500 m width, this implies a large radius of 11 km
indicating that focusing can cause wave breaking locally in specific places in the ocean
such as craters mentioned in the introduction.
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Ermanyuk, E. V., Shmakova, N. D. & Flór, J.-B. 2017 Internal wave focusing by a
horizontally oscillating torus. J. Fluid Mech. 813, 695–715.

Fan, B., Kataoka, T & Akylas, T R 2018 On the interaction of an internal wavepacket with
its induced mean flow and the role of streaming. J. of Fluid Mech. 838, R1.

Flandrin, P. 1998 Time–Frequency/Time–Scale Analysis. Academic Press.
Flynn, M. R., Onu, K. & Sutherland, B. R. 2003 Internal wave excitation by a vertically

oscillating sphere. J. Fluid Mech. 494, 65–93.
Hurley, D. G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic

cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119–138.
Kataoka, T & Akylas, T R 2016 Three-dimensional instability of internal gravity wave beams.

ISSF, International Symposium on Stratified Flows, San Diego, August 2016 .
King, B., Zhang, H. P. & Swinney, H. L. 2009 Tidal flow over three-dimensional topography

in a stratified fluid. Phys. Fluids 21, 116601.
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal

waves analyzed with the hilbert transform. Phys. Fluids 20, 086601.
Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.
Onu, K., Flynn, M. R. & Sutherland, B. R. 2003 Schlieren measurement of axisymmetric

internal wave amplitudes. Exp. Fluids 35, 24–31.
Peliz, A., Le Cann, B. & Mohn, C. 2009 Circulation and mixing in a deep submerged crater:

Tore seamount. Geophys. Res. Abstr. 11, EGU2009–7567–1.
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