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It has been frequently observed that humans and
animals spontaneously stabilise their heads with
respect to the gravitational vertical during body
movements even in the absence of vision. The
interpretations of this intriguing behaviour have so
far not included the need, for survival, to robustly
estimate verticality. Here we use a mechanistic model
of the head/otolith-organ to analyse the possibility
for this system to render verticality ‘observable’, a
fundamental prerequisite to the determination of the
angular position and acceleration of the head from
idiothetic, inertial measurements. The intrinsically
nonlinear head-vestibular dynamics is shown to
generally lack observability unless the head is
stabilised in orientation by feedback. Thus, our study
supports the hypothesis that a central function of the
physiologically costly head stabilisation strategy is
to enable an organism to estimate the gravitational
vertical and head acceleration during locomotion.
Moreover, our result exhibits a rare peculiarity of
certain nonlinear systems to fortuitously alter their
observability properties when feedback is applied.
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1. Introduction
One of the main functions of the vestibular system is to provide humans and animals with sensory
inputs needed to achieve and maintain balance. This function is particularly important during
locomotion since, regardless of the number of limbs in contact with the ground, dynamic balance
is obtained by actively counteracting both inertial and gravitational forces with reaction forces
on the ground. Dynamic balance would be impossible to achieve without the knowledge of the
direction of gravity in earth-related coordinates. Even quasi-statically, stable postures require one
to align the centre of mass of the body and limbs directly above the region of contact with the
ground.

The vestibular system comprises two types of organs. The semicircular canals respond
primarily to angular velocity while the otolith organs sense translational acceleration. In each ear,
the otolith organ comprises two liquid-filled chambers, where the relative displacement of otolith
masses are picked up by populations of hair cells. These chambers, the utricle and the saccule, are
geometrically arranged to be sensitive to certain translational acceleration components and to tilt.
When the head is upright (the head’s longitudinal axis is aligned with the gravitational vertical),
the saccule is vertical and responds to acceleration in the sagittal plane, i.e., forward-backward
and up-and-down movements. The utricle is horizontally oriented and responds to accelerations
in the transverse plane [1].

Ordinary vector addition dictates that any measurement of acceleration must combine the
signal due to the translational acceleration of the sensor with a signal due to the ambient
gravitational component. On earth during typical movements, these components are difficult
to disentangle. For that reason, a sensory ambiguity arises between tilt and translational
acceleration [2,3], which can give rise to ‘somatogravic’ illusions (erroneous estimation of ‘up’
and ‘down’) [4], spatial disorientation, and loss of postural balance. Thus, it is only when the
head is still that the otolith organs of the vestibular system provide us with a sense of absolute
verticality [5,6].

The vestibular system participates in a number of important functions such as the
establishment of the vestibulo-ocular and the vestibulo-collic reflexes which are respectively
responsible for stabilising the gaze and the head in space, [7–9]. These reflexes are therefore closely
related to the results of our study.

Head stabilisation in the upright position independent of movements of the body and
the limbs is one behaviour that is widely reported in the neuroscience literature. The head
stabilisation strategy has been observed in numerous species, including most of the fast moving
mammals and birds, and during the execution of multiple tasks [6,10–33]. The apparent
universality of this strategy, which requires a complicated articulated neck and sensorimotor
control, is a testimony to its probable importance as an evolutionary advantage.

We envision the following hypotheses: a head stabilisation strategy enables an organism
to simultaneously estimate the gravitational vertical and the head acceleration (H1); and head
upright stabilisation during locomotion results in the possible application of a linearised system
model that facilitates gravito-inertial ambiguity resolution (H2). To test these hypotheses, we
investigated the head stabilisation strategy using the tools of systems and control theory.

The notion of observability is a central concept in this theory. Observability describes in a
formal manner which quantities, be they states or unknown inputs, can be determined from
the measurements made from a given system. A quantity that is not observable cannot be
estimated. In the case of finite dimensional linear systems, or systems that can be assimilated
as such, this question was settled fifty years ago by R. E. Kalman [34]. For nonlinear systems, of
which articulated mechanical systems form an important class, the determination of observability
requires the use of difficult Lie-algebraic techniques. Practical results are surprisingly sparse and
so far apply only to systems of trivial complexity.

In the foregoing, we recall the development of a mechanistic model of the head and the otolith
organs and justify the ability of this model to capture the fundamental dynamic properties of
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the biological organ in three dimensions. The model then enabled us to express the dynamics
of the head/otolith-organ structure in a mathematical form suitable for its analysis as a bona fide
system with inputs, outputs, and states. Having gained the ability to model the head/otolith-
organ system in algebraic terms, which treats the torque applied to the head and its acceleration
as unknown inputs, we applied a computer-based probabilistic tool to determine if and when the
direction of the vertical, together with acceleration of the head, is observable in absolute world
coordinates. Our results can be summarised as follows:

(i) If the head is allowed to move freely, our analysis shows (with high probability) that head
orientation and acceleration both fail to be observable;

(ii) Observability is achieved if the head is feedback controlled to a fixed orientation with no
other external reference but the ambient gravity field;

(iii) This result exhibits a rarely encountered peculiarity of nonlinear systems where
observability properties can be modified by the application of feedback. Such a property
is not shared by linear systems;

(iv) A by-product of the feedback stabilisation of the head is to linearise an inherently
nonlinear system, enabling the application of simple observer and controller designs in
the planar case;

(v) Observability, as restored by the application of feedback, makes it possible to resolve the
ambiguity between tilt and acceleration.

These results support strongly the hypotheses H1 and H2, and our findings suggest that
the quasi-universally observed head stabilisation reflex has evolved as a result of the crucial
advantage that it provides by making the estimation of the gravitational vertical possible
during movement. The significance of our finding is not limited to the biological phenomenon
considered, but is directly relevant to the general problem of verticality estimation from non-
inertial platforms during spatial motion.

In the rest of this article, the methods used in the observability and identifiability analysis
are first described by deriving the mathematical equations governing the dynamics of a
mechanistic model of the otolith organ tucked inside the inner ear. The algebraic observability
and identifiability properties of a system are then recalled and their analysis applied to the full
dynamics of the otolith-head model, with and without feedback. The closed loop system can then
be linearised to enable the application of the separation principle from which an observer and a
controller are designed. Even in the case of a simplified linearised system around an operating
point, the tilt/acceleration ambiguity resolution could be demonstrated for locomotion in the
planar case with head orientation stabilisation in the sagittal plane.

2. Methods and Result
The otolith organ of the vestibular system is mechanical in nature, it is therefore reasonable to
derive its properties from the laws of multi-body dynamics in three dimensions.

(a) Mechanistic Model of the Otolith Organ
The head is modelled as a rigid body displacing and orienting with six degrees of freedom in
space. The head, subjected to external forces, moves relative to an inertial frame, I, comprising

the unit vectors,
{
Ii, Ij, Ik

}
, as depicted in Fig. 1. A non-inertial, body-fixed frame, H={

Hi,Hj,Hk
}

, is assigned to the head with the origin coinciding with the center of mass. The
usual anatomical division of the head by the coronal, sagittal, and transverse planes coincide
with the subspaces span{Hi,Hk}, span{Hj,Hk}, span{Hj,Hi} , respectively.

Any motion of the head that leaves the vector Hk invariant in the inertial frame will be referred
to as motion in the transverse plane. The angle of rotation about Hk is called the yaw angle and
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Figure 1. Coordinates assignment.

will be zero when the nose points in the direction of Ij. Similarly, motions that leaves the vector
Hi or the vector Hj invariant in the inertial frame will be referred to as motion in the sagittal plane
or in the coronal plane, respectively.

The head is said to be fully stabilised when all the axes of H are aligned with those of I. This
condition is normally achieved asymptotically only. Partial stabilisation can also be considered;
e.g. when one of the three anatomical planes coincides with one plane of the inertial frame. The
otolith organ is modelled as a spherical pendulum with three additional degrees of freedom
constrained by a pivot at the center of mass of the head, again see Fig. 1. The otolith organ is
mechanical in nature and its behaviour can be described with the mechanical pendulum model
responding to gravity and acceleration as justified in the next subsection. The pendulum is
damped so that its motions die out when the head is stationary. The body-fixed moving reference

frame, S=
{
Si, Sj, Sk

}
, is assigned to the pendulum. The origin of this frame is located at the

pivot with Sk aligned with the arm of the pendulum.
The resulting model forms a dynamical system with nine degrees of freedom moving in the

gravitational field, Ig, under the additional influence of external forces capable of translating and
rotating the head.

(b) Justification of the Mechanistic Model
To justify the relevance of a seemingly oversimplified model of the organ under study, it is
necessary to recall the anatomy and the function of the vestibular organs.

Later, we will see that the absolute orientation of the head is generally not an observable
quantity. If the semicircular canals do provide information about the head angular velocity, such
information is of no help to transform head orientation into an observable quantity. Angular
velocity information can contribute to improving the estimation of the absolute head orientation
only if it can be made observable.

On the other hand, the very origin of the sensation of gravitational and translational
acceleration of the head is owed to the movements of the calcium carbonate bodies called otoliths
which are located in the saccule and the utricle. The otoliths move relative to the inner surface
of these cavities—termed the macula—under the action of gravity and of the so-called ‘fictitious
forces’ that appear in moving non-inertial frames.

The surface of the macula closely resembles the interior section of a sphere. The displacement
of the otoliths is detected by a vast population of hair cells lining the macula. This population of
neural receptors robustly detect and transmit the otolith displacement information to the neural
system [35–38]. Thus a spherical pendulum with concentrated mass, m, would be subjected to
the same forces and to the same spherical motion constraints as are the otoliths. The provision
of a damping term with coefficient, β, is required to model the viscous action of the endolymph
liquid filling the saccule and utricle cavities. Finally, it is convenient to parametrise the relative
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movement of the moving mass by two angles, θx and θy , since any other smooth parametrisation
would leave our result unchanged. Because we assumed in our analysis that the otolith system
operated under normal conditions, we did not attempt to include mechanical stops in our model
in order to represent the limits of the pendulum’s displacements.

(c) Notation
The formulation of the dynamical model crucially depends on several coordinate systems moving
in relation to one another. Vector and tensorial quantities that are sensitive to the frame in
which they are expressed have a left superscript to indicate it. The unit vectors of frames were
already denoted this way. A rotation transformation is encoded by a matrix, BRA ∈ SO(3), that
transforms by left multiplication vectors expressed in a frame, A, into vectors expressed in frame
B, e.g. Ig= IRH

Hg. Thus BRA expresses the orientation of A with respect to B. Given an angular
velocity vector, B

BωA ∈R
3, the symbol B

Bω̃A ∈ o(3) denotes the corresponding skew-symmetric
matrix and o(3) denotes the Lie algebra of the orthogonal group O(3).

(d) Dynamical Model Equations
The Newton-Euler equations can be used to efficiently describe the dynamics of the head-
pendulum system. Beginning with the head, without loss of generality it is assumed that mass
is symmetrically and uniformly distributed about its center. In addition, the influence of the
pendulum on the head movements is disregarded since the mass of the otoliths can be considered
to be negligibly small before the mass of the head. Expressing the moment of inertia tensor of
the head in the body-fixed frame, HJH, allows one to write the head orientation dynamics by
differentiating the head’s angular momentum, hH, with respect to time,

hH = HJH
H
I ωH,

ḣH =
d

dt

(
HJH

H
I ωH

)
= HJH

H
I ω̇H + H

I ωH ×
HJH

H
I ωH,

where H
I ωH is the angular velocity of the head with respect to the inertial frame, I, expressed in

the body-fixed frame, H. The dynamics of the head driven by a torque, Hτ , is thus

HJH
H
I ω̇H =−H

I ωH ×
HJH

H
I ωH + Hτ .

The torque, Hτ ∈R3, is produced by the neck muscles to orient the head with respect to the torso.
The kinematics of the head rotations is

IṘH = IRH
H
I ω̃H,

where H
I ω̃H is the skew-symmetric matrix corresponding to the angular velocity of the head.

Because the mass representing the otoliths evolves in a moving frame, the dynamics that
govern its motions is more complicated than that of the head since it must account for the
‘fictitious forces’ present in a non-inertial frame. It is also subject to the action of gravity and
of viscous forces. Differentiating the angular momentum of the pendulum with respect to time
and adding the other terms gives,

SJS
S
Iω̇S =−m

Sl× SRI IRH
Ha︸ ︷︷ ︸

acceleration

− S
IωS ×

SJS
S
IωS︸ ︷︷ ︸

gyroscopic

+m Sl× SRI
Ig︸ ︷︷ ︸

gravity

−β(SIωS − SRI IRH
H
I ωH)︸ ︷︷ ︸

damping

,

where SJS is the pendulum’s principal inertia tensor, SIωS is the angular velocity of the pendulum

with respect to the inertial frame, Sl=
(
0 0 l

)T
is the vector from the pivot of the pendulum to

the center of its mass, SRI , is the rotation matrix which defines the orientation of the pendulum
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with respect to the inertial frame, while Ha∈R3 is the acceleration of center of mass of the
head expressed in head coordinates. In addition there is a gravitational component associated

to the acceleration Ig=
(
0 0 −9.81

)T
and a damping term with coefficient β. The head and

pendulum motions are thus coupled through damping and translational acceleration of the head.
The pendulum kinematics is

IṘS = IRS
S
Iω̃S.

When the head is stationary, the gravitational term and the damping term are the only terms
remaining, and the pendulum aligns itself with the gravitational vertical.

Written in scalar form, these equations would cover several pages. For further analysis, the
gyroscopic term for the pendulum dynamics can be reasonably assumed to be negligibly small
because it is quadratic in angular velocities which can themselves be assumed to be small. Under
these conditions, the relevant dynamics is expressed as a system of four coupled nonlinear
equations,

SJS
S
Iω̇S =m Sl× SRI

Ig −m Sl× SRI IRH︸ ︷︷ ︸
SRH

Ha− β(SIωS − SRI IRH︸ ︷︷ ︸
SRH

H
I ωH),

SJS
H
I ω̇H = Hτ ,

IṘS = IRS
S
Iω̃S,

IṘH = IRH
H
I ω̃H.

(2.1)

The otolith organs respond to the inclination of the head with respect to the gravitational
vertical in the sagittal and in the coronal planes. The measurements correspond to the angles,
θx and θy , between unit vector Sk projected onto the sagittal and the coronal planes and the unit
vector Hk. These projections can be expressed using the elements of rotations. Thus, the outputs
of the system, z1 and z2, can also be written in terms of the tangent of the inclination angles of the
pendulum in the sagittal and the coronal planes respectively,

z1 , tan θx =

[
HRS

]
{3,2}[

HRS
]
{3,3}

,

z2 , tan θy =

[
HRS

]
{3,1}[

HRS
]
{3,3}

,

(2.2)

where HRS = IRH
T
IRS and [.]{n,m} denotes the (n,m) entry of a matrix. When the state of

system is known, the orientation of the head in inertial coordinates, described by angles Θx and
Θy , is similarly given by the formulae,

tanΘx =

[
IRH

]
{3,2}[

IRH
]
{3,3}

and tanΘy =

[
IRH

]
{3,1}[

IRH
]
{3,3}

.

if Θx and Θy are the angles between the unit vector Hk projected onto the principal planes of the
inertial coordinates and the vector Ik.

The outputs z1 and z2 for the system (2.2) can thus be thought to deliver an equivalent
information as that given by the relative displacements of the otoliths in the biological vestibular
system. In (2.1), these outputs evolve under the action of head rotations driven by the torque Hτ ,
of the head translational movements represented by Ha, and of the ambient gravity field, Ig.

To put the system in state space form we define, s=
{
S
IωS,

H
I ωH, IRS, IRH

}
∈R24, a state

vector where the elements of the vectors and matrices populate a single vector. The system can
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then be written in state space form,

Ξ(s, r)≡

{
ṡ= v(s, r),

z = o(s),
(2.3)

where r=
(
Hτ Ha

)T ∈R6 is treated as an aggregated input and where the output is z =(
z1 z2

)T ∈R2. The equations of the system model written in this form are linearly dependent
since the rotation matrices are members of SO(3), leaving twelve of the state equations to be
independent. It is important to note that the choice of expressing the state dynamics through
rotation matrices ensures a unique and global system representation [39]. All the functions in the
state space representation, Ξ , are rational, that is, all the components of v and o are ratios of
polynomials in s and r.

(e) Head Stabilisation
To control the head, we adopted the three-dimensional stabilising control law proposed by
Chaturvedi et al. [39]. With this feedback, the torque applied to the head was

Hτs(s)≡KpΩ −Kd
H
I ωH, (2.4)

where Kp, Kd ∈R3×3 are positive definite matrices; and where s is the state of the system as
defined previously. The vectorΩ ∈R3 is defined by

Ω =

3∑
i=1

ei × (I IRH ei),

with I=
(
e1 e2 e3

)
the identity matrix. This control law comprises proportional and

derivative feedback control structure and it can be interpreted as introducing a potential though
the attitude-dependent term and dissipation through the angular-velocity-dependent term [39].
The objective of the controller is to asymptotically stabilise the head orientation, IRH, to achieve
the upright orientation, i.e. the identity rotation matrix, I. It can be shown that this global control
law is able to asymptotically stabilise a rigid body constraint by a spherical pivot [39]. The
acceleration of the head, Ha, has no influence on this result since the dynamics that govern the
motion of the head is decoupled from that of the pendulum.

(f) Nonlinear algebraic observability
To clarify the notion of parameter identifiability in nonlinear systems, it is useful to step back and
consider a standard system representation,

Σ(x,u,p)≡


ẋ= f(x,u,p), x(t0) =x0,

ṗ= 0,

y= g(x,u,p),

t≥ t0

where x(t)∈Rn,u(t)∈Rm,y(t)∈Rr,p∈Rp, for t≥ t0. The functions f and g are algebraic in
the variables x,u,p. The vectors x0 and p0 represent initial conditions of the system at time t0.
The quantity p represents parameters which do not vary with time.

If the f and g are are differentiable sufficiently many times, if u(k) and y(l) denote the k-th
and l-th derivatives of u and y, and if N is the set of natural numbers, a simplified definition of
observability is,

Definition 1 (Algebraic Observability). For a given value of parameter p, Σ is algebraically observable
if the initial values of inputs and outputs and their derivatives of any order, i.e.u(t0), y(t0) , andu(k)(t0),
y(l)(t0), k, l ∈N , determine uniquely the initial state, x0.
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Rigorous conditions for algebraic observability were stated by Diop and Fliess in [40]. Later, the
notion of algebraic observability was found to be almost equivalent to the differential geometric
observability developed by Herman and Krener [41], [42]. Parameter identifiability is defined
similarly.

Definition 2 (Algebraic Parameter Identifiability). The parameter p of Σ is algebraically identifiable
if the initial values of its inputs and outputs and their derivatives of any order, i.e. u(t0), y(t0) , and
u(k)(t0), y(l)(t0), k, l ∈N , uniquely determine p.

Because the systems considered are nonlinear, these definitions refer to local observability and
identifiability which allow for the existence of multiple values of x0 or p0 determined from u(t0),
y(t0), u(k)(t0), y(l)(t0), k, l ∈N , but only if these multiple values are isolated, i.e. are separated
by distance. A simple illustrative example on nonlinear system identifiability and observability
can be found in [43].

(g) Application to the head-otolith system
Although the head systemΞ(s,Hτ ,Ha) satisfies the assumptions for applicability of the algebraic
observability analysis, it is so heavily nonlinear and highly dimensional that explicit observability
analysis is infeasible as the number of terms and their degree would explode combinatorially
with the eleven successive derivations required by the analysis of (2.3). We are not aware of any
computer algebra systems capable of solving systems of rational equations of such size.

Luckily, semi-numerical probabilistic computer algorithms were developed to serve such
cases. The software package developed by Sedoglavic is the most prominent representative of
such algorithms [43]. The core algorithm is implemented in Maple™ and has previously been
employed to test identifiability of biological and other complex systems [44–46]. The semi-
numerical approach developed by Sedoglavic was employed to test observability and identifiably
of the system Ξ(s,Hτ ,Ha) with probability exceeding 0.99.

Eight cases were tested, see Table 1. They corresponded to instances that would be relevant
to a locomoting organism. Cases 1-4 in Table 1 represent the scenarios when the head was
not accelerated while the remaining cases 5-8 assume that the head was accelerated. Part of
the input, Hτ or Ha, could be assumed to be unknown. The input torque could be zero; an
unknown constant value, Hτ̃C, independent from the state; a known time-varying value, Hτ (t);
or a stabilising control, Hτs(s) according to the law (2.4). Similarly, the input acceleration could
be zero, or an unknown constant, HãC.

First, we tested whether the full system state, including head orientation, was observable,
depending on the head orientation control by torque input. For example, the last case of Table 1
was when the head was stabilised by the state feedback while being accelerated, whereas the
first case is when it was left tumbling out of control at constant translational velocity. Similarly,
to the last case, the head orientation was observable in case 4 when it was stabilised by the
state feedback. The head orientation was not observable when unknown torque was applied,
case 2, or the applied torque was known but state independent, case 3 (non-stabilised head). Same
results were observed for the cases when the head was accelerated: the head orientation was not
observable when input torque was unknown, case 6, or known but state independent, case 7.

It is seen that the orientation of the head in inertial coordinates is observable only when the
head is stabilised, cases 4 and 8, because the algebraic structure of the system is positively altered
by the application of a stabilising feedback. Secondly, acceleration was tested for identifiability.
The identifiability of the translational acceleration of the head is possible only when the torque is
known or when it results from a known feedback law, cases 7 and 8. That means that the head’s
translational acceleration can be reconstructed in the model when the head is stabilised with the
state feedback controller.
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Table 1. Cases tested for observability and identifiability.

Head torque System Observability Identifiability

non-accelerated head:
1 no input Ξ [x, (0, 0)] negative –

2 unknown torque Ξ
[
x,
(
Hτ̃C, 0

)]
negative –

3 known torque Ξ
[
x,
(
Hτ (t), 0

)]
negative –

4 stabilising torque Ξ
[
x,
(
Hτ (x), 0

)]
positive –

accelerated head:

5 no input Ξ
[
x,
(
0,HãC

)]
negative negative

6 unknown torque Ξ
[
x,
(
Hτ̃C,

HãC
)]

negative negative

7 known torque Ξ
[
x,
(
Hτ (t),HãC

)]
negative positive

8 stabilising torque Ξ
[
x,
(
Hτ (x),HãC

)]
positive positive

(h) Discussion
The results described in Table 1 support the hypothesis H1. Sedoglavic’s algorithm could

detect the algebraic observability of Ξ
[
x,
(
Hτ (x), 0

)]
or Ξ

[
x,
(
Hτ (x),HãC

)]
, that is, only

when stabilising state-feedback was employed, but did not provide any method for the actual
reconstruction or estimation of the state, x, a crucial part of which is the rotation matrix, IRH.

Such method can appeal to a number of approaches, including nonlinear observers, such as
differential algebraic observers based on numerical differentiation of the output, or some kind
of particle filter based on a Markov chain, or simply an extended Kalman filter employing local
linearisation of the system.

Although there are results guaranteeing the local convergence of the extended Kalman filter,
such results hold only for a very special class of systems and the region of observer convergence
is usually estimated from Monte Carlo simulations. Furthermore, since the system Ξ is heavily
nonlinear, in all likelihood, the separation principle does not apply here with the unfortunate
consequence that the addition of an observer may destabilise an otherwise stable control. The
opposite is also possible, that the control could upset the convergence of a well-designed observer.
In the nonlinear case, separation principle results are scarce [47], unlike for linear systems for
which it suffices to ensure that the eigenvalues of the controlled system do not interfere with the
eigenvalues of the observed system.

This observation suggests an additional important advantage of the head stabilisation
strategy during movement. As the orientation of the head approaches the upright position, the
linearisation of the head-otolith system becomes a better approximation of the original nonlinear
system. As a result, computationally inexpensive linear controllers and observers can be expected
to perform just as well, if not better, than computationally complex nonlinear controllers and
observers, which in the case of an animal, would be metabolically costly. In the following section
we demonstrate the convergence of simultaneous stabilisation and observation tasks assuming
that head upright orientation and movements in the sagittal plane allow linear modelling of the
head-otolith system.

3. Resolution of the acceleration-tilt ambiguity

(a) Movements in the sagittal plane
We demonstrate how the head upright head stabilisation strategy leads to significant system
simplification that enables us to model verticality estimation and head stabilisation control
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as linear systems. Theoretical results presented in the previous section has demonstrated that
complex head-otolith systems become fully observable with state feedback stabilisation control
of the head. In the following we demonstrate the importance of head stabilisation behaviour for
gravito-inertial resolution with the help of linear control theory. We demonstrate that linearisation
is crucial to maintain a simple internal model and it is applicable to normal locomotion scenario,
i.e. locomotion with head stabilisation in the sagittal plane.

Planar movements of the head are behaviourally relevant in their own right (walking, running,
riding) but also enable the resolution of the acceleration-tilt ambiguity using information arising
exclusively from the head/otolith model system, Ξ . The spatial case would also be feasible but
would be considerably more involved algebraically and, as discussed above, computationally. In
the sagittal plane, the rotation matrices for the head and the pendulum take the form,

HRS =

 1 0 0

0

0 HR̄S

=

1 0 0

0 s1 s2
0 s3 s4

 ,

IRH =

 1 0 0

0

0 IR̄H

=

1 0 0

0 h1 h2
0 h3 h4

 ,

and the overall system dynamics reduces to

JS ω̇S =m

[
0

l

]
× SR̄I

[
0

−g

]
−m

[
0

l

]
× SR̄I IR̄H

H
[
ay
az

]

− β
(
ωS − SR̄I IR̄H ωH

)
,

JH ω̇H = τ,

I
˙̄RS = IR̄S

(
0 −ωS

ωS 0

)

I
˙̄RH = IR̄H

(
0 −ωH

ωH 0

)
.

(3.1)

with ω̇S and ω̇H representing the angular velocities of the pendulum and the head in the sagittal
plane respectively. The entries of the matrices IR̄H and SR̄H satisfy h1 = h4, h2 =−h3, s1 = s4,
and s2 =−s3. Within a neighbourhood of the upright position, the small-angle approximation
of the dynamics around the vertical orientation, with Θx ' h3 and θx ' s3, yields a fourth-order
system, {

JS ω̇S =−ml g (θx +Θx) +ml ay − β(ωS − ωH),

JH ω̇H = τ,

Denoting the stacked state vector of the system by x, the linearised system can be written in
canonical form,

ẋ=Ax+Bτ.

The three-dimensional head stabilising control boils down to angular PD control,

τx =−kpΘx − kd Θ̇x ,Kx. (3.2)

The output measurement which corresponds to the otolith’s response becomes,

y=Θx + θx ,Cx (3.3)

A standard linear control-observer pair, [48], can now be employed to carry out the task of
verticality estimation. Such system is written,

˙̂x=Ax̂+BKx+ L(y − Cx̂), (3.4)
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Figure 2. Illustration of the equivalence between the vestibular system and the pendulum model with regard to the sensory

ambiguities. The first and the last cases correspond to indistinguishable sensory inputs.

where x̂ is the estimated state, y is the output measurement, and L the observer gain. According
to the separation principle applicable to linear systems, the above controller and observer can be
employed within the same feedback loop where they will not interfere with one another.

(b) Relationship with motion illusions
It is now shown by simulation that the linearised model can be employed to resolve the so-called
acceleration/tilt ambiguity [49].

Before, it is useful to refer to Fig. 2 to gain an intuitive understanding of the origin of this
ambiguity. In the first column, when a head is accelerated forward and upward simultaneously,
the saccule and the utricle, as they should, both give a signal arising from the deflection of the
otoliths from their resting position. When the head is accelerated forward, second column, the
utricle gives a signal but not the saccule. In the third column, an upward tilt of the head causes
the acceleration of gravity to influence strongly the otoliths sending a signal to the brain that can
be interpreted as the head being accelerated upward as in the first column. The second row of
Fig. 2 emphasises again the point made earlier that a pendulum oscillating freely in a non-inertial
frame captures the essential properties of any inertial measurement system because all depend on
the same universal laws of movement, regardless of the constraints introduced by their practical
realisations.

When the head of system Ξ is tilted by an angle Θx while being accelerated, the acceleration-
tilt ambiguity can be modelled by a single constraint with two unknowns,

ay = g sin(θx −Θx).

Thus, in order to access acceleration, ay , the knowledge of head tilt, Θx, is required, and
conversely.

When the head of system Ξ is in the neighbourhood of the upright position, the pendulum
responds to linear accelerations following,

g tan θx = ay. (3.5)

By analogy, if a head is in the neighbourhood of the upright position, the otolith organs reports
translational accelerations directly. An ambiguity, termed gravito-inertial [50], arises during
steady acceleration and when the head angular velocity is constant since the single constraint,
(3.5), has two unknowns.
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Figure 3. Control diagram used in the simulations corresponding to the full nonlinear system, (3.1), the simplified control

(3.2), the output equation (3.3), the simplified observer (3.4), and the nonlinear correction (3.5).

Additional information may be obtained from other sensory inputs or from prior information.
A good candidate for these other sensory inputs, besides vision of course, is the angular velocity
information supplied by the semicircular canals. It is well known, however, that orientation
confusions during motion persist in many cases. In flight simulators, for instance, where they can
be leveraged to simulate ascensional acceleration by tilting the cabin while maintaining the visual
input fixed relative to the viewer. These occurrences are consistent with our earlier observation
that the availability of angular rate information has no influence upon the lack of observability
of head orientation in space. Perceptual ambiguities during motion have been the subject of
numerous studies, e.g. [51–59].

(c) Numerical Simulations
The premise of our study rested on the hypothesis that active feedback control of the head
orientation using idiothetic information only modified profoundly the capacity of the nervous
system to estimate the vertical in the presence of perturbations caused by body movements. The
diagram in Fig. 3 was used for the numerical simulations. It represents the verticality estimator
and head stabilisation control in the sagittal plane developed in Section 3(a). The physical system
which represents the coupled head-otolith dynamics in sagittal plane modelled with (3.1) has
two inputs, the torque applied to the head, τ = τx, and the unknown linear acceleration with
components ay and az . The linear acceleration is assumed to be unknown and its reconstruction
is used as described below. The physical system has two outputs, the unknown head absolute
inclination in the sagittal plane w.r.t. the vertical, Θx, and the measured angular displacement of
the pendulum relative to the head, θx. The observer which estimates the head orientation with
respect to the vertical in the sagittal plane is implemented based on (3.4) and assuming that (3.5)
is valid for the upright head stabilisation. The stabilisation control is defined with (3.2). On that
account, this case corresponds to the last row of Table 1.

The fidelity of the acceleration reconstruction depends on the quality of the estimation of the
head tilt as a function of the tuning of the observer and controller gains, L and K. This scheme
is nevertheless able to resolve the motion ambiguities described earlier as a natural outcome of
head stabilisation relative to the true vertical.

The parameters of the model were chosen to represent the critically damped behaviour of
human otoliths with a natural frequency of 300 Hz [60]. The moment of inertia of the head was
set at 0.0174 kg·m2 which, is an average value found in human biomechanics studies [61].

A standard linear observer-controller pair was implemented, but to make the simulation as
realistic as possible, the full nonlinear model of the head and of the otoliths system was used
to simulate the physical system driven with a full set of inputs. In two simulation conditions, we
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Figure 4. Typical acceleration of the human when walking.

investigated the performance of head angular orientation controller and observer during walking.
The unknown to the observer-controller input linear acceleration of the head during walking in
sagittal plane, Fig. 4, was obtained from human walking experiments [62].

In a first set of conditions, a, we tested how the controller-observer pair performed when it
was required to control the head around different orientations. They were set at zero (upright
position), ten, twenty-five, and forty degrees. The initial head tilt was set at five degrees in all
cases. Thus, it was like trying to walk with the head upright or looking up at increasingly sharp
angles.

In a second set of conditions, b, we tested how the controller-observer pair performed when
it was required to stabilise the head around the zero degree orientation. This time, there were
different initial orientations set at five, twenty, thirty and forty degrees.

In all cases, the head translational acceleration was not known to the controller-observer
system. It was estimated and the corrected value, (3.5), was supplied to the computational model
used by the state observer.

(d) Results
Figures 5a and 5b report the results for the different set-point orientations and for the different
initial conditions, respectively. The upper panels reports the time history of head tilt in black lines
and its estimated values in grey lines. The middle panels show the evolution of the estimation
error for the various set-points and initial conditions. The lower panels show the actual head
acceleration in black lines and the estimates in grey lines.

The overall results vindicate the previously derived theoretical results that predicted that
estimation of the head orientation was possible only when the head stabilisation is achieved, in
which case both the controller and the observer converge. It is when the set-point is zero and when
the initial conditions are not exaggeratedly far from the upright position. Overall, the coupled
observer-controller system operates correctly only when the reference angular orientation of the
head is set to angles close to upright orientation of the head.

When the controller is asked to stabilise the head to an orientation which is far from the
upright position, even for a tilt of ten degrees, the observer failed to provide proper estimates
for the controller and the overall system diverged. When the initial condition was too far from
the upright condition, the system also diverged. On the other hand, the head acceleration was
correctly estimated when the head angular orientation was close to the upright position.

These simulation results support our second hypothesis, H2. The head upright stabilisation
enabled the application of a simplified linear model for coupled state estimation and control that
could provide stable verticality information during locomotion.

(e) Discussion
While the results of Section 2 demonstrated that the overall head-otolith system became
observable when the head was stabilised, the simulation results presented in this section further
extend our contribution. For the planar locomotion case, we could demonstrate that upright
head stabilisation control enabled model linearisation and facilitated gravito-inertial ambiguity
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Figure 5. Simulation results. Upper panels: time history of head tilt. Middle panels: Estimation error. Lower panels:

Time history of head acceleration. Left panels: different head orientation set-points. Right panels: different different initial

conditions. Estimates are indicated in grey.

resolution through the observation that the otolith organs acted as translational acceleration
sensors.

The lack of convergence of the observer-controller pair can be explained by two key factors.
First, the simplified linear observation and control, and the attending separation principle, are not
valid for large angles when the non-linear properties of the system become significant. Second,
erroneous acceleration estimates render the gravito-inertial model ineffective, leading to incorrect
overall estimates.

The results indicate that the overall system is stable (i.e. functional) only when the head
is actively controlled to remain close to the upright configuration. It is then that a linearised
model approximation becomes valid. This finding provides a potential explanation for the role
of head stabilisation behaviour observed in animals and humans. These results also mirror the
observation that in natural conditions humans and animals universally tend to maintain their
head upright during a wide range of range of tasks and manoeuvres, thus facilitating the fusion
of information arising from vestibular, visual, proprioceptive, and tactile inputs in a uniform
earth-related frame of reference.

4. Conclusion
A mechanistic model of the head/otolith-organ system was used to analyse the fundamental
property of observability of orientation in space, which to our knowledge was not considered
before. Because the otolith organ, has clearly evolved to provide animals with the notion of
verticality during movement, observability properties are essential. This model may appear
simplistic compared to the actual biological systems but it has the advantage over previous
models to capture a greater amount of the basic features of inertial sensors by accounting for the
three-dimensional dynamics taking place in non-inertial frames, even if the gyroscopic terms were
neglected. From inertial measurements only, orientation in space was found to be an unobservable
quantity and thus no estimator could ever provide accurate, unbiased estimates for it.
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Further analysis, presented in section 2, led to a remarkable result which supported the
first hypothesis, H1, namely, that a stabilising feedback law based on estimates of an unknown
orientation could transform it into an observable quantity. This phenomenon is entirely owed to
the highly nonlinear nature of non-inertial frame mechanics. In the theory of nonlinear systems,
there is almost no result concerning similar occurrences, practically or theoretically, which makes
it a candidate for further studies. As an additional point, in linear systems analysis it is easy
to show that feedback cannot modify the observability properties of a system. Our result may
therefore be seen as tribute to nature’s inventiveness.

The construction of nonlinear observers can be hard and computationally very costly. A by-
product of our finding is that the aforementioned stabilisation strategy makes it possible to not
only estimate an unknown acceleration but, what is more, to do so using a linear observer,
which supports the second hypothesis, H2. This approach, which is described in Section 3, is
considerably less costly than employing a nonlinear observer and is probably a more robust
approach. Our results can apply to both biological or man-made systems, e.g. for autonomous
locomotion [63–67] or robotics for gait and balance assistance [68,69], with the need to navigate
in the absence of external references other than the ambient gravity field.
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