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Abstract. The subject of this work is the study of the Lovász-Schrijver
PSD-operator LS+ applied to the edge relaxation ESTAB(G) of the sta-
ble set polytope STAB(G) of a graph G. We are interested in the problem
of characterizing the graphs G for which STAB(G) is achieved in one it-
eration of the LS+-operator, called LS+-perfect graphs, and to find a
polyhedral relaxation of STAB(G) that coincides with LS+(ESTAB(G))
and STAB(G) if and only if G is LS+-perfect. An according conjecture
has been recently formulated (LS+-Perfect Graph Conjecture); here we
verify it for the well-studied class of claw-free graphs.

1 Introduction

The context of this work is the study of the stable set polytope, some of its linear
and semi-definite relaxations, and graph classes for which certain relaxations are
tight. Our focus lies on those graphs where a single application of the Lovász-
Schrijver positive semi-definite operator introduced in [22] to the edge relaxation
yields the stable set polytope.

The stable set polytope STAB(G) of a graph G = (V,E) is defined as the
convex hull of the incidence vectors of all stable sets of G (in a stable set all
nodes are mutually nonadjacent). Two canonical relaxations of STAB(G) are
the edge constraint stable set polytope

ESTAB(G) = {x ∈ [0, 1]V : xi + xj ≤ 1, ij ∈ E},

and the clique constraint stable set polytope

QSTAB(G) = {x ∈ [0, 1]V : x(Q) =
∑

i∈Q

xi ≤ 1, Q ⊆ V clique}

(in a clique all nodes are mutually adjacent, hence a clique and a stable set share
at most one node). We have STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G) for any
graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G)
for perfect graphs only [5].

⋆ This work was supported by an ECOS-MINCyT cooperation (A12E01), a MATH-
AmSud cooperation (PACK-COVER), PID-CONICET 0277, PICT-ANPCyT 0586.



According to a famous characterization achieved by Chudnovsky et al. [3],
perfect graphs are precisely the graphs without chordless cycles C2k+1 with k ≥
2, termed odd holes, or their complements, the odd antiholes C2k+1. This shows
that odd holes and odd antiholes are the only minimally imperfect graphs.

Perfect graphs turned out to be an interesting and important class with a
rich structure and a nice algorithmic behavior [18]. However, solving the stable
set problem for a perfect graph G by maximizing over QSTAB(G) does not work
directly [17], but only via a detour involving a geometric representation of graphs
[21] and a semi-definite relaxation TH(G) introduced in [18].

For some N ∈ Z+, an orthonormal representation of a graph G = (V,E)
is a sequence (ui : i ∈ V ) of |V | unit-length vectors ui ∈ RN , such that
ui

T uj = 0 for all ij 6∈ E. For any orthonormal representation of G and any ad-
ditional unit-length vector c ∈ RN , the orthonormal representation constraint

is
∑

i∈V (cT ui)
2xi ≤ 1. TH(G) denotes the convex set of all vectors x ∈ R

|V |
+

satisfying all orthonormal representation constraints for G. For any graph G,

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

holds and approximating a linear objective function over TH(G) can be done
with arbitrary precision in polynomial time [18]. Most notably, the same authors
proved a beautiful characterization of perfect graphs:

G is perfect ⇔ TH(G) = STAB(G) ⇔ TH(G) = QSTAB(G). (1)

For all imperfect graphs, STAB(G) does not coincide with any of the above re-
laxations. It is, thus, natural to study further relaxations and to combinatorially
characterize those graphs where STAB(G) equals one of them.

Linear relaxations and related graphs. A natural generalization of the clique
constraints are rank constraints x(G′) =

∑

i∈G′ xi ≤ α(G′) associated with
arbitrary induced subgraphs G′ ⊆ G. By the choice of the right hand side α(G′),
denoting the size of a largest stable set in G′, rank constraints are valid for
STAB(G). A graph G is called rank-perfect by [32] if and only if STAB(G) is
described by rank constraints only.

By definition, rank-perfect graphs include all perfect graphs. By restricting
the facet set to rank constraints associated with certain subgraphs, several well-
known graph classes are defined, e.g., near-perfect graphs [29] where only rank
constraints associated with cliques and the whole graph are allowed, or t-perfect
[5] and h-perfect graphs [18] where rank constraints associated with edges, tri-
angles and odd holes resp. cliques of arbitrary size and odd holes suffice.

As common generalization of perfect, t-perfect, and h-perfect graphs, the
class of a-perfect graphs was introduced in [33] as graphs G where STAB(G) is
given by rank constraints associated with antiwebs. An antiweb Ak

n is a graph
with n nodes 0, . . . , n−1 and edges ij if and only if k ≤ |i−j| ≤ n−k and i 6= j.
Antiwebs include all complete graphs Kn = A1

n, odd holes C2k+1 = Ak
2k+1

, and

their complements C2k+1 = A2
2k+1

. Antiwebs are a-perfect by [33].



A more general type of inequalities is obtained from complete joins of anti-
webs, called joined antiweb constraints

∑

i≤k

1

α(Ai)
x(Ai) + x(Q) ≤ 1,

associated with the join of some antiwebs A1, . . . , Ak and a clique Q. We denote
the linear relaxation of STAB(G) obtained by all joined antiweb constraints by
ASTAB∗(G). By construction, we see that

STAB(G) ⊆ ASTAB∗(G) ⊆ QSTAB(G) ⊆ ESTAB(G).

In [6], a graph G is called joined a-perfect if and only if STAB(G) coincides with
ASTAB∗(G). Besides all a-perfect graphs, further examples of joined a-perfect
graphs are near-bipartite graphs (where the non-neighbors of every node induce
a bipartite graph) due to [30].

A semi-definite relaxation and LS+-perfect graphs. In the early nineties, Lovász
and Schrijver introduced the PSD-operator LS+ (called N+ in [22]) which, ap-
plied to ESTAB(G), generates a positive semi-definite relaxation of STAB(G)
stronger than TH(G) (see Section 2.1 for details). In order to simplify the nota-
tion we write LS+(G) = LS+(ESTAB(G)). In [22] it is shown that

STAB(G) ⊆ LS+(G) ⊆ ASTAB∗(G).

As in the case of perfect graphs, the stable set problem can be solved in polyno-
mial time for the class of graphs for which LS+(G) = STAB(G). These graphs
are called LS+-perfect, and all other graphs LS+-imperfect (note that they are
also called N+-(im)perfect, see e.g. [1]). In [1], the authors look for a charac-
terization of LS+-perfect graphs similar to the characterization (1) for perfect
graphs. More precisely, they intend to find an appropriate polyhedral relaxation
P (G) of STAB(G) such that

G is LS+-perfect ⇔ LS+(G) = STAB(G) ⇔ LS+(G) = P (G). (2)

A conjecture has been recently proposed in [2], which can be equivalently refor-
mulated as follows [12]:

Conjecture 1 (LS+-Perfect Graph Conjecture). A graph G is LS+-perfect if and
only if LS+(G) = ASTAB∗(G).

The results of Lovász and Schrijver [22] prove that joined a-perfect graphs
are LS+-perfect, thus, the conjecture states that LS+-perfect graphs coincide
with joined a-perfect graphs and that ASTAB∗(G) is the studied polyhedral
relaxation of STAB(G) playing the role of P (G) in (2).

In addition, every subgraph of an LS+-perfect graph is also LS+-perfect.
This motivates the definition of minimally LS+-imperfect graphs as these LS+-
imperfect graphs whose proper induced subgraphs are all LS+-perfect. The two
smallest such graphs, found by [10] and [20], are depicted in Figure 1.



Fig. 1. The graphs GLT (on the left) and GEMN (on the right).

Conjecture 1 has been already verified for near-perfect graphs by [1], for fs-
perfect graphs (where the only facet-defining subgraphs are cliques and the graph

itself) by [2], for webs (the complements W k
n = A

k

n of antiwebs) by [11] and for
line graphs (obtained by turning adjacent edges of a root graph into adjacent
nodes of the line graph) by [12], see Section 2.1 for details.

The LS+-Perfect Graph Conjecture for claw-free graphs. The aim of this con-
tribution is to verify Conjecture 1 for a well-studied graph class containing all
webs, all line graphs and the complements of near-bipartite graphs: the class of
claw-free graphs (i.e., the graphs not containing the complete join of a single
node and a stable set of size three).

Claw-free graphs attracted much attention due to their seemingly asymmetric
behavior w.r.t. the stable set problem. On the one hand, the first combinatorial
algorithms to solve the problem in polynomial time for claw-free graphs [23,
28] date back to 1980. Therefore, the polynomial equivalence of optimization
and separation due to [18] implies that it is possible to optimize over the stable
set polytope of a claw-free graph in polynomial time. On the other hand, the
problem of characterizing the stable set polytope of claw-free graphs in terms
of an explicit description by means of a facet-defining system, originally posed
in [18], was open for several decades. This motivated the study of claw-free graphs
and its different subclasses, that finally answered this long-standing problem only
recently (see Section 2.2 for details).

To verify the conjecture for claw-free graphs, we need not only to rely on
structural results and complete facet-descriptions of their stable set polytope, but
also to ensure that all facet-inducing subgraphs different from cliques, antiwebs
or their complete joins are LS+-imperfect. A graph G is said to be facet-defining
if STAB(G) has a full-support facet.

The paper is organized as follows: In Section 2, we present the State-of-the-
Art on LS+-perfect graphs (including families of LS+-imperfect graphs needed
for the subsequent proofs) and on claw-free graphs, their relevant subclasses and
the results concerning the facet-description of their stable set polytopes from the
literature. In Section 4, we verify, relying on the previously presented results,
Conjecture 1 for the studied subclasses of claw-free graphs. As a conclusion, we
obtain as our main result:

Theorem 1. The LS+-Perfect Graph Conjecture is true for all claw-free graphs.

We close with some further remarks and an outlook to future lines of research.



2 State-of-the-Art

2.1 About LS+-perfect graphs

We denote by e0, e1, . . . , en the vectors of the canonical basis of Rn+1 (where
the first coordinate is indexed zero), 1 the vector with all components equal to 1
and Sn

+ the convex cone of (n×n) symmetric and positive semi-definite matrices
with real entries. Given a convex set K in [0, 1]n, let

cone(K) =

{(

x0

x

)

∈ Rn+1 : x = x0y; y ∈ K

}

.

Then, we define the polyhedral set

M+(K) =
{

Y ∈ Sn+1
+ : Y e0 = diag(Y ),

Y ei ∈ cone(K),

Y (e0 − ei) ∈ cone(K), i = 1, . . . , n} ,

where diag(Y ) denotes the vector whose i-th entry is Yii, for every i = 0, . . . , n.
Projecting this lifting back to the space Rn results in

LS+(K) =

{

x ∈ [0, 1]n :

(

1
x

)

= Y e0, for some Y ∈ M+(K)

}

.

In [22], Lovász and Schrijver proved that LS+(K) is a relaxation of the convex
hull of integer solutions in K and that LSn

+(K) = conv(K ∩ {0, 1}n), where

LS0
+(K) = K and LSk

+(K) = LS+(LSk−1
+ (K)) for every k ≥ 1.

In this work we focus on the behavior of a single application of the LS+-
operator to the edge relaxation of the stable set polytope of a graph.

Recall that GLT and GEMN are the smallest LS+-imperfect graphs. Further
LS+-imperfect graphs can be obtained by applying operations preserving LS+-
imperfection.

In [20], the stretching of a node v is introduced as follows: Partition its
neighborhood N(v) into two nonempty, disjoint sets A1 and A2 (so A1 ∪ A2 =
N(v), and A1 ∩ A2 = ∅). A stretching of v is obtained by replacing v by two
adjacent nodes v1 and v2, joining vi with every node in Ai for i ∈ {1, 2}, and
subdividing the edge v1v2 by one node w. In [20] it is shown:

Theorem 2 ([20]). The stretching of a node preserves LS+-imperfection.

Hence, all stretchings of GLT and GEMN are LS+-imperfect, see Figure 2
for some examples.

In [12], the authors characterized LS+-perfect line graphs by showing that
the only minimally LS+-imperfect line graphs are stretchings of GLT and GEMN

and occur as subgraphs in all facet-defining line graphs different from cliques and
odd holes:

Theorem 3 ([12]). A facet-defining line graph G is N+-perfect if and only if
G is a clique or an odd hole.



Fig. 2. Some node stretchings (v1, w, v2 in black) of GLT and GEMN .

The proof relies on a result of Edmonds & Pulleyblank [8] who showed that a
line graph L(H) is facet-defining if and only if H is a 2-connected hypomatchable
graph (that is, for all nodes v of H, H−v admits a perfect matching). Such graphs
H have an ear decomposition H0,H1, . . . ,Hk = H where H0 is an odd hole and
Hi is obtained from Hi−1 by adding an odd path (ear) between distinct nodes
of Hi−1. In [12], it is shown that the line graph L(H1) of any ear decomposition
is a node stretching of GLT and GEMN and, thus, LS+-imperfect by [20].

Again, using stretchings of GLT and GEMN and exhibiting one more mini-
mally LS+-imperfect graph, namely the web W 2

10, LS+-perfect webs are charac-
terized in [11] as follows:

Theorem 4 ([11]). A web is LS+-perfect if and only if it is perfect or minimally
imperfect.

The proof shows that all imperfect not minimally imperfect webs with sta-
bility number 2 contain GEMN and all webs W 2

n different from W 2
7 ,W 2

10, some
stretching of GLT . Furthermore, all other webs contain some LS+-imperfect W 2

n′

and are, thus, also LS+-imperfect.
Finally, in [1], there is another family of LS+-imperfect graphs presented

that will play a central role in some subsequent proofs:

Theorem 5 ([1]). Let G be a graph with α(G) = 2 such that G − v is an odd
antihole for some node v. G is LS+-perfect if and only if v is completely joined
to G − v.

2.2 About claw-free graphs

In several respects, claw-free graphs are generalizations of line graphs. An inter-
mediate class between line graphs and claw-free graphs form quasi-line graphs,
where the neighborhood of any node can be partitioned into two cliques (i.e.,
quasi-line graphs are the complements of near-bipartite graphs).

For this class, it turned out that so-called clique family inequalities suffice
to describe the stable set polytope. Given a graph G, a family F of cliques and
an integer p < n = |F|, the clique family inequality (F , p) is the following valid
inequality for STAB(G)

(p − r)
∑

i∈W

xi + (p − r − 1)
∑

i∈Wo

xi ≤ (p − r)

⌊

n

p

⌋

(3)



where r = nmod p and W (resp. Wo) is the set of nodes contained in at least p

(resp. exactly p − 1) cliques of F .
This generalizes the results of Edmods [7] and Edmonds & Pulleyblank [8]

that STAB(L(H)) is described by clique constraints and rank constraints

x(L(H ′)) ≤
1

2
(|V (H ′)| − 1) (4)

associated with the line graphs of 2-connected hypomatchable induced subgraphs
H ′ ⊆ H. Note that the rank constraints of type (4) are special clique family
inequalities. Chudnovsky and Seymour [4] extended this result to a superclass
of line graphs. They showed that a connected quasi-line graph G is either a
fuzzy circular interval graph or STAB(G) is given by clique constraints and rank
constraints of type (4).

Let C be a circle, I a collection of intervals in C without proper containments
and common endpoints, and V a multiset of points in C. The fuzzy circular
interval graph G(V, I) has node set V and two nodes are adjacent if both belong
to one interval I ∈ I, where edges between different endpoints of the same
interval may be omitted.

Semi-line graphs are either line graphs or quasi-line graphs without a rep-
resentation as a fuzzy circular interval graph. Due to [4], semi-line graphs are
rank-perfect with line graphs as only facet-defining subgraphs.

Eisenbrand et al. [9] proved that clique family inequalities suffice to describe
the stable set polytope of fuzzy circular interval graphs. Stauffer [31] verified a
conjecture of [25] that every facet-defining clique family inequality of a fuzzy
circular interval graph G is associated with a web in G.

All these results together complete the picture for quasi-line graphs. However,
there are claw-free graphs which are not quasi-line; the 5-wheel is the smallest
such graph and has stability number 2. Due to Cook (see [30]), all facets for
graphs G with α(G) = 2 are clique-neighborhood constraints

2x(Q) + x(N ′(Q)) ≤ 2 (5)

where Q ⊆ G is a clique and N ′(Q) = {v ∈ V (G) : Q ⊆ N(v)}. Therefore all
non-trivial facets in this case are 1, 2-valued.

This is not the case for graphs G with α(G) = 3. In fact, all the known
difficult facets of claw-free graphs occur in this class. Some non-rank facets with
up to five different non-zero coefficients are presented in [16, 19]. All of these
facets turned out to be so-called co-spanning 1-forest constraints due to [26],
where it is also shown that it is possible to build a claw-free graph with stability
number three inducing a co-spanning 1-forest facet with b different left hand side
coefficients, for every positive integer b.

The problem of characterizing STAB(G) when G is a connected claw-free but
not quasi-line graph with α(G) ≥ 4 was studied by Galluccio et al.: In a series
of results [13–15], it is shown that if such a graph G does not contain a clique
cutset, then 1,2-valued constraints suffice to describe STAB(G). Here, besides
5-wheels, different rank and non-rank facet-defining inequalities of the geared
graph G shown in Fig. 3 play a central role.



In addition, graphs of this type can be decomposed into strips. A strip
(G, a, b) is a (not necessarily connected) graph with two designated simplicial
nodes a and b (a node is simplicial if its neighborhood is a clique). A claw-free
strip containing a 5-wheel as induced subgraph is a 5-wheel strip. Given two
node-disjoint strips (G1, a1, b1) and (G2, a2, b2), their composition is the union
of G1 \ {a1, b1} and G2 \ {a2, b2} together with all edges between NG1

(a1) and
NG2

(a2), and between NG1
(b1) and NG2

(b2) [4].
As shown in [24], this composition operation can be generalized to more than

two strips: Every claw-free but not quasi-line graph G with α(G) ≥ 4 admits
a decomposition into strips, where at most one strip is quasi-line and all the
remaining ones are 5-wheel strips having stability number at most 3. There are
only three “basic” types of 5-wheel strips (see Fig. 3) which can be extended by
adding nodes belonging to the neighborhood of the 5-wheels (see [24] for details).

Note that a claw-free but not quasi-line graph G with α(G) ≥ 4 containing
a clique cutset may have a facet-inducing subgraph G′ with α(G′) = 3 (inside a
5-wheel strip of type 3), see [27] for examples.

Taking all these results together into account gives the complete list of facets
needed to describe the stable set polytope of claw-free graphs.

type 1 type 2 (gear) type 3

Fig. 3. The three types of basic 5-wheel strips.

3 LS+-Perfect Graph Conjecture for claw-free graphs

In this section, we verify the LS+-Perfect Graph Conjecture for all relevant
subclasses of claw-free graphs.

Graphs with α(G) = 2 play a crucial role. Relying on the behavior of the stable
set polytope under taking complete joins [5] and the result on LS+-(im)perfect
graphs G with α(G) = 2 (Theorem 5), we can prove:

Theorem 6. All facet-inducing LS+-perfect graphs G with α(G) = 2 are odd
antiholes or complete joins of odd antihole(s) and a (possibly empty) clique.

This shows that all facet-inducing LS+-perfect graphs G with α(G) = 2 are
joined a-perfect, and we conclude:

Corollary 1. The LS+-Perfect Graph Conjecture is true for graphs with stabil-
ity number 2.



Quasi-line graphs partition into the two subclasses of semi-line graphs and fuzzy
circular interval graphs.

Chudnovsky and Seymour [4] proved that the stable set polytope of a semi-
line graph is given by rank constraints associated with cliques and the line graphs
of 2-connected hypomatchable graphs. Together with the result from [12] (pre-
sented in Theorem 3), we directly conclude that the LS+-Perfect Graph Con-
jecture holds for semi-line graphs.

Based on the results of Eisenbrand et al. [9] and Stauffer [31], combined with
the characterization of LS+-imperfect webs from [11] (Theorem 4), we are able
to show:

Theorem 7. All facet-inducing LS+-perfect fuzzy circular interval graphs are
cliques, odd holes or odd antiholes.

As a consequence, every LS+-perfect fuzzy circular interval graph is a-perfect.
This verifies the LS+-Perfect Graph Conjecture for fuzzy circular interval graphs.

Since the class of quasi-line graphs partitions into semi-line graphs and fuzzy
circular interval graphs, we obtain as direct consequence:

Corollary 2. The LS+-Perfect Graph Conjecture is true for quasi-line graphs.

Claw-free graphs that are not quasi-line are distinguished according to their
stability number.

Relying on the behavior of the stable set polytope under clique identification
[5] and the result on LS+-(im)perfect graphs from Theorem 5, we can prove:

Theorem 8. Every facet-defining claw-free not quasi-line graph G with α(G) =
3 is LS+-imperfect.

Hence, the only facet-defining subgraphs G′ of LS+-perfect claw-free not
quasi-line graphs G with α(G) = 3 have α(G′) = 2 and are, by Theorem 6,
cliques, odd antiholes or their complete joins. We conclude that LS+-perfect
facet-defining claw-free not quasi-line graphs G with α(G) = 3 are joined a-
perfect and, thus, the LS+-Perfect Graph Conjecture is true for this class.

To treat the case of claw-free not quasi-line graphs G with α(G) ≥ 4, we
rely on the decomposition of such graphs into strips, where at most one strip
is quasi-line and all the remaining ones are 5-wheel strips [24]. By noting that
5-wheel strips of type 3 contain GLT and exhibiting LS+-imperfect line graphs
in the other two cases, we are able to show:

Theorem 9. Every facet-defining claw-free not quasi-line graph G with α(G) ≥
4 is LS+-imperfect.

This together with Theorem 8 shows that the only facet-defining subgraphs
G′ of LS+-perfect claw-free not quasi-line graphs G with α(G) ≥ 4 have α(G′) =
2 and are, by Theorem 6, cliques, odd antiholes or their complete joins. Thus,
every LS+-perfect claw-free not quasi-line graph G with α(G) ≥ 4 is joined
a-perfect and, thus, the LS+-Perfect Graph Conjecture holds true for this class.

Combining Corollary 1 with the above results shows that all LS+-perfect
claw-free but not quasi-line graphs are joined a-perfect and we obtain:



Corollary 3. The LS+-Perfect Graph Conjecture is true for all claw-free graphs
that are not quasi-line.

Finally, we obtain our main result as direct consequence of Corollary 2 and
Corollary 3: The LS+-Perfect Graph Conjecture is true for all claw-free graphs.

4 Conclusion and future research

The context of this work was the study of LS+-perfect graphs, i.e., graphs where
a single application of the Lovász-Schrijver PSD-operator LS+ to the edge re-
laxation yields the stable set polytope. Hereby, we are particularly interested in
finding an appropriate polyhedral relaxation P (G) of STAB(G) that coincides
with LS+(G) and STAB(G) if and only if G is LS+-perfect. An according con-
jecture has been recently formulated (LS+-Perfect Graph Conjecture); here we
verified it for the well-studied class of claw-free graphs (Theorem 1).

Note further that, besides verifying the LS+-Perfect Graph Conjecture for
claw-free graphs, we obtained the complete list of all minimally LS+-imperfect
claw-free graphs. In fact, the results in [1, 11, 12] imply that the following graphs
are minimally LS+-imperfect:

– graphs G with α(G) = 2 such that G − v is an odd antihole for some node
v, not completely joined to G − v,

– the web W 2
10,

– LS+-imperfect line graphs (which are all node stretchings of GLT or GEMN ).

Our results from Section 3 on facet-defining LS+-perfect claw-free graphs imply
that they are the only minimally LS+-imperfect claw-free graphs.

Finally, the subject of the present work has parallels to the well-developed
research area of perfect graph theory also in terms of polynomial time com-
putability. In fact, it has the potential of reaching even stronger results due the
following reasons. Recall that calculating the value

η+(G) = max1T x, x ∈ LS+(G)

can be done in polynomial time for every graph G by [22]. Thus, the stable set
problem can be solved in polynomial time for a strict superset of perfect graphs,
the LS+-perfect graphs, by α(G) = η+(G). Hence, our future lines of research
include to find

– new families of graphs where the conjecture holds (e.g., by characterizing
the minimally LS+-imperfect graphs within the class),

– new subclasses of LS+-perfect or joined a-perfect graphs,
– classes of graphs G where STAB(G) and LS+(G) are “close enough” to have

α(G) = ⌊η+(G)⌋.

In particular, the class of graphs G with α(G) = ⌊η+(G)⌋ can be expected to
be large since LS+(G) is a much stronger relaxation of STAB(G) than TH(G).



In all cases, the stable set problem could be solved in polynomial time in these
graph classes by optimizing over LS+(G). Finally, note that LS+(P (G)) with

STAB(G) ⊆ P (G) ⊆ ESTAB(G)

clearly gives an even stronger relaxation of STAB(G) than LS+(G). However,
already optimizing over LS+(QSTAB(G)) cannot be done in polynomial time
anymore for all graphs G by [22]. Hence, in view of the polynomial time solv-
ability of the stable set problem, LS+-perfect graphs or their generalizations
satisfying α(G) = ⌊η+(G)⌋ are the most promising cases in this context.
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