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Introduction

The context of this work is the study of the stable set polytope, some of its linear and semi-definite relaxations, and graph classes for which certain relaxations are tight. Our focus lies on those graphs where a single application of the Lovász-Schrijver positive semi-definite operator introduced in [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF] to the edge relaxation yields the stable set polytope.

The stable set polytope STAB(G) of a graph G = (V, E) is defined as the convex hull of the incidence vectors of all stable sets of G (in a stable set all nodes are mutually nonadjacent). Two canonical relaxations of STAB(G) are the edge constraint stable set polytope

ESTAB(G) = {x ∈ [0, 1] V : x i + x j ≤ 1, ij ∈ E},
and the clique constraint stable set polytope

QSTAB(G) = {x ∈ [0, 1] V : x(Q) = i∈Q x i ≤ 1, Q ⊆ V clique}
(in a clique all nodes are mutually adjacent, hence a clique and a stable set share at most one node). We have STAB(G) ⊆ QSTAB(G) ⊆ ESTAB(G) for any graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G) for perfect graphs only [START_REF]On Certain Polytopes Associated with Graphs[END_REF].

According to a famous characterization achieved by Chudnovsky et al. [START_REF] Chudnovsky | The Strong Perfect Graph Theorem[END_REF], perfect graphs are precisely the graphs without chordless cycles C 2k+1 with k ≥ 2, termed odd holes, or their complements, the odd antiholes C 2k+1 . This shows that odd holes and odd antiholes are the only minimally imperfect graphs.

Perfect graphs turned out to be an interesting and important class with a rich structure and a nice algorithmic behavior [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF]. However, solving the stable set problem for a perfect graph G by maximizing over QSTAB(G) does not work directly [START_REF] Grötschel | The Ellipsoid Method and its Consequences in Combinatorial Optimization[END_REF], but only via a detour involving a geometric representation of graphs [START_REF] Lovász | On the Shannon capacity of a graph[END_REF] and a semi-definite relaxation TH(G) introduced in [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF].

For some N ∈ Z + , an orthonormal representation of a graph G = (V, E) is a sequence (u i : i ∈ V ) of |V | unit-length vectors u i ∈ R N , such that u i T u j = 0 for all ij ∈ E. For any orthonormal representation of G and any additional unit-length vector c ∈ R N , the orthonormal representation constraint is i∈V (c T u i ) 2 x i ≤ 1. TH(G) denotes the convex set of all vectors x ∈ R

|V | +

satisfying all orthonormal representation constraints for G. For any graph G,

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)
holds and approximating a linear objective function over TH(G) can be done with arbitrary precision in polynomial time [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF]. Most notably, the same authors proved a beautiful characterization of perfect graphs:

G is perfect ⇔ TH(G) = STAB(G) ⇔ TH(G) = QSTAB(G). (1) 
For all imperfect graphs, STAB(G) does not coincide with any of the above relaxations. It is, thus, natural to study further relaxations and to combinatorially characterize those graphs where STAB(G) equals one of them.

Linear relaxations and related graphs. A natural generalization of the clique constraints are rank constraints x(G ′ ) = i∈G ′ x i ≤ α(G ′ ) associated with arbitrary induced subgraphs G ′ ⊆ G. By the choice of the right hand side α(G ′ ), denoting the size of a largest stable set in G ′ , rank constraints are valid for STAB(G). A graph G is called rank-perfect by [START_REF] Wagler | Critical Edges in Perfect Graphs[END_REF] if and only if STAB(G) is described by rank constraints only.

By definition, rank-perfect graphs include all perfect graphs. By restricting the facet set to rank constraints associated with certain subgraphs, several wellknown graph classes are defined, e.g., near-perfect graphs [START_REF] Shepherd | Near-Perfect Matrices[END_REF] where only rank constraints associated with cliques and the whole graph are allowed, or t-perfect [START_REF]On Certain Polytopes Associated with Graphs[END_REF] and h-perfect graphs [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF] where rank constraints associated with edges, triangles and odd holes resp. cliques of arbitrary size and odd holes suffice.

As common generalization of perfect, t-perfect, and h-perfect graphs, the class of a-perfect graphs was introduced in [START_REF] Wagler | Antiwebs are rank-perfect[END_REF] as graphs G where STAB(G) is given by rank constraints associated with antiwebs. An antiweb A k n is a graph with n nodes 0, . . . , n -1 and edges ij if and only if k ≤ |i -j| ≤ nk and i = j. Antiwebs include all complete graphs K n = A 1 n , odd holes C 2k+1 = A k 2k+1 , and their complements C 2k+1 = A 2 2k+1 . Antiwebs are a-perfect by [START_REF] Wagler | Antiwebs are rank-perfect[END_REF].

A more general type of inequalities is obtained from complete joins of antiwebs, called joined antiweb constraints

i≤k 1 α(A i ) x(A i ) + x(Q) ≤ 1,
associated with the join of some antiwebs A 1 , . . . , A k and a clique Q. We denote the linear relaxation of STAB(G) obtained by all joined antiweb constraints by ASTAB * (G). By construction, we see that

STAB(G) ⊆ ASTAB * (G) ⊆ QSTAB(G) ⊆ ESTAB(G).
In [START_REF] Coulonges | Characterizing and bounding the imperfection ratio for some classes of graphs[END_REF], a graph G is called joined a-perfect if and only if STAB(G) coincides with ASTAB * (G). Besides all a-perfect graphs, further examples of joined a-perfect graphs are near-bipartite graphs (where the non-neighbors of every node induce a bipartite graph) due to [START_REF] Shepherd | Applying Lehman's Theorem to Packing Problems[END_REF].

A semi-definite relaxation and LS + -perfect graphs. In the early nineties, Lovász and Schrijver introduced the PSD-operator LS + (called N + in [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF]) which, applied to ESTAB(G), generates a positive semi-definite relaxation of STAB(G) stronger than TH(G) (see Section 2.1 for details). In order to simplify the notation we write LS + (G) = LS + (ESTAB(G)). In [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF] it is shown that

STAB(G) ⊆ LS + (G) ⊆ ASTAB * (G).
As in the case of perfect graphs, the stable set problem can be solved in polynomial time for the class of graphs for which LS + (G) = STAB(G). These graphs are called LS + -perfect, and all other graphs LS + -imperfect (note that they are also called N + -(im)perfect, see e.g. [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF]). In [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF], the authors look for a characterization of LS + -perfect graphs similar to the characterization (1) for perfect graphs. More precisely, they intend to find an appropriate polyhedral relaxation P (G) of STAB(G) such that

G is LS + -perfect ⇔ LS + (G) = STAB(G) ⇔ LS + (G) = P (G). (2) 
A conjecture has been recently proposed in [START_REF] Bianchi | Lovász-Schrijver PSDoperator and a superclass of near-perfect graphs[END_REF], which can be equivalently reformulated as follows [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF]:

Conjecture 1 (LS + -Perfect Graph Conjecture). A graph G is LS + -perfect if and only if LS + (G) = ASTAB * (G).
The results of Lovász and Schrijver [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF] prove that joined a-perfect graphs are LS + -perfect, thus, the conjecture states that LS + -perfect graphs coincide with joined a-perfect graphs and that ASTAB * (G) is the studied polyhedral relaxation of STAB(G) playing the role of P (G) in [START_REF] Bianchi | Lovász-Schrijver PSDoperator and a superclass of near-perfect graphs[END_REF].

In addition, every subgraph of an LS + -perfect graph is also LS + -perfect. This motivates the definition of minimally LS + -imperfect graphs as these LS +imperfect graphs whose proper induced subgraphs are all LS + -perfect. The two smallest such graphs, found by [START_REF] Escalante | Minimal N+-rank graphs: Progress on Lipták and Tunçel's conjecture[END_REF] and [START_REF] Lipták | Stable set problem and the lift-and-project ranks of graphs[END_REF], are depicted in Figure 1. Conjecture 1 has been already verified for near-perfect graphs by [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF], for fsperfect graphs (where the only facet-defining subgraphs are cliques and the graph itself) by [START_REF] Bianchi | Lovász-Schrijver PSDoperator and a superclass of near-perfect graphs[END_REF], for webs (the complements W k n = A k n of antiwebs) by [START_REF] Escalante | Lovász and Schrijver N+-relaxation on web graphs[END_REF] and for line graphs (obtained by turning adjacent edges of a root graph into adjacent nodes of the line graph) by [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF], see Section 2.1 for details.

The LS + -Perfect Graph Conjecture for claw-free graphs. The aim of this contribution is to verify Conjecture 1 for a well-studied graph class containing all webs, all line graphs and the complements of near-bipartite graphs: the class of claw-free graphs (i.e., the graphs not containing the complete join of a single node and a stable set of size three).

Claw-free graphs attracted much attention due to their seemingly asymmetric behavior w.r.t. the stable set problem. On the one hand, the first combinatorial algorithms to solve the problem in polynomial time for claw-free graphs [START_REF] Minty | On maximal independent sets of vertices in claw-free graphs[END_REF][START_REF] Sbihi | Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile[END_REF] date back to 1980. Therefore, the polynomial equivalence of optimization and separation due to [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF] implies that it is possible to optimize over the stable set polytope of a claw-free graph in polynomial time. On the other hand, the problem of characterizing the stable set polytope of claw-free graphs in terms of an explicit description by means of a facet-defining system, originally posed in [START_REF] Grötschel | Geometric Algorithms and Combinatorial Optimization[END_REF], was open for several decades. This motivated the study of claw-free graphs and its different subclasses, that finally answered this long-standing problem only recently (see Section 2.2 for details).

To verify the conjecture for claw-free graphs, we need not only to rely on structural results and complete facet-descriptions of their stable set polytope, but also to ensure that all facet-inducing subgraphs different from cliques, antiwebs or their complete joins are LS + -imperfect. A graph G is said to be facet-defining if STAB(G) has a full-support facet.

The paper is organized as follows: In Section 2, we present the State-of-the-Art on LS + -perfect graphs (including families of LS + -imperfect graphs needed for the subsequent proofs) and on claw-free graphs, their relevant subclasses and the results concerning the facet-description of their stable set polytopes from the literature. In Section 4, we verify, relying on the previously presented results, Conjecture 1 for the studied subclasses of claw-free graphs. As a conclusion, we obtain as our main result: Theorem 1. The LS + -Perfect Graph Conjecture is true for all claw-free graphs.

We close with some further remarks and an outlook to future lines of research.

2 State-of-the-Art

About LS + -perfect graphs

We denote by e 0 , e 1 , . . . , e n the vectors of the canonical basis of R n+1 (where the first coordinate is indexed zero), 1 the vector with all components equal to 1 and S n + the convex cone of (n × n) symmetric and positive semi-definite matrices with real entries. Given a convex set

K in [0, 1] n , let cone(K) = x 0 x ∈ R n+1 : x = x 0 y; y ∈ K .
Then, we define the polyhedral set

M + (K) = Y ∈ S n+1 + : Y e 0 = diag(Y ), Y e i ∈ cone(K), Y (e 0 -e i ) ∈ cone(K), i = 1, . . . , n} ,
where diag(Y ) denotes the vector whose i-th entry is Y ii , for every i = 0, . . . , n.

Projecting this lifting back to the space R n results in

LS + (K) = x ∈ [0, 1] n : 1 x = Y e 0 , for some Y ∈ M + (K) .
In [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF], Lovász and Schrijver proved that LS + (K) is a relaxation of the convex hull of integer solutions in K and that LS n

+ (K) = conv(K ∩ {0, 1} n ), where LS 0 + (K) = K and LS k + (K) = LS + (LS k-1 + (K)) for every k ≥ 1.
In this work we focus on the behavior of a single application of the LS +operator to the edge relaxation of the stable set polytope of a graph.

Recall that G LT and G EM N are the smallest LS + -imperfect graphs. Further LS + -imperfect graphs can be obtained by applying operations preserving LS +imperfection.

In [START_REF] Lipták | Stable set problem and the lift-and-project ranks of graphs[END_REF], the stretching of a node v is introduced as follows: Partition its neighborhood N (v) into two nonempty, disjoint sets A 1 and A 2 (so A 1 ∪ A 2 = N (v), and A 1 ∩ A 2 = ∅). A stretching of v is obtained by replacing v by two adjacent nodes v 1 and v 2 , joining v i with every node in A i for i ∈ {1, 2}, and subdividing the edge v 1 v 2 by one node w. In [START_REF] Lipták | Stable set problem and the lift-and-project ranks of graphs[END_REF] it is shown: Theorem 2 ( [START_REF] Lipták | Stable set problem and the lift-and-project ranks of graphs[END_REF]). The stretching of a node preserves LS + -imperfection.

Hence, all stretchings of G LT and G EM N are LS + -imperfect, see Figure 2 for some examples.

In [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF], the authors characterized LS + -perfect line graphs by showing that the only minimally LS + -imperfect line graphs are stretchings of G LT and G EM N and occur as subgraphs in all facet-defining line graphs different from cliques and odd holes: The proof relies on a result of Edmonds & Pulleyblank [START_REF] Edmonds | Facets of 1-Matching Polyhedra[END_REF] who showed that a line graph L(H) is facet-defining if and only if H is a 2-connected hypomatchable graph (that is, for all nodes v of H, H-v admits a perfect matching). Such graphs H have an ear decomposition H 0 , H 1 , . . . , H k = H where H 0 is an odd hole and H i is obtained from H i-1 by adding an odd path (ear) between distinct nodes of H i-1 . In [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF], it is shown that the line graph L(H 1 ) of any ear decomposition is a node stretching of G LT and G EM N and, thus, LS + -imperfect by [START_REF] Lipták | Stable set problem and the lift-and-project ranks of graphs[END_REF].

Again, using stretchings of G LT and G EM N and exhibiting one more minimally LS + -imperfect graph, namely the web W 2 10 , LS + -perfect webs are characterized in [START_REF] Escalante | Lovász and Schrijver N+-relaxation on web graphs[END_REF] as follows:

Theorem 4 ( [START_REF] Escalante | Lovász and Schrijver N+-relaxation on web graphs[END_REF]). A web is LS + -perfect if and only if it is perfect or minimally imperfect.

The proof shows that all imperfect not minimally imperfect webs with stability number 2 contain G EM N and all webs W 2 n different from W 2 7 , W 2 10 , some stretching of G LT . Furthermore, all other webs contain some LS + -imperfect W 2 n ′ and are, thus, also LS + -imperfect.

Finally, in [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF], there is another family of LS + -imperfect graphs presented that will play a central role in some subsequent proofs: Theorem 5 ( [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF]). Let G be a graph with α(G) = 2 such that Gv is an odd antihole for some node v. G is LS + -perfect if and only if v is completely joined to Gv.

About claw-free graphs

In several respects, claw-free graphs are generalizations of line graphs. An intermediate class between line graphs and claw-free graphs form quasi-line graphs, where the neighborhood of any node can be partitioned into two cliques (i.e., quasi-line graphs are the complements of near-bipartite graphs).

For this class, it turned out that so-called clique family inequalities suffice to describe the stable set polytope. Given a graph G, a family F of cliques and an integer p < n = |F|, the clique family inequality (F, p) is the following valid inequality for STAB(G)

(p -r) i∈W x i + (p -r -1) i∈Wo x i ≤ (p -r) n p (3) 
where r = n mod p and W (resp. W o ) is the set of nodes contained in at least p (resp. exactly p -1) cliques of F. This generalizes the results of Edmods [START_REF] Edmonds | Maximum Matching and a Polyhedron with (0,1) Vertices[END_REF] and Edmonds & Pulleyblank [8] that STAB(L(H)) is described by clique constraints and rank constraints

x(L(H ′ )) ≤ 1 2 (|V (H ′ )| -1) (4) 
associated with the line graphs of 2-connected hypomatchable induced subgraphs H ′ ⊆ H. Note that the rank constraints of type (4) are special clique family inequalities. Chudnovsky and Seymour [START_REF] Chudnovsky | The structure of claw-free graphs[END_REF] extended this result to a superclass of line graphs. They showed that a connected quasi-line graph G is either a fuzzy circular interval graph or STAB(G) is given by clique constraints and rank constraints of type (4).

Let C be a circle, I a collection of intervals in C without proper containments and common endpoints, and V a multiset of points in C. The fuzzy circular interval graph G(V, I) has node set V and two nodes are adjacent if both belong to one interval I ∈ I, where edges between different endpoints of the same interval may be omitted.

Semi-line graphs are either line graphs or quasi-line graphs without a representation as a fuzzy circular interval graph. Due to [START_REF] Chudnovsky | The structure of claw-free graphs[END_REF], semi-line graphs are rank-perfect with line graphs as only facet-defining subgraphs.

Eisenbrand et al. [START_REF] Eisenbrand | The stable set polytope of quasi-line graphs[END_REF] proved that clique family inequalities suffice to describe the stable set polytope of fuzzy circular interval graphs. Stauffer [START_REF] Stauffer | On the Stable set polytope of claw-free graphs[END_REF] verified a conjecture of [START_REF] Pêcher | Almost all webs are not rank-perfect[END_REF] that every facet-defining clique family inequality of a fuzzy circular interval graph G is associated with a web in G.

All these results together complete the picture for quasi-line graphs. However, there are claw-free graphs which are not quasi-line; the 5-wheel is the smallest such graph and has stability number 2. Due to Cook (see [START_REF] Shepherd | Applying Lehman's Theorem to Packing Problems[END_REF]), all facets for graphs G with α(G) = 2 are clique-neighborhood constraints

2x(Q) + x(N ′ (Q)) ≤ 2 (5)
where

Q ⊆ G is a clique and N ′ (Q) = {v ∈ V (G) : Q ⊆ N (v)}.
Therefore all non-trivial facets in this case are 1, 2-valued. This is not the case for graphs G with α(G) = 3. In fact, all the known difficult facets of claw-free graphs occur in this class. Some non-rank facets with up to five different non-zero coefficients are presented in [START_REF] Giles | On stable set polyhedra for K1,3 -free graphs[END_REF][START_REF] Liebling | On non-rank facets of the stable set polytope of claw-free graphs and circulant graphs[END_REF]. All of these facets turned out to be so-called co-spanning 1-forest constraints due to [START_REF] Pêcher | On facets of stable set polytopes of claw-free graphs with stability number three[END_REF], where it is also shown that it is possible to build a claw-free graph with stability number three inducing a co-spanning 1-forest facet with b different left hand side coefficients, for every positive integer b.

The problem of characterizing STAB(G) when G is a connected claw-free but not quasi-line graph with α(G) ≥ 4 was studied by Galluccio et al.: In a series of results [START_REF] Galluccio | Gear composition and the stable set polytope[END_REF][START_REF] Galluccio | The stable set polytope of claw-free graphs with stability number at least four. I. Fuzzy antihat graphs are W-perfect[END_REF][START_REF] Galluccio | The stable set polytope of claw-free graphs with stability number at least four. II. Striped graphs are G-perfect[END_REF], it is shown that if such a graph G does not contain a clique cutset, then 1,2-valued constraints suffice to describe STAB(G). Here, besides 5-wheels, different rank and non-rank facet-defining inequalities of the geared graph G shown in Fig. 3 play a central role.

In addition, graphs of this type can be decomposed into strips. A strip (G, a, b) is a (not necessarily connected) graph with two designated simplicial nodes a and b (a node is simplicial if its neighborhood is a clique). A claw-free strip containing a 5-wheel as induced subgraph is a 5-wheel strip. Given two node-disjoint strips (G 1 , a 1 , b 1 ) and (G 2 , a 2 , b 2 ), their composition is the union of G 1 \ {a 1 , b 1 } and G 2 \ {a 2 , b 2 } together with all edges between N G1 (a 1 ) and N G2 (a 2 ), and between N G1 (b 1 ) and N G2 (b 2 ) [START_REF] Chudnovsky | The structure of claw-free graphs[END_REF].

As shown in [START_REF] Oriolo | A new algorithm for the maximum weighted stable set problem in claw-free graphs[END_REF], this composition operation can be generalized to more than two strips: Every claw-free but not quasi-line graph G with α(G) ≥ 4 admits a decomposition into strips, where at most one strip is quasi-line and all the remaining ones are 5-wheel strips having stability number at most 3. There are only three "basic" types of 5-wheel strips (see Fig. 3) which can be extended by adding nodes belonging to the neighborhood of the 5-wheels (see [START_REF] Oriolo | A new algorithm for the maximum weighted stable set problem in claw-free graphs[END_REF] for details).

Note that a claw-free but not quasi-line graph G with α(G) ≥ 4 containing a clique cutset may have a facet-inducing subgraph G ′ with α(G ′ ) = 3 (inside a 5-wheel strip of type 3), see [START_REF] Pietropaoli | Some results towards the description of the stable set polytope of claw-free graphs[END_REF] for examples.

Taking all these results together into account gives the complete list of facets needed to describe the stable set polytope of claw-free graphs. 3 LS + -Perfect Graph Conjecture for claw-free graphs

In this section, we verify the LS + -Perfect Graph Conjecture for all relevant subclasses of claw-free graphs.

Graphs with α(G) = 2 play a crucial role. Relying on the behavior of the stable set polytope under taking complete joins [START_REF]On Certain Polytopes Associated with Graphs[END_REF] and the result on LS + -(im)perfect graphs G with α(G) = 2 (Theorem 5), we can prove: Theorem 6. All facet-inducing LS + -perfect graphs G with α(G) = 2 are odd antiholes or complete joins of odd antihole(s) and a (possibly empty) clique.

This shows that all facet-inducing LS + -perfect graphs G with α(G) = 2 are joined a-perfect, and we conclude: Corollary 1. The LS + -Perfect Graph Conjecture is true for graphs with stability number 2.

Quasi-line graphs partition into the two subclasses of semi-line graphs and fuzzy circular interval graphs.

Chudnovsky and Seymour [START_REF] Chudnovsky | The structure of claw-free graphs[END_REF] proved that the stable set polytope of a semiline graph is given by rank constraints associated with cliques and the line graphs of 2-connected hypomatchable graphs. Together with the result from [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF] (presented in Theorem 3), we directly conclude that the LS + -Perfect Graph Conjecture holds for semi-line graphs.

Based on the results of Eisenbrand et al. [START_REF] Eisenbrand | The stable set polytope of quasi-line graphs[END_REF] and Stauffer [START_REF] Stauffer | On the Stable set polytope of claw-free graphs[END_REF], combined with the characterization of LS + -imperfect webs from [START_REF] Escalante | Lovász and Schrijver N+-relaxation on web graphs[END_REF] (Theorem 4), we are able to show: Theorem 7. All facet-inducing LS + -perfect fuzzy circular interval graphs are cliques, odd holes or odd antiholes.

As a consequence, every LS + -perfect fuzzy circular interval graph is a-perfect. This verifies the LS + -Perfect Graph Conjecture for fuzzy circular interval graphs.

Since the class of quasi-line graphs partitions into semi-line graphs and fuzzy circular interval graphs, we obtain as direct consequence:

Corollary 2. The LS + -Perfect Graph Conjecture is true for quasi-line graphs.

Claw-free graphs that are not quasi-line are distinguished according to their stability number.

Relying on the behavior of the stable set polytope under clique identification [START_REF]On Certain Polytopes Associated with Graphs[END_REF] and the result on LS + -(im)perfect graphs from Theorem 5, we can prove:

Theorem 8. Every facet-defining claw-free not quasi-line graph G with α(G) = 3 is LS + -imperfect.
Hence, the only facet-defining subgraphs G ′ of LS + -perfect claw-free not quasi-line graphs G with α(G) = 3 have α(G ′ ) = 2 and are, by Theorem 6, cliques, odd antiholes or their complete joins. We conclude that LS + -perfect facet-defining claw-free not quasi-line graphs G with α(G) = 3 are joined aperfect and, thus, the LS + -Perfect Graph Conjecture is true for this class.

To treat the case of claw-free not quasi-line graphs G with α(G) ≥ 4, we rely on the decomposition of such graphs into strips, where at most one strip is quasi-line and all the remaining ones are 5-wheel strips [START_REF] Oriolo | A new algorithm for the maximum weighted stable set problem in claw-free graphs[END_REF]. By noting that 5-wheel strips of type 3 contain G LT and exhibiting LS + -imperfect line graphs in the other two cases, we are able to show: Theorem 9. Every facet-defining claw-free not quasi-line graph G with α(G) ≥ 4 is LS + -imperfect.

This together with Theorem 8 shows that the only facet-defining subgraphs G ′ of LS + -perfect claw-free not quasi-line graphs G with α(G) ≥ 4 have α(G ′ ) = 2 and are, by Theorem 6, cliques, odd antiholes or their complete joins. Thus, every LS + -perfect claw-free not quasi-line graph G with α(G) ≥ 4 is joined a-perfect and, thus, the LS + -Perfect Graph Conjecture holds true for this class.

Combining Corollary 1 with the above results shows that all LS + -perfect claw-free but not quasi-line graphs are joined a-perfect and we obtain: Corollary 3. The LS + -Perfect Graph Conjecture is true for all claw-free graphs that are not quasi-line.

Finally, we obtain our main result as direct consequence of Corollary 2 and Corollary 3: The LS + -Perfect Graph Conjecture is true for all claw-free graphs.

Conclusion and future research

The context of this work was the study of LS + -perfect graphs, i.e., graphs where a single application of the Lovász-Schrijver PSD-operator LS + to the edge relaxation yields the stable set polytope. Hereby, we are particularly interested in finding an appropriate polyhedral relaxation P (G) of STAB(G) that coincides with LS + (G) and STAB(G) if and only if G is LS + -perfect. An according conjecture has been recently formulated (LS + -Perfect Graph Conjecture); here we verified it for the well-studied class of claw-free graphs (Theorem 1).

Note further that, besides verifying the LS + -Perfect Graph Conjecture for claw-free graphs, we obtained the complete list of all minimally LS + -imperfect claw-free graphs. In fact, the results in [START_REF] Bianchi | Near-perfect graphs with polyhedral N+(G)[END_REF][START_REF] Escalante | Lovász and Schrijver N+-relaxation on web graphs[END_REF][START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF] imply that the following graphs are minimally LS + -imperfect:

graphs G with α(G) = 2 such that Gv is an odd antihole for some node v, not completely joined to Gv, -the web W 2 10 , -LS + -imperfect line graphs (which are all node stretchings of G LT or G EM N ).

Our results from Section 3 on facet-defining LS + -perfect claw-free graphs imply that they are the only minimally LS + -imperfect claw-free graphs.

Finally, the subject of the present work has parallels to the well-developed research area of perfect graph theory also in terms of polynomial time computability. In fact, it has the potential of reaching even stronger results due the following reasons. Recall that calculating the value η + (G) = max 1 T x, x ∈ LS + (G) can be done in polynomial time for every graph G by [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF]. Thus, the stable set problem can be solved in polynomial time for a strict superset of perfect graphs, the LS + -perfect graphs, by α(G) = η + (G). Hence, our future lines of research include to find new families of graphs where the conjecture holds (e.g., by characterizing the minimally LS + -imperfect graphs within the class), -new subclasses of LS + -perfect or joined a-perfect graphs, -classes of graphs G where STAB(G) and LS + (G) are "close enough" to have α(G) = ⌊η + (G)⌋.

In particular, the class of graphs G with α(G) = ⌊η + (G)⌋ can be expected to be large since LS + (G) is a much stronger relaxation of STAB(G) than TH(G).

In all cases, the stable set problem could be solved in polynomial time in these graph classes by optimizing over LS + (G). Finally, note that LS + (P (G)) with STAB(G) ⊆ P (G) ⊆ ESTAB(G)

clearly gives an even stronger relaxation of STAB(G) than LS + (G). However, already optimizing over LS + (QSTAB(G)) cannot be done in polynomial time anymore for all graphs G by [START_REF] Lovász | Cones of matrices and set-functions and 0-1 optimization[END_REF]. Hence, in view of the polynomial time solvability of the stable set problem, LS + -perfect graphs or their generalizations satisfying α(G) = ⌊η + (G)⌋ are the most promising cases in this context.
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 1 Fig. 1. The graphs GLT (on the left) and GEMN (on the right).

Theorem 3 (

 3 [START_REF] Escalante | Characterizing N+-perfect line graphs[END_REF]). A facet-defining line graph G is N + -perfect if and only if G is a clique or an odd hole.

Fig. 2 .

 2 Fig.2. Some node stretchings (v1, w, v2 in black) of GLT and GEMN .

Fig. 3 .

 3 Fig. 3. The three types of basic 5-wheel strips.
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