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Abstract

The VIPAFLEET project aims at developing a framework to manage a fleet of
Individual Public Autonomous Vehicles (VIPA). We consider a fleet of such cars
distributed at specified stations in an industrial area to supply internal transporta-
tion, where the cars can be used in different modes of circulation (tram mode,
elevator mode, taxi mode). We treat in this paper the pickup and delivery problem
related to the taxi mode by means of flows in time expanded networks. We com-
pute optimal offline solutions, propose a replan strategy for the online situation,
and evaluate its performance in comparison with the optimal offline solution.
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The project VIPAFLEET [5] aims at contributing to sustainable mobility
through the development of innovative urban mobility solutions by means of
fleets of Individual Public Autonomous Vehicles (VIPA) allowing passenger
transport in closed sites like industrial areas, medical complexes or airports.
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A VIPA is an “autonomous vehicle” that does not require a driver nor an in-
frastructure to operate, developed by Easymile and Ligier thanks to innovative
computer vision guidance technologies [2,3].

A fleet of VIPAs shall be used in an industrial site to transport employees
and visitors e.g. between parkings, buildings and from or to a restaurant. The
fleet is distributed at specified stations to supply internal transportation, and
a VIPA can operate in three different circulation modes:

• Tram mode: VIPAs continuously run on predefined cycles in a predefined
direction and stop at a station if requested to let users enter or leave.

• Elevator mode: VIPAs run on lines and react to requests by changing their
driving direction and moving to a station to let users enter or leave.

• Taxi mode: VIPAs run on a connected network to serve transport requests
(from any start to any destination station within given time windows).

This leads to an Online Pickup-and-Delivery Problem in a metric space encod-
ing the considered site, since transport requests are released over time. In [1],
tram mode and elevator mode are treated, here we focus on the taxi mode as
the most advanced circulation mode for VIPAs.

As proposed in [1], we embed the VIPAFLEET management problem in
the framework of a metric task system. We encode the studied site as a metric
space M = (V, d) induced by a connected network G = (V,E), whose nodes
correspond to stations, edges to their physical links in the site, and distances
d between two nodes vi, vj ∈ V to the length of a shortest path from vi to vj.
In V , we have a distinguished origin vo ∈ V , the depot of the system.

An operator manages a fleet of k VIPAs each with a capacity for Cap
passengers. The fleet management shall allow the operator to decide when
and how to move the VIPAs in the network, and to assign requests to VIPAs.
Any request rj is defined as a 6-tuple rj = (tj, xj, yj, pj, qj, zj) where

• tj is the release date (i.e., the time when rj becomes known),

• xj ∈ V is the origin node, yj ∈ V the destination node,

• pj is the earliest start time, qj the latest possible arrival time,

• zj specifies the number of passengers,

where tj ≤ pj, pj + d(xj, yj) ≤ qj, as well as zj ≤ Cap needs to be satisfied.

The operator decides which requests can be accepted (note that some
requests may have to be rejected if, e.g., more requests are specified for
a same time window than VIPAs are available in the fleet), and creates
tasks τj = (tj, xj, t

pick
j , yj, t

drop
j , zj) to serve accepted requests rj, indicating



that zj passengers have to be picked up at station xj at time tpickj and de-

livered at station yj at time tdropj , where pj ≤ tpickj ≤ qj − d(xj, yj) and

pj + d(xj, yj) ≤ tdropj ≤ qj must hold. In order to fulfill tasks, the opera-

tor creates tours Γ1, . . . ,Γk for the VIPAs to circulate in the network G and
to pickup, transport and deliver users s.t.

• each accepted request rj is served (within the time window [pj, qj]),

• each tour starts and ends in the depot and respects the VIPA capacity Cap.

This leads to the following problem:

Problem 1 (Online Taxi Mode Problem (M,σ, p, T, k,Cap) (OTMP))
Given a metric space M = (V, d) induced by a connected network G = (V,E),
a sequence of requests σ, profits p for accepted requests, a time horizon [0, T ]
and k VIPAs of capacity Cap, determine a maximum subset σA of accepted
requests and find tours Γ1, . . . ,Γk of minimum total tour length to serve all
requests in σA.

In order to solve the OTMP, we propose a replan strategy that considers at
each moment in time t′ the subsequence σ(t′) of currently waiting requests (i.e.,
already released but not yet served requests), determines which requests from
σ(t′) can be accepted, and computes optimal (partial) tours to serve them,
performs these tours until new requests are released and recomputes σ(t′)
and the tours (keeping already accepted requests). Hereby, finding optimal
(partial) tours corresponds to solving, in each replanning step, an optimal
offline solution on the subsequence σ(t′) (i.e. an optimal solution under the
condition that the whole sequence of requests is known in advance).

Algorithm 1 (REPLAN)

Input: (M,σ, p, T, k,Cap)
Output: σA and tours Γ1, . . . ,Γk

1: initialize σA = ∅, σ(t′) = {rj ∈ σ : tj = 0}, and Γi = (v0, 0) for 1 ≤ i ≤ k

2: WHILE σ 6= ∅ DO: call OFFLINE(σA, σ(t′), Γ1, . . . ,Γk)

perform the (modified) tours until new requests become known, update σ(t′)

3: return σA and Γ1, . . . ,Γk

To compute those optimal solutions for the subsequences σ(t′), we build a
time-expanded request network G(t′) = (V ′, A′) based on σ(t′) and the original
networkG and consider a flow inG(t′) that corresponds to the studied (partial)
tours.



Algorithm 2 (OFFLINE)

Input: σA, σ(t′), Γ1, . . . ,Γk

Output: modified σA and tours Γ1, . . . ,Γk

1: determine VIPA start positions P (t′) and start times S(t′) from Γ1, . . . ,Γk

2: create the request network G(t′)

3: solve the max profit flow problem (1) on G(t′)

4: update σA and Γ1, . . . ,Γk accordingly and return them

To construct G(t′) = (V ′, A′), we extract the possible start positions P (t′)
and start times S(t′) for the VIPAs from the current tours Γ1, . . . ,Γk: if VIPA
i is currently serving a request rj, then we have P (t′)i = yj and S(t′)i = tdropj ;
otherwise, P (t′)i is the current position v of VIPA i and S(t′)i = t′.

The node set V ′ = V+ ∪ Vx ∪ Vy ∪ (v0, T
′) is composed of

• the VIPAs start positions and times (P (t′)i, S(t′)i) for 1 ≤ i ≤ k as sources
in V+,

• all possible origins (xj, t
pick
j ) of all rj ∈ σ(t′) and all pj ≤ tpickj ≤ qj−d(xj, yj)

in Vx,

• all possible destinations (yj, t
drop
j ) of all rj ∈ σ(t′) and all pj + d(xj, yj) ≤

tdropj ≤ qj in Vy,

• a sink node (v0, T
′) with T ′ = max{tdropj , rj ∈ σ(t′)}.

The arc set A′ = A+ ∪ AR ∪ AL ∪ A− is composed of

• source arcs from all nodes (P (t′)i, S(t′)i) ∈ V+ to all reachable origins
(xj, t

pick
j ) ∈ Vx whith t′ + d(v, xj) ≤ tpickj ,

• request arcs from each (xj, t
pick
j ) ∈ Vx to (yj, t

pick
j + d(xj, yj)) ∈ Vy in AR,

• link arcs from all destinations (yj, t
drop
j ) ∈ Vy to all reachable origins (yi, t

pick
i )

∈ Vx with tdropj + d(yj, xi) ≤ tpicki in AL,

• sink arcs from all destinations (yj, t
drop
j ) ∈ Vy to (v0, T

′) in A−.

To keep previously accepted requests, we partition σ(t′) into the subsequences

• σA(t′) of previously accepted but not yet served requests and

• σN(t′) = {rj ∈ σ : tj = t′} of newly released requests,

and partition the request arcs accordingly in ARA
and ARN

. Moreover, let AjRA
,

AjRN
be the subsets of request arcs of the corresponding previously accepted

request rj ∈ σA(t′) resp. newly released request rj ∈ σN(t′).



In G(t′), we solve the following max profit flow problem

max
∑
a∈AR

p(a)f(a)−
∑
a∈A′

d(a)f(a) (1a)

s.t.
∑

a∈δ+(v,t)

f(a) = k(v) ∀(v, t) ∈ V+ (1b)∑
a∈δ−(v,t)

f(a) =
∑

a∈δ+(v,t)

f(a) ∀(v, t) ∈ Vx ∪ Vy (1c)∑
a∈Aj

RA

f(a) = 1 ∀AjRA
⊆ ARA

(1d)

∑
a∈Aj

RN

f(a) ≤ 1 ∀AjRN
⊆ ARN

(1e)

f(a) ≥ 0 ∀a ∈ A′ (1f)

f(a) ∈ Z ∀a ∈ A′ (1g)

where δ−(v, t) denotes the set of outgoing arcs of (v, t), δ+(v, t) the set of
incoming arcs of (v, t) and k(v) the number of VIPAs initially situated in v.

Constraints (1d) ensure that previously accepted requests are served whereas
constraints (1e) allow to reject newly released requests. Source, flow conser-
vation and nonnegativity constraints (1b), (1c), (1f) together give rise to a
totally unimodular matrix, but due to (1d) and (1e) the entire constraint
matrix is not totally unimodular s.t. integrality constraints (1g) are required.

From the computed flow f in the request network G(t′), it is straitforward
to determine newly accepted requests (corresponding to request arcs a ∈ ARN

with f(a) > 0) and to construct tours Γ1, . . . ,Γk for the VIPAs by standard
flow decomposition techniques, see e.g. [4].

In the special case of tight time windows satisfying pj + d(xj, yj) = qj
(which clearly results in pj = tpickj and qj = tdropj ) for all rj ∈ σ, there is
exactly one request arc per request s.t. the entire constraint matrix becomes
totally unimodular which implies:

Corollary 1 The Offline Taxi Mode Problem with tight time windows can be
solved in polynomial time.

In the general case, this is not true, but experiments show that the running
times to solve the Offline Taxi Mode Problem are still reasonable, see Table
??. Regarding the quality of the solutions obtained by REPLAN, we note
that



• in theory, REPLAN is not competitive since there is no finite c s.t. for all
instances σ we have that REPLAN(σ) ≤ c OPT(σ),

• in practice, REPLAN provides solutions of good quality within reasonably
short time for each recomputation step, see again Table ??.

Hence, we can conclude that REPLAN is a promising algorithm to handle the
OTMP for the taxi mode in the studied VIPAfleet management system.
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