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Abstract. The identifying code problem is a newly emerging search
problem, challenging both from a theoretical and a computational point
of view, even for special graphs like bipartite graphs and split graphs.
Hence, a typical line of attack for this problem is to determine minimum
identifying codes of special graphs or to provide bounds for their size.
In this work we study the associated polyhedra for some families of split
graphs: headless spiders and complete suns. We provide the according lin-
ear relaxations, discuss their combinatorial structure, and demonstrate
how the associated polyhedra can be entirely described or polyhedral
arguments can be applied to find minimum identifying codes for spe-
cial split graphs. We discuss further lines of research in order to apply
similar techniques to obtain strong lower bounds stemming from linear
relaxations of the identifying code polyhedron, enhanced by suitable cut-
ting planes to be used in a B&C framework.
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1 Introduction

Many practical applications can be stated as set covering problems, among them
newly emerging search problems for identifying codes [13]. Consider a graph
G = (V, E) and denote by N [i] = {i} ∪ N(i) the closed neighborhood of i. A
subset C ⊆ V is dominating (resp. identifying) if N [i]∩C are non-empty (resp.
distinct) sets for all i ∈ V . An identifying code of G is a node subset which is
dominating and identifying, and the identifying code number γID(G) of a graph
G is the minimum cardinality of an identifying code of G.

Determining a minimum identifying code in a graph G = (V, E) can be for-
mulated as set covering problem min1T x, MID(G) ≥ 1, x ∈ {0, 1}|V | by:

min 1T x
x(N [j]) =

∑

i∈N [j] xi ≥ 1 ∀j ∈ V (domination)

x(N [j] △ N [k]) =
∑

i∈N [j]△N [k] xi ≥ 1 ∀j, k ∈ V, j 6= k (identification)

x ∈ {0, 1}|V |

⋆ This work was supported by an ECOS-MINCyT cooperation France-Argentina,
A12E01.



We call

MID(G) =

(

N [G]
△[G]

)

,

the identifying code matrix of G, encoding the closed neighborhoods of the nodes
of G (N [G]) and their symmetric differences (△[G]), and define the identifying

code polyhedron of G as PID(G) = conv{x ∈ Z
|V |
+ : MID(G) x ≥ 1}. It is clear by

construction that γID(G) equals the covering number τ(MID(G)) := min{1T x :
x ∈ PID(G)}. In addition, a graph G has an identifying code or is identifiable

if and only if MID(G) has no zero-row. As N [G] has clearly no zero-row, G is
identifiable if and only if △[G] has no zero-row which is equivalent to the known
condition that G is identifiable if and only if it has no true twins, i.e., nodes i, j
with N [i] = N [j], see [13].

As MID(G) may contain rows which are equal to or dominated by other
rows in MID(G), we define the corresponding clutter matrix, the identifying

code clutter CID(G) of G, obtained by removing repeated or dominated rows
from MID(G). We clearly have that

PID(G) = conv{x ∈ Z
|V |
+ : CID(G) x ≥ 1},

and obtain as a linear relaxation the fractional identifying code polyhedron

QID(G) = {x ∈ R
|V |
+ : CID(G) x ≥ 1}.

In [2, 3] we characterized when PID(G) is full-dimensional and which con-
straints of QID(G) define facets of PID(G):

Lemma 1 ([2, 3]). Let G be a graph without isolated nodes and let V1(G) be

the set of nodes k ∈ V (G) such that {k} = N [i]△N [j] for two different nodes i
and j in V (G). Then,

– PID(G) is full-dimensional if and only if V1(G) = ∅.
– The constraint xi ≥ 0 defines a facet of PID(G) if and only if i /∈ V1(G).
– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Due to the possible formulation as set covering problem, it is immediate that
the identifying code problem is hard in general. It even remains hard for several
graph classes where many other in general hard problems are easy to solve,
including bipartite graphs [6], split graphs [8] and, therefore, chordal graphs (see
Section 2 for details).

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. In this work we study the associated polyhedra for some families of
split graphs: headless spiders and complete suns. We provide the according lin-
ear relaxations, discuss their combinatorial structure, and demonstrate how the
associated polyhedra can be entirely described or polyhedral arguments can be
applied to find minimum identifying codes for special split graphs, see Section
2. We discuss further lines of research in order to apply similar techniques to
obtain strong lower bounds stemming from linear relaxations of the identify-
ing code polyhedron, enhanced by suitable cutting planes to be used in a B&C
framework, see Section 3.



1.1 Preliminary definitions

Given a set F of vectors in {0, 1}n, we say y ∈ F is a dominating vector (of F )
if there exits x ∈ F with x ≤ y. It can be also said that x is dominated by y.

From now on, every matrix has 0, 1-entries, no zero columns and no domi-
nating rows.

As there is a one-to-one correspondence between a vector x ∈ {0, 1}n and
the subset Sx ⊂ {1, . . . , n} having x as characteristic vector, we write x instead
of Sx. Remind that a cover of a matrix M is a vector x ∈ {0, 1}n such that
Mx ≥ 1. According to the previous convention, a cover of M is a subset of
columns ({1, . . . , n}) that intersects all the rows of M .

In addition, the cardinality of a cover x is denoted by |x| and equals 1x. A
cover x is minimum if it has the minimum cardinality and in this case |x| is
called the covering number of the matrix M , denoted by τ(M). Recall that the
set covering polyhedron of M , denoted by Q∗(M), is defined as the convex hull
of its covers. The polytope Q(M) = {x ∈ [0, 1]n : Mx ≥ 1} is known as the
linear relaxation of Q∗(A). When Q∗(A) = Q(A) the matrix A is ideal and the
set covering problem can be solved in polynomial time (in the size of M).

A cover of M is minimal if it does not dominate any other cover of M . The
blocker of M , denoted by b(M), is the matrix whose rows are the minimal covers
of M . It is known that b(b(M)) = M and also that a matrix M is ideal if and
only if its blocker is (see [14]). In addition, since b(b(M)) = M we can refer to
Q∗(M) and Q(b(M)) as a blocking pair of polyhedra. Moreover, a is an extreme
point of Q(b(M)) if and only if aT x ≥ 1 is a facet defining inequality of Q∗(M)
(see [11]). In the sequel we will refer to this property as blocking duality.

Given a matrix M and j ∈ {1, . . . , n}, we introduce two matrix operations:
the contraction of j, denoted by M/j, means that column j is removed from
M as well as the resulting dominating rows and hence, corresponds to setting
xj = 0 in the constraints Mx ≥ 1. The deletion of j, denoted by M \j means that
column j is removed from M as well as all the rows with a 1 in column j and this
corresponds to setting xj = 1 in the constraints Mx ≥ 1. Then, given M and
V1, V2 ⊂ {1, . . . , n} disjoint, we will say that M/V1 \V2 is a minor of M and this
minor does not depend on the order of operations or elements in {1, . . . , n}. It is
clear that M is always a minor of itself and we will say that a minor M/V1 \ V2

is proper if V1 ∪ V2 6= ∅. It is not hard to see that b(M/j) = b(M) \ j and
b(M \ j) = b(M)/j for every j ∈ {1, . . . , n}. In addition, if a matrix is ideal then
so are all its minors (see [7] for further details).

A rank inequality is
∑

i∈M ′

xi ≥ τ(M ′) (1)

associated with a minor M ′ = M \ U . If (1) is a facet of Q∗(M ′), then it is also
a facet of Q∗(M) (see [15]).

In addition, if the rank constraint associated with some minor induces a
facet defining inequality of Q∗(M) then this inequality is also induced by a
minor obtained by deletion (see [1] for further details).



2 Identifying code polyhedra of some split graphs

A graph G = (C ∪ S, E) is a split graph if its node set can be partitioned into
a clique C and a stable set S. Hence, split graphs are closed under taking com-
plements by definition. Moreover, they form the complementary core of chordal
graphs (graphs without chordless cycles of length ≥ 4) since G is a split graph if
and only if G and G are chordal [9]. This is also reflected in terms of forbidden
subgraphs since a graph is a split graph if and only if it is (C4, C4, C5)-free [9]
(note that C5 is self-complementary and that C4 occurs as induced subgraph
in any chordless cycle Ck with k ≥ 6 such that all chordless cycles Ck with
k ≥ 4 are excluded in G as well as in G). The relation between chordal and split
graphs can also be interpreted in terms of intersection graphs: while chordal
graphs are the intersection graphs of distinct subtrees of a tree, split graphs are
the intersection graphs of distinct substars of a star, see e.g. [5].

Our aim is to study identifying codes in split graphs from a polyhedral point
of view. First note that a split graph is identifiable if and only if no two nodes
in C have the same neighbors in S. For instance, a complete split graph (i.e., a
split graph where all edges between C and S are present) is not identifiable as
soon as C contains 2 nodes (as any two nodes in C are true twins).

Next, recall that finding a minimum identifying code in split graphs is NP-
hard [8]. So far, γID(G) is only known for two families: on the one hand, stars
(the complete split graphs G = (C ∪S, E) with |C| = 1) are the only identifiable
complete split graphs and have γID(G) = |S|; on the other hand, split graphs
G = (C ∪ S, E) where every node in S is connected to a distinct 2-node subset
of C have γID(G) of order log(|S|+ |C|), see [8]. The two families show the wide
range of the possible size of minimum identifying codes in split graphs: while
the lowest possible lower bound of log n is attained for the latter, stars achieve
almost the highest possible value n.

Moreover, a split graph is connected if and only if no node in S is isolated.
Every non-connected split graph G contains a connected split graph G′ and a
non-empty subset S′ ⊂ S of isolated nodes, and clearly γID(G) = γID(G′)+ |S′|.

This motivates the study of identifying codes in non-complete, connected
split graphs G. We concentrate on three families of split graphs with a regular
structure. This allows us to benefit from a certain combinatorial structure of the
identifying code clutter CID(G) of G and to draw conclusions for the polyhedra
PID(G) and the identifying code number γID(G) in a similar way as discussed
for families of bipartite graphs in [2, 3]. In particular, note that stars K1,n are
bipartite graphs as well as split graphs. Their identifying code clutter is related
to q-roses Rq

n, 0, 1-matrices with n columns whose rows encode the incidence
vectors of all the q-element subsets of {1, . . . , n}. We have:

Theorem 1 ([2, 3]). For a star K1,n = (V, E) with n ≥ 3, we have

– CID(K1,n) = R2
n+1;

– PID(K1,n) is entirely described by the inequalities x(V ′) ≥ |V | − 1 for all

nonempty subsets V ′ ⊂ V ;

– γID(K1,n) = n.



In this paper, we study three families of split graphs with |S| = |C| ≥ 2
having a regular structure. A headless spider is a split graph G = (C ∪ S, E)
with S = {s1, . . . , sn}, C = {c1, . . . , cn}, and n ≥ 2. In a thin headless spider, si

is adjacent to cj if and only if i = j, and in a thick headless spider, si is adjacent
to cj if and only if i 6= j. It is straightforward to check that the complement of
a thin spider is a thick spider, and vice-versa. Moreover, headless spiders where
si is adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n are called complete suns.

It is easy to see that for n = 2, the path P4 equals the thin and thick
headless spider, whereas the complete sun is not identifiable. For n = 3, the
thin headless spider equals the net, and thick headless spider and complete sun
its complement, the 3-sun. We consider headless spiders with n ≥ 4; Figure 1
illustrates all studied three families for n = 4. The partition (C, S) is called the
spider partition and can be found in linear time [12].

(b)(a) (c)

Fig. 1. (a) thin headless spider, (b) complete sun, (c) thick headless spider.

2.1 Thick headless spiders

For simplicity, we will denote thick headless spiders by their partition and we
will consider that C = {1, . . . , n} and S = {n + 1, . . . , 2n}. Also, E denotes a
matrix with all entries at value one.

Lemma 2. For a thick headless spider G = (C ∪ S, E) with n ≥ 4, we have

CID(G) =

(

Rn−1
n I
0 R2

n

)

.

Proof. Let G = (C ∪S, E) be a thick headless spider. The neighborhood matrix
of G can be written as

N [G] =

(

E Rn−1
n

Rn−1
n I

)

.

Now, in order to find △[G]:
(1) If i, j ∈ C, N [i] △ N [j] = {i + n, j + n}.
(2) If i, j ∈ S, N [i]△N [j] = [{i} ∪ (C − {i − n})] △ [{j} ∪ (C − {j − n})] =

{i, j, i− n, j − n} and is dominated by a row of the case (1).
(3.a) If i ∈ C and j ∈ S, j 6= i+n, N [i]△N [j] = [C ∪ (S −{i+n})]△ [{j}∪

(C −{j −n}) = {j −n}∪ (S −{j, i + n}) and is dominated by a row of the case
(1) as n ≥ 4.



(3.b) If i ∈ C and j = i + n ∈ S, N [i] △ N [j] = [C ∪ (S − {i + n})] △ [{j} ∪
(C − {j − n}) = [C ∪ (S − {i + n})] △ [{i + n} ∪ (C − {i}) = {i} ∪ S and are
dominated by a row of the case (1).

As the first n rows of the matrix N [G] above are also dominated, we have
that the clutter matrix CID(G) can be written as

CID(G) =

(

Rn−1
n I
0 R2

n

)

.

As an immediate consequence, we obtain:

Corollary 1. Let G = (C ∪ S, E) be a thick headless spider. Then,

– PID(G) is full-dimensional.

– The constraint xi ≥ 0 defines a facet of PID(G) for each i ∈ C ∪ S.

– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Observe that τ(I, I) = n. Then if G = (C ∪ S, E) is a thick headless spider,
γID(G) ≥ n. In fact, we have:

Corollary 2. Let G = (C ∪ S, E) be a thick headless spider. Then S is a mini-

mum identifying code and, thus, γID(G) = n.

In [4], the set covering polyhedron Q∗(Rq
n) = conv

{

x ∈ Zn
+ : Rq

nx ≥ 1
}

of
complete q-roses was studied.

Theorem 2 ([4]). Let n ≥ q ≥ 2. A non-Boolean inequality ax ≥ 1 is a facet

defining inequality for Q∗(Rq
n) if and only if ax ≥ 1 can be written as x(As) ≥

|As|−q+1 for some As ⊂ {1, . . . , n} where s ∈ {0, . . . , n−q−1} and |As| = n−s.

As R2
n is a minor of CID(G) obtained from the deletion of the nodes of C,

in the underlying graph G = (C ∪ S, E), we have:

Corollary 3. Let G = (C ∪ S, E) be a thick headless spider. Then, for all

nonempty subsets A ⊂ S, the inequalities x(A) ≥ |A| − 1 are facets of PID(G).

In order to study the remaining facets we need a description of the blocker
of CID(G).

From now on we consider vectors in {0, 1}l+k of the form ei ⊕ fj where ei

for i = 1, . . . , l is the unit vector in {0, 1}l and fj for j = 1, . . . , k is a vector in
{0, 1}k such that (fj)t = 0 if j = t and (fj)t = 1 if j 6= t.

Theorem 3. Let CID(G) be the clutter matrix of a thick headless spider G =
(C ∪ S, E). Every minimal cover x of CID(G)) is minimum. Moreover, either

x = 0⊕ 1 where 0,1 ∈ {0, 1}n or x = ei ⊕ fj where ei, fj ∈ {0, 1}n with i 6= j.

Proof. From Corollary 2, S is a minimum cover of CID(G)).
Now, let x be a minimal cover of CID(G)) such that xj = 0 for some j ∈

{n + 1, . . . , 2n}. It is known that every row of Rn−1
n covers (ei + ej) for every

i, j = 1, . . . , n [4], then any cover x with xn+j = 0 for some j ∈ {n + 1, . . . , 2n}



must be of the form x = y⊕fj with some y ∈ {0, 1}n. In order to cover the rows
of submatrix (Rn−1

n , I) it is enough to consider xi,j = ei ⊕ fj for i, j = 1, . . . , n
and i 6= j. Then |x| = |xi,j | = n for every i, j = 1, . . . , n and i 6= j and they are
all minimum covers.

Now, let v be a cover of CID(G)), with vn+j = 0. Then v = y ⊕ fj and
y ∈ {0, 1}n. But y must be a cover of Rn−1

n , i.e., y = ei + h for some i 6= j and
some h ∈ {0, 1}n. Then y is not minimal.

We can further prove the following:

Corollary 4. If x̄ ∈ R2n is an extreme point of Q(b(CID(G))) such that xi 6= 0
then x̄ = 1

n
1 ∈ R2n.

Proof. From Theorem 3 it follows that every row of b(CID(G)) is either 0 ⊕ 1
where 0,1 ∈ {0, 1}n or ei ⊕ fj for i, j = 1, . . . , n and i 6= j. Then they all
have n ones per row. One can show that there are 2n linearly independent rows.
It follows that if x̄ = 1

n
1 ∈ Rn then it satisfies b(CID(G))x̄ = 1. Hence x̄

is a fractional extreme point of Q(b(CID(G))). Now, if ȳ is an extreme point
of Q(b(CID(G))) with all nonzero components then it must satisfy 2n linearly
independent inequalities of Q(b(CID(G))) at equality. It follows that ȳ = x̄.

Using blocking duality it can be seen that Corollary 4 gives an alternative
proof of γID(G) = n and states that the only facet of PID(G) with full support
is the rank inequality associated with CID(G).

With the help of some technical lemmas, we can further show:

Theorem 4. Let b(CID(G)) be the blocker of the identifying clutter matrix of a

thick headless spider G = (C ∪ S, E). Let x̄ ∈ R2n be a fractional extreme point

of Q(b(CID(G))) such that the set A = {i : x̄i = 0} is nonempty. Then either

1. A ( S and x̄i = 1
n−|A| when i /∈ A or

2. C ( A and |A| ≤ 2(n − 1) and x̄i = 1
|A−C|−1 for all i /∈ A.

As a consequence of Theorem 4 and blocking duality, we conclude:

Corollary 5. Let G = (C ∪ S, E) be a thick headless spider and S′ ⊂ S
nonempty. Then, the inequalities x(C)+x(S′) ≥ n−|S−S′| when 2 ≤ |S′| ≤ n−1
and x(S′) ≥ |S′| − 1 when 2 ≤ |S′| ≤ n are facets of PID(G).

As a consequence of Corollary 5 and Theorem 4, we obtain the main result
of this section:

Corollary 6. Let G = (C ∪S, E) be a thick headless spider. Then, the facets of

PID(G) are:

– the constraint xi ≥ 0 for all i ∈ C ∪ S;

– the constraints CID(G) x ≥ 1;

– the constraints x(C) + x(S′) ≥ n − |S − S′| and x(S′) ≥ |S′| − 1 for every

S′ ⊆ S with 2 ≤ |S′|.



2.2 Thin headless spiders

Lemma 3. For a thin headless spider G = (C ∪ S, E) with n ≥ 4, we have

CID(G) =





I I
0 R2

n

Rn−1
n 0



 .

Proof. Let G = (C ∪ S, E) be a thin headless spider having C = {1, . . . , n} and
S = {n + 1, . . . , 2n}. The neighborhood matrix of (C, S) can be written as

N [G] =

(

E I
I I

)

.

Now, in order to find △[G]:
(1) If i, j ∈ C, N [i] △ N [j] = {i + n, j + n}.
(2) If i, j ∈ S, N [i] △ N [j] = {i, i − n} △ {j, j − n} and are dominated by

N [i].
(3.a) If i ∈ C and j ∈ S, j 6= i+n, N [i]△N [j] = [C ∪{i+n})]△{j, j−n} =

{j, i + n} ∪ (C − {j − n}) is dominated by N[i].
(3.b) If i ∈ C and j = i + n ∈ S, N [i]△N [j] = [C ∪ {i + n})]△ [{i, i + n} =

C − {i}.
As the first n rows of the matrix N above are also dominated, we have that

the clutter matrix CID(G) can be written as

CID(G) =





I I
0 R2

n

Rn−1
n 0



 .

As an immediate consequence, we obtain:

Corollary 7. Let G = (C ∪ S, E) be a thin headless spider. Then,

– PID(G) is full-dimensional.

– The constraint xi ≥ 0 defines a facet of PID(G) for all i ∈ C ∪ S.

– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Observe that τ(I, I) = n. Then if G = (C ∪ S, E) is a thin headless spider,
γID(G) ≥ n. In fact, we have:

Corollary 8. Let G = (C ∪ S, E) be a thin headless spider. Then, γID(G) =
n + 1.

Moreover, we obtain:

Corollary 9. Let G = (C ∪ S, E) be a thin headless spider. Then,

1. the inequalities x(A) ≥ |A| − 1 for all nonempty subsets A ⊂ S are facets of

PID(G),
2. the inequality x(C) ≥ 2 is a facet of PID(G).



Proof. As R2
n is a minor of CID(G) obtained after deletion of the nodes in C, as

a consequence of Theorem 2 we have that the inequalities x(A) ≥ |A| − 1 for all
nonempty subsets A ⊂ S are facets of PID(G).

Also, Rn−1
n is a minor of CID(G) obtained after deletion of the nodes in S,

and again using Theorem 2 we obtain x(C) ≥ 2 as a facet of PID(G).

As an immediate observation the rank inequality x(C, S) ≥ n + 1 is not a
facet of PID(G) since it can be obtained as the sum of the facets x(S) ≥ n − 1
and x(C) ≥ 2.

Based on our computational experience, we conjecture that the identifying
code polyhedra PID(G) of thin headless spiders have rank facets of a special
structure only:

Conjecture 1. Let G = (C, S) be a thin headless spider. Then, the facets of
PID(G) are:

– the constraint xi ≥ 0 for all i ∈ C ∪ S;
– all constraints from CID(G) x ≥ 1;
– the constraint x(C) ≥ 2;
– the constraints x(S′) ≥ |S′| − 1 for all nonempty subsets S′ ⊂ S.

2.3 Complete suns

As third family of headless spiders G = (C ∪ S, E) having a regular structure,
we consider complete suns, where S = {s1, . . . , sn}, C = {c1, . . . , cn} and si is
adjacent to exactly ci and ci+1 for all 1 ≤ i ≤ n (indices are taken modulo n).

In contrary to thin and thick headless spiders whose identifying code clutters
are composed by few q-roses, the identifying code clutters of complete suns have
a more complex structure, involving different combinations of submatrices with
a circular structure, where some submatrices occur for all n ≥ 4, others not
(depending on the parity of n and the size of the graph).

A circulant matrix is a square matrix where each row vector is rotated one
element to the right relative to the preceding row vector. We denote by Ck

n a
matrix in {0, 1}n×n having as first row the vector starting with k 1-entries and
having 0-entries otherwise. Moreover, we denote by Ck+k

n a matrix in {0, 1}n×n

with n ≥ 2k + 2 having as first row the vector starting with k 1-entries, then
having 0-entries, again k 1-entries, and 0-entries otherwise.

Lemma 4. For a complete sun G = (C ∪ S, E) with n ≥ 4, the identifying code

clutter CID(G) is composed by the following submatrices

( C2
n | I ) ∀n ≥ 4

( 0 | C1+1
n ) ∀n ≥ 5

( 0 | C1
n

2

, C1
n

2

) for n = 4

( 0 | C2+2
n ) ∀n ≥ 9

( 0 | C2
n

2

, C2
n

2

) ∀n ≥ 8, n even

( Cn−2
n | I ) ∀n ≥ 4

( C1+1
n | C2

n ) ∀n ≥ 4



where the first part refers to C, the second part of the matrices to S.

Proof. Let G = (C ∪ S, E) be a complete sun. The neighborhood matrix N [G]
of (C, S) is composed from

( E | C2
n ) for N [C],

( C2
n | I ) for N [S].

Thus, only N [S] is in CID(G). In order to find △[G], we distinguish three cases.
Case 1: the symmetric differences between two nodes in C have the form

– N [ci] △ N [ci+1] = {si−1, si+1};
– N [ci] △ N [ci+j ] = {si−1, si, si+j−1, si+j} for 1 < j ≤ n

2 .

For all n ≥ 4, the former symmetric differences remain in CID(G) as submatrix

( 0 | C1+1
n ) ∀n ≥ 5

(but yield for n = 4 not the whole circulant matrix). The latter symmetric
differences are dominated by the former if j = 2, 3. Thus, for each 4 ≤ j ≤ n

2 ,
the symmetric differences N [ci] △ N [ci+j ] remain in CID(G) as submatrix

( 0 | C2+2
n ) ∀n ≥ 9

(but yield for j = n
2 not the whole circulant matrix).

Case 2: the symmetric differences between nodes in C and S have the form

– N [ci] △ N [si] = (C − {ci, ci+1}) ∪ {si−1};
– N [ci] △ N [si−1] = (C − {ci−2, ci−1}) ∪ {si};
– N [ci] △ N [sj ] = (C − {cj−1, cj}) ∪ {si−1, si} for j 6= i, i − 1.

Thus, N [ci]△N [sj] is dominated by N [si] if j 6= i, i−1, and remains in CID(G)
for j = i, i − 1, forming two submatrices of the form

( Cn−2
n | I ) ∀n ≥ 4.

Case 3: the symmetric differences between two nodes in S have the form

– N [si] △ N [si+1] = {ci, ci+2, } ∪ {si, si+1};
– N [si] △ N [sj ] = {ci, ci+1, cj , cj+1} ∪ {si, sj} for j 6= i.

Thus, N [si] △ N [sj] is dominated by N [si] if j 6= i + 1, and remains in CID(G)
for j = i + 1, forming a submatrix of the form

( C1+1
n | C2

n ) ∀n ≥ 4.

This together completely describes the identifying code clutter CID(G).

As an immediate consequence, we obtain:

Corollary 10. Let G = (C ∪ S, E) be a complete sun with n ≥ 4.



– PID(G) is full-dimensional.

– The constraint xv ≥ 0 defines a facet of PID(G) for each v ∈ C ∪ S.

– All constraints from CID(G) x ≥ 1 define facets of PID(G).

Unfortunately, the whole system of facet-defining inequalities for the iden-
tifying code polyhedra PID(G) of complete suns is not easy to describe since
non-rank facets are required for all cases n ≥ 4 (in fact, most facets of PID(G)
are non-rank and involve large coefficients). However, from a careful analysis of
the constraints involved in the identifying code clutter CID(G) of complete suns,
we derive at the following conjecture:

Conjecture 2. For a complete sun G = (C ∪ S, E) with n ≥ 4, the stable set S
is a minimum identifying code.

Note that it is easy to see that S is always an identifying code for a complete
sun G = (C ∪ S, E), since all rows of CID(G) have at least one 1-entry in S.
Hence, γID(G) ≤ |S| = n follows. On the other hand, for some cases, it has
been already verified that S is a minimum identifying code, by generating the
full rank constraint x(C) + x(S) ≥ |S| = n by means of the Chátal-Gomory
procedure. This implies γID(G) ≥ |S| = n, and together equality follows for
these cases. Our goal is to find a general construction of this type for all n ≥ 4.

3 Concluding remarks

The identifying code problem is hard in general and challenging both from a theo-
retical and a computational point of view, even for special graphs like split graphs
[8]. In this paper, we studied three families of split graphs with |S| = |C| ≥ 2
having a regular structure: thin headless spiders, thick headless spiders, and
complete suns. For all three families, we determined the identifying code clutter
and discussed according consequences. In the case of thin and thick spiders G,
CID(G) is composed from certain q-roses. Based on related results from [4, 15],
we could give the complete description of PID(G) for thick spiders, and arrived
at a profound conjecture for thin spiders. For both classes, we found the exact
value for γID(G): |S| for thick spiders and |S| + 1 for thin spiders. It turned
out that the identifying code clutters of complete suns have a more complex
structure involving different circulant matrices and, accordingly, more involved
facets are required to describe PID(G). For this class, we showed γID(G) ≤ |S|
and conjecture that γID(G) = |S| holds. So, all three families seem to have small
minimum identifying codes close to the lower bound of order log(|S| + |C|).

This demonstrates how the polyhedral approach can be applied to find iden-
tifying codes of minimum size for special graphs G, just by determining and
analyzing the identifying code clutter CID(G), even in cases where no complete
description of PID(G) is known yet.

As future lines of research, we plan to apply similar and more advanced
techniques to obtain either the identifying code of minimum size or strong lower
bounds stemming from linear relaxations of the identifying code polyhedron,



enhanced by suitable cutting planes. For that, note that facets associated with
deletion minors of CID(G) remain facets in PID(G), so according facets identified
for special graphs are relevant for every graph having such subgraphs.
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