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Combinatorial optimization: The interplay of
graph theory, linear and integer programming
illustrated on network flow

Annegret K. Wagler

Abstract Combinatorial Optimization is one of the fields in mathematics with an
impressive development in recent years, driven by demands from applications where
discrete models play a role. Here, we intend to give a comprehensive overview of
basic methods and paradigms, in particular the beautiful interplay of methods from
graph theory, geometry, linear and integer programming related to combinatorial
optimization problems. To understand the underlying framework and the interrela-
tionships more clearly, we illustrate the theoretical results and methods with the help
of flows in networks as running example. This includes on the one hand a combi-
natorial algorithm for finding a maximum flow in a network, combinatorial duality
and the Max Flow/Min Cut-Theorem as one of the fundamental combinatorial min-
max relations. On the other hand, we discuss solving the network flow problem as
linear program with the help of the Simplex Method, linear programming duality
and the dual program for network flow. Finally, we address theproblem of integer
network flows, ideal formulations for integer linear programs and consequences for
the network flow problem.

1 Introductory remarks on Combinatorial Optimization

Combinatorial optimization problems occur in a great variety of contexts in science,
engineering and management. All such problems have the goalto find the best of
something. In mathematical terms, this is expressed with the help of anobjective
function:

max or minc(x), x ∈ Rn.
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In practical settings, finding the best of something typically includes someside con-
straints. In mathematical terms, this can be expressed with the help of some func-
tion(s) f : Rn → R. The functions involve certainvariablesx ∈ Rn. This leads to the
following classical optimization problem:

max or minc(x)

subject tof1(x) ≤ b1

...
...

...

fk(x) ≤ bk

x ∈ Rn

The pointsx ∈ Rn satisfying all side constraintsf (x) ≤ b are calledfeasible. The
set of all feasible points is called thefeasible regionof the optimization problem. If
all side constraints are linear functions, the above optimization problem is a linear
program and the feasible region is a convex set, which allowsto solve the problem
in polynomial time.

If the studied objects are entities as workers, planes,... which cannot be divided, it
is necessary to use integral variablesx ∈ Zn or decision variablesx ∈ {0,1}n which
makes the corresponding integer linear programs computationally more demanding.

This is typically the case for combinatorial optimization problems, where the
goal is to search for an optimum object in a finite collection of certain objects.
Hereby, the objects have a concise representation within a discrete structure (like a
graph or a network), but their number is huge such that scanning all objects to select
the best one among them is not an option. The aim of Combinatorial Optimization
is to find more efficient solution methods.

The first step towards solving a problem is always to build a mathematical model:
it helps to correctly formalize the problem, that is, to decide which conditions are
crucial to describe the problem, and how to formalize them appropriately. This can
reveal relationships by gaining structural insight of the problem, for instance in
terms of bounds for the objective function value arising from dual combinatorial
objects. The second step is to develop methods for finding a feasible solution, and
to certify optimality (without knowing the optimal solution before). In addition, it
is important to study the complexity of the problem, that is,to answer the question
how hard or easy the studied problem is.

In this chapter, we shall discuss how to model and solve combinatorial optimiza-
tion problems, illustrated with the help of the well-studied network flow problem as
running example.

Problem 1 (Network Flow Problem). Find a maximal flow, that is, transport the
maximal amount of certain goods (or water, electricity, cars, ...), through a given
transportation network (consisting of pipelines, streets, etc.).

In Section 2, we first address the Network Flow Problem from a combinatorial
point of view. This includes to model the problem with the help of an appropriate
discrete structure (a network) and the studied combinatorial objects therein (a flow).
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We discuss combinatorial duality and the Max Flow/Min Cut-Theorem as one
of the fundamental combinatorial min-max relations. Moreover, we present Ford-
Fulkersons’s combinatorial algorithm for finding a maximumflow in a network.

In Section 3, we introduce linear programs and show how to formulate the Net-
work Flow Problem in this context. Next, we discuss the geometry of the feasible
region of linear programs and its impact on solving linear programs with the help
of the Simplex Method. Furthermore, we address linear programming duality and
consider the dual program for network flow.

Finally, in Section 4, we introduce integer linear programs, linear programming
relaxations for integer linear programs and ways to strengthen them. We conclude
with the problem of integer network flows, discuss ideal formulations for integer
linear programs related to totally unimodular matrices, and consequences for the
network flow problem.

2 A combinatorial algorithm for network flow

The combinatorial formulation of the Network Flow Problem involves both an ap-
propriate discrete structure to model the input of that problem and a combinatorial
object therein to describe the desired output:

• Model:construct a directed graph with transportation ways (pipes, streets, ...) as
directed arcs, their crossing points (connections, swivelvalves, ...) as nodes, and
arc weights as capacities;

• Task:find a maximal flow through the network (respecting the arc capacities).

We first introduce the underlying discrete structures. For that, consider adigraph
D = (V,A) with node setV and arc setA where each arca = (u,v) ∈ V ×V is an
ordered pair. We say thata = (u,v) is the arcoutgoingfrom u andingoingto v and
denote by

δ−(v) = {a∈ A : a = (u,v)}
the set of arcs ingoing tov and by

δ+(v) = {a∈ A : a = (v,u)}

the set of arcs outgoing fromv. A directed pathis a subgraph ofD with (distinct)
nodesv1, . . . ,vk ∈V and (exactly) the arcs(vi ,vi+1) ∈ A for 1≤ i < k, and is called
(v1,vk)-path if it linksv1 with vk. Figure 1 shows a digraph with a directed path.

x z

s

w t
y

Fig. 1 A digraph with a directed path (induced by the black nodes andthe dashed arcs).
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A digraph together with a source/sink pair and arc capacities becomes a network
(see Figure 2). More formally:

Definition 1. We callN = (D;s,t;c) a networkif D = (V,A) is a digraph with two
specified nodes, a sources∈V with δ−(s) = /0 and a sinkt ∈V with δ+(t) = /0, and
arc capacitiesca for all a∈ A.
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Fig. 2 A network consisting of a digraph with sources, sink t and arc capacities.

Networks are the studied combinatorial structures to modelflows therein:

Definition 2. For a networkN = (D;s,t;c) with digraphD = (V,A), an(s,t)-flow is
a function f : A→ N0 satisfying

• capacity constraints 0≤ f (a) ≤ ca for all arcsa∈ A, and
• flow conservation constraints(δ f )(v) = ∑a∈δ−(v) f (a)−∑a∈δ+(v) f (a) = 0 for

all nodesv∈V \ {s,t}.

We denote by
val( f ) := ∑

a∈δ−(t)

f (a) = ∑
a∈δ+(s)

f (a)

the value of the(s,t)-flow f . For illustration, Figure 3 shows a network with an
(s,t)-flow f and its valueval( f ).

2/
1/

6
3

7

9

2
5

3
4/5

2/

2/

3/1/13/

3/
1/1

w

s

x

t
y

z

Fig. 3 A network with (s, t)-flow f of valueval( f ) = 8 (on each arca ∈ A, its flow value and
capacity are indicated byf (a)/ca).

This enables us to combinatorially formulate the Network Flow Problem:

Problem 2 (Maximum Network Flow Problem (Combinatorial For mulation)).
Given a networkN = (D;s,t;c) with digraphD = (V,A), find an(s,t)-flow f : A→
N0 with maximal valueval( f ).
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The existence of an(s,t)-flow in a given networkN = (D;s,t;c) is ensured as
soon as there exists an(s,t)-path in the underlying digraphD (which can be easily
checked with the help of Breadth First Search techniques starting in s). We will next
address the question whether and how we can find an upper boundfor its possible
value (without knowing the optimum before). For that, we look for the combinatorial
structure in a digraph being dual to flows.

Definition 3. Let N = (D;s,t;c) be a network with digraphD = (V,A). An (s,t)-cut
(Vs,Vt) is a partitionV = Vs∪Vt of V into subsetsVs andVt = V \Vs with s∈Vs and
t ∈Vt .

The capacity of an(s,t)-cut (Vs,Vt) is

c(Vs,Vt) = ∑
u∈Vs,v∈Vt

c(u,v),

see Figure 4 for illustration.
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Fig. 4 A network with an(s, t)-cutVs = {s,x,y}, Vt = {t,w,z} and capacityc(Vs,Vt ) = 24 (as sum
of the capacities of all forward arcs crossing the dashed line).

Let N = (D;s,t;c) be a network with digraphD = (V,A) and consider an(s,t)-
flow f as well as an(s,t)-cut (Vs,Vt) in N. The flow across the(s,t)-cut (Vs,Vt)
is

f (Vs,Vt) = ∑
u∈Vs,v∈Vt

f ((u,v))− ∑
u∈Vs,v∈Vt

f ((v,u)).

Obviously,val( f ) ≤ c(Vs,Vt) holds for any(s,t)-cut in a network. We even have:

Theorem 1 (Max-Flow Min-Cut Theorem (Ford & Fulkerson [16]) ). For any
network N= (D;s,t;c) with digraph D= (V,A) and s6= t ∈V, we have

max{val( f ) : f (s,t)-flow in N} = min{c(Vs,Vt) : (Vs,Vt) (s,t)-cut in N}.

The Max-Flow Min-Cut Theorem is one of the fundamental theorems in Com-
binatorial Optimization. It ensures that the minimum capacity of all (s,t)-cuts in a
network always equals the maximum value of an(s,t)-flow. The next question is
how to construct such a maximum flow in a network. To state the corresponding
combinatorial algorithm, we first have to introduce the following notions.

Definition 4. Let N = (D;s,t;c) be a network with digraphD = (V,A), f an(s,t)-
flow, andP = {s= v0,v1, . . . ,vk = t} an (undirected)(s,t)-path.
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• The residual capacity of an arca of P is

∆ f (a) = ca− f (a) if a = (vi ,vi+1) is a forward arc,
∆ f (a) = f (a) if a = (vi+1,vi) is a backward arc.

• The residual capacity of the pathP is

∆ f (P) = min{∆ f (a) : a arc ofP}
andP is called f -augmenting pathif ∆ f (P) > 0.

Finding f -augmenting paths can be done with Breadth First Search techniques
starting ins, where a nodeu is considered as “neighbor” of the active nodev if there
is an arca with ∆ f (a) > 0 linking v andu (or u andv), see Figure 5.
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Fig. 5 A network with(s, t)-flow f and augmenting(s, t)-pathP with residual capacity∆ f (P) = 1
(resulting as minimum value of the residual capacities of its arcs).

With the help of anf -augmenting path, we can increase the value off as follows:

Lemma 1. Let P be an f -augmenting(s,t)-path in a network N with(s,t)-flow f .
There exists an(s,t)-flow f′ in N with val( f ′) = val( f )+ ∆ f (P). We obtain f′ by
modifying f on the arcs of P as follows:

f ′(a) = f (a) + ∆ f (a) for any forward arc a of P,
f ′(a) = f (a) − ∆ f (a) for any backward arc a of P.

For illustration, Figure 6 showsf and the resulting flowf ′ after augmentation
using thef -augmenting path from Figure 5.

f(P) = 1∆
val(f) = 7 val(f’) = 8
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Fig. 6 A network with a(s, t)-flow f and the flowf ′ obtained by augmentation.
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This augmentation can be repeated until no further augmenting path for the cur-
rent flow can be found. An optimally criterion from [16] guarantees that this leads
indeed to the studied maximum flow:

Theorem 2 (Ford & Fulkerson [16]). An (s,t)-flow f in a network N= (D;s,t;c)
has maximal value if and only if there is no f -augmenting(s,t)-path in N.

Therefore, we arrived at the following combinatorial algorithm for computing
maximum flows due to Ford & Fulkerson [16]:

Max-Flow Algorithm (Ford & Fulkerson [16])
Input: DigraphD = (V,A) with arc weightsc∈ Z|A|

+ , sources∈V, sink t ∈V.

Output: Maximum(s,t)-flow f .

STEP 1:Initialize f with f (a) := 0 for all arcsa∈ A.

STEP 2:Find an f -augmenting pathP.
IF such a pathP exists:

Augment f by
f (a) := f (a) + ∆ f (a) if a is a forward arc ofP,
f (a) := f (a) − ∆ f (a) if a is a backward arc ofP.

Iterate STEP 2.
ELSE STOP.

Remark.
• The Max-Flow Algorithm by Ford & Fulkerson [16] terminates correctly due to

the characterization of maximum flows by augmenting paths (Theorem 2). Note
that at this final step, the algorithm finds the shoreVs of an(s,t)-cut (Vs,Vt) such
that all arcs outgoing fromVs are saturated as the capacity of this cut equals the
value of the current flow which, therefore, cannot be improved further. Hence,
the capacity of this(s,t)-cut gives a certificate for the maximality of the obtained
flow.

• In the worst case, the algorithm performsval( f ∗) augmentation steps using
each time anf -augmenting pathP with ∆ f (P) = 1, where f ∗ is a maximum
flow. Finding an augmenting path and augmenting the flow in STEP 2 takes
O(|V|+ |A|) time. Theoverall running timeof the Max-Flow Algorithm is there-
foreO(val( f ∗) · (|V|+ |A|)).

• A variant of the Max-Flow Algorithm by Edmonds & Karp [13] determines in
STEP 2 an augmenting path of minimal combinatorial length byBreadth First
Search techniques. It terminates after|V| · (|A|+1) augmentations and haspoly-
nomialrunning timeO(|V| · |A|2).

An example how to perform the Max-Flow Algorithm is presented in Figure 7. More
information on network flows can be found in [17, 27].
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Fig. 7 The Max-Flow Algorithm starts with a flowf with f (a) := 0 for all a∈ A. For each current
flow f , a Breadth First Search is performed that, starting ins, adds a nodeu as neighbor of the
active nodev if there is an arca with ∆ f (a) > 0 linking v andu (or u andv), until t is reached.
This results in a uniquef -augmenting pathP and f is augmented alongP to f ′. The procedure
is repeated until no augmenting path can be found anymore since the Breadth First Search tree
consists in one shoreVs of a (s, t)-cut (Vs,Vt) where all arcs outgoing fromVs are saturated.

3 Solving network flow by linear programming techniques

”From an economic point of view, Linear Programming has beenthe most impor-
tant mathematical development in the 20th century.” Martin Grötschel



Combinatorial optimization illustrated on network flow 9

In this section we discuss the following questions about Linear Programming:

• What is a linear program and how it is possible to model a real problem (for
instance network flow) as linear program?

• How does the feasible region of a linear program look from a geometric point of
view?

• What are the consequences for solution techniques for Linear Programming?

3.1 Modeling a problem as a linear program

We first address the question what a linear program is.

Definition 5. A linear program (LP)is as follows:
Maximize/Minimize the value of cTx
among all vectorsx ∈ Rn satisfying A x ≤ b

x ≥ 0 (optional)
whereA∈ Rm×n is a given constraint matrix,b ∈ Rm a given right hand side vector,
andc∈ Rn a given objective function vector.

We illustrate this formal definition with the help of a small example:

Example 1.This example shows a linear program given explicitly as wellas in ma-
trix formulation:

max x1 +x2 is the linear objective functioncTx
s.t. −x1 +x2 ≤ 1

x1 ≤ 3 form the linear constraintsAx ≤ b
x2 ≤ 2

x1,x2 ≥ 0 are the non-negativity constraintsx ≥ 0

Figure 8 gives the graphical interpretation of the constraints and the feasible region,
i.e. the set of all feasible solutionsx ∈ Rn

+ satisfyingA x ≤ b.

− x  + x   < 11 2

x  < 31x  > 01
x   > 02

x   < 22

feasible

solutions

Fig. 8 The graphical interpretation of the constraints and the feasible region (the shaded region)
of the linear program given in Example 1.
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We next discuss the reformulation of the Network Flow Problem as linear pro-
gram. Given a networkN = (D;s,t;c) with D = (V,A), the problem of finding an
(s,t)-flow f : A→ R maximizing the valueval( f ) can be encoded as follows:

• the required variables arexa to express the flowf (a) on each arca∈ A;
• the objective function is max∑a∈δ+(s) xa to maximize the flow leaving the source

s (or, equivalently, max∑a∈δ−(t) xa as flow entering the sinkt);
• the flow conservation constraints read as∑a∈δ−(v)xa =∑a∈δ+(v)xa ∀v∈V \{s,t};
• the capacity constraints lead toxa ≤ ca ∀a∈ A;
• in addition, non-negativityxa ≥ 0 ∀a∈ A is required for all variables.

Thus, the Maximum Network Flow Problem of finding an(s,t)-flow f : A → R
maximizing the valueval( f ) reads as linear program:

Problem 3 (Maximum Network Flow Problem (LP Formulation)). Given a net-
work N = (D;s,t;c) with digraphD = (V,A), solve the following linear program:

max ∑a∈δ+(s) xa

s.t. ∑a∈δ−(v) xa = ∑a∈δ+(v) xa ∀v∈V \ {s,t}
xa ≤ ca ∀a∈ A
xa ≥ 0 ∀a∈ A

Indeed, every vectorx ∈ RA satisfying all the above constraints corresponds to
a valid (s,t)-flow f , an optimal solution of this linear program corresponds to a
maximal flow.

Example 2.The Maximum Network Flow Problem with the network from Figure 2
reads as explicit linear program:

max xsw +xsx +xsy

s.t. xsw −xwt −xwy = 0
xsx −xxy −xxz = 0

xsy +xwy +xxy −xyt −xyz = 0
xxz +xyz −xzt = 0

xsw ≤ 6
xsx ≤ 5

xsy ≤ 3
xwt ≤ 3

xwy ≤ 1
xxy ≤ 1

xxz ≤ 2
xyt ≤ 7

xyz ≤ 9
xzt ≤ 5

xsw, xsx, xsy, xwt, xwy, xxy, xxz, xyt, xyz, xzt, ≥ 0
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3.2 Geometry of the feasible region

For a given linear program

maxcTx s.t. Ax ≤ b, x ≥ 0

the task is to find one vectorx maximizing the objective function value within the
feasible region described by the constraint systemAx ≤ b, x ≥ 0. In general, a lin-
ear program can have the following sets of optimal solutions: a unique optimum,
infinitely many optima, or no optimal solutions at all due to infeasibility or un-
boundedness, see Figure 9.

cc c

infinitely many optimaunique optimum no optimum

Fig. 9 The different situations for sets of optimal solutions of a feasible linear program: a unique
optimum, infinitely many optima, or no optimal solution due to unboundedness (in all cases, the
feasible region of the linear program is shaded and the arrows indicate the direction of the objective
function vector).

In particular, whenever an optimal solution exist for a linear program, it is at-
tained at the boundary of its feasible region. This is a central issue for Linear Pro-
gramming (see, e.g. [26] for a proof):

Theorem 3 (Linear Programming Theorem).If a linear program has a (bounded)
optimal solution, then there exists an ”extremal” point on the boundary of the fea-
sible region which is optimal.

Hence, as a first step towards finding an optimal solution, we shall describe the
feasible region of a linear program more formally and study its boundary (in partic-
ular the extremal points). For that, we need to introduce thefollowing notations.

Let x1, . . . ,xk ∈ Rn be points andλ1, . . . ,λk ∈ R+ with ∑i≤k λi = 1. The point
x = ∑i≤k λixi ∈ Rn is aconvex combinationof x1, . . . ,xk. A setC⊆ Rn is convexif
for any two pointsx,x′ ∈C, also any of their convex combinations

λx+(1−λ )x′,λ ∈ (0,1)

belongs toC. For a subsetD ⊆ Rn, its convex hullconv(D) consists of all points in
Rn being a convex combination of points inD.

A subsetC0 ⊆C of a convex setC⊆ Rn is anextremal setif C0 is convex, for all
x,x′ ∈C andλ ∈ (0,1) with λx+(1−λ )x′ ∈C0, we havex,x′ ∈C0. Note that the
empty set andC itself are trivial extremal sets ofC. Special extremal sets areextreme
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pointsin C which cannot be obtained as proper convex combination of some other
points inC, see Figure 10 for examples.

Fig. 10 Extremal sets of convex sets.

It turns out that the feasible regions of linear programs arespecial convex sets:
Fora∈ Rn andb∈ R, the set

•
{

x ∈ Rn : aTx = b
}

is ahyperplaneof Rn,
•

{

x ∈ Rn : aTx ≤ b
}

is aclosed half-spaceof Rn.

A polyhedron P⊆ Rn is the intersection of finitely many closed half-spaces and/or
hyperplanes inRn. A bounded polyhedron is calledpolytope.

Every polyhedron is a convex set, as hyperplanes and half-spaces are convex, and
the intersection of convex sets yields a convex set again.

The dimension dim(P) of a polyhedronP ⊆ Rn is the smallest dimension of
an affine subspace containingP, or the largestd for which P contains points
x0,x1, . . . ,xd s.t. the vectorsx0−x1, . . . ,x0−xd are linearly independent.

The extremal sets of a polyhedronP are calledfaces, and in particular faces of
dimension

• 0 are extreme points,
• 1 are edges,
• dim(P)−1 are facets.

Figure 11 illustrates different faces of a polytope.

facet

edge

extreme point

Fig. 11 A polytope and different extremal sets (of dimension 0, 1 and2).

A bounded polyhedron, i.e. a polytope, has besides its description as intersection
of finitely many closed half-spaces and/or hyperplanes a second representation [24,
28]:

Theorem 4 (Weyl-Minkowski Theorem). A bounded polyhedron is the convex
hull of its extreme points.
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ForA∈ Rm×n andb ∈ Rm as constraint matrix and right hand side vector, let

P(A,b) = {x ∈ Rn : Ax ≤ b}

denote the polyhedron defined by the corresponding half-spacesAi· ≤ bi or hyper-
planesA j · = b j . We can characterize its extreme points as follows (see, e.g. [26] for
a proof):

Theorem 5.For a polyhedron P= P(A,b) ⊆ Rn andx⋆ ∈ P, the following asser-
tions are equivalent:

• x⋆ is an extreme point of P;
• {x⋆} is a0-dimensional face of P;
• x⋆ is not a convex combination of other points in P;
• P\ {x⋆} is still convex;
• ∃c∈ Rn\ {0} s.t.x⋆ is unique optimum ofmaxcTx, x ∈ P.

The drawback of the above characterization is that none of the conditions char-
acterizingx⋆ as an extreme point is easy to check. This changes in the special
case where the studied polyhedron is given by hyperplanes only. For A ∈ Rm×n

andb ∈ Rm, let
P=(A,b) = {x ∈ Rn : Ax = b} .

Then we have the following (see, e.g. [26] for a proof):

Theorem 6.For a polyhedron P= P=(A,b) ⊆ Rn andx⋆ ∈ P, the following asser-
tions are equivalent:

• x⋆ is an extreme point of P;
• The columns A· j of A with j∈ supp(x⋆) are linearly independent.

As extreme points of the feasible regionP of a linear program are crucial and can
be easily detected ifP is of the special formP=(A,b), we consider linear programs
given in the so-calledequational form:

maxcTx s.t. Ax = b
x ≥ 0

Remark:

• Linear programs in equational form are also called linear programs given in stan-
dard form.

• Note that any linear program can be transformed into equational form, namely,
by introducing so-calledslack variablesy ∈ Rm:

maxcTx s.t. Ax ≤ b ⇒ maxcTx s.t. Ax+ y = b
x ≥ 0 x, y ≥ 0

• For linear programs in equational form, we assume that the equation systemAx =
b has at least one solution (i.e. thatP=(A,b) 6= /0 holds), and that the rows of the
matrixA are linearly independent (i.e. no redundant constraints occur).
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We are interested in special feasible solution of a linear program:

Definition 6. A basic feasible solutionof the linear program in equational form

maxcTx s.t. Ax = b
x ≥ 0

with A∈ Rm×n,b ∈ Rm is a feasible solutionx⋆ ∈ Rn for which there exists anm-
element subsetB ⊆ {1, . . . ,n}s.t. the (square) matrixAB is non-singular (i.e., the
columns ofA indexed byB are linearly independent), andx⋆

j = 0 for all j /∈ B.

Example 3.The vectorx⋆ = (0,2,0,1,0) is a basic feasible solution of the equation
system

x1 + 5x2 + 3x3 + 4x4 + 6x5 = 14
x2 + 3x3 + 5x4 + 6x5 = 7

with B = {2,4}.

In fact, basic feasible solutions are crucial for Linear Programming due to the
following reason:

Theorem 7.Consider a linear program in equational form:

maxcTx s.t. Ax = b, x ≥ 0.

• If there is at least one feasible solution and the objective function is bounded
from above on P=(A,b)∩Rn

+, then there always exists an optimal solution.
• If an optimal solution exists, then there is also abasicfeasible solution which is

optimal.

In addition, basic feasible solutions are easy to detect:

Theorem 8.A feasible solutionx of a linear programmaxcTx s.t. Ax = b, x ≥ 0 is
basicif and only if the columns of the matrix AK are linearly independent, where

K =
{

j ∈ {1, . . . ,n} : x j > 0
}

.

This opens the possibility to solve linear programs with thehelp of basic feasible
solutions.

A rather naive approach to solve linear programs would be: For a given linear
program maxcTx s.t. Ax = b, x ≥ 0,

• find all extreme points ofP=(A,b), i.e., all basic feasible solutions (there are at
most

(m
n

)

if A∈ Rm×n).
• select the best one among them (i.e. thisx with cTx maximal).

Is there a more clever idea to solve linear programs?
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3.3 The Simplex Method for solving linear programs

Given a matrixA∈ Rm×n and vectorsb ∈ Rm,c∈ Rn, consider the linear program

maxcTx s.t. Ax ≤ b
x ≥ 0.

To solve the linear program with the help of the Simplex Method, one takes advan-
tage of the following previously stated results: If a linearprogram has a bounded
optimal solution, then there exists anextreme pointon the boundary of the feasi-
ble region which is optimal (Main Theorem of Linear Programming). For a linear
program given inequational form

maxcTx s.t. Ax = b, x ≥ 0

we have even more:

• If P=(A,b) is non-empty and bounded, thereexistsalways an optimal solution.
• Among all optimal solutions, there is always abasicfeasible solution.
• Basic feasible solutions are easy to detect: A feasible solution x is basic if and

only if the columns of the matrixAB are linearly independent, where

B =
{

j ∈ {1, . . . ,n} : x j > 0
}

.

The idea of the Simplex Method is to start with an arbitrary basic feasible solution
and, as long as the current solution is not optimal, to move toa ”neighbored” basic
feasible solution with a better objective function value.

We first shall illustrate this method with the help of an introductory example (the
linear program from Example 1) before stating it formally.

Example 4.Given the following linear program:

max x1 +x2

s.t. −x1 +x2 ≤ 1
x1 ≤ 3

x2 ≤ 2
x1,x2 ≥ 0

As the linear program is not in equational form, we have to transform it by intro-
ducingslack variablesin order to turn the inequalities into equations. The resulting
equational form of the above linear program (with slack variables in bold) is:

max x1 + x2

s.t. −x1 + x2 + x3 = 1
x1 + x4 = 3

x2 + x5 = 2
x1 , x2 , x3 , x4 , x5 ≥ 0
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From the linear program in equational form, we easily getx0 = (0,0,1,3,2)T as
initial basic feasible solutionby taking the slack variables as basisB0 = {3,4,5}
and the original variables as non-basisN0 = {1,2}.

We next rewrite the linear program as so-calledsimplex tableau, having the basic
variables as left hand side (in bold) and an additional row for the objective function
valuez= cTx:

x3 = 1 + x1 − x2

x4 = 3 − x1

x5 = 2 − x2

z = x1 + x2

Considering the simplex tableau associated withx0 = (0,0,1,3,2)T , we obviously
havez= 0 as objective function value.

In order to improvez, we can increase the value ofx1 or x2, w.l.o.g. sayx2 (keep-
ing x1 = 0). How much depends on the tableau and the non-negativity constraints:
from x3 = 1+x1−x2, x1,x2,x3 ≥ 0 we inferx2 ≤ 1, fromx5 = 2−x2 andx2,x5 ≥ 0
we inferx2 ≤ 2. Together, we conclude thatx2 = 1 is possible.

We update the tableau accordingly by rewriting the first row (to havex2 as left
hand side) and substituting this expression forx2 in the other rows. The resulting
tableau (with changes in bold) is

x2 = 1 + x1 − x3
x4 = 3 − x1

x5 = 1 − x1 + x3

z = 1 + 2x1 − x3

associated with the basic feasible solutionx1 = (0,1,0,3,1)T , B1 = {2,4,5} and
with objective function valuez= 1.

Improvingz further is possible by increasing the value ofx1 only (as increasing
x3 would decreasez).

From the tableau and non-negativity constraints we see thatno restriction comes
from x2 = 1+ x1− x3, the second rowx4 = 3− x1 andx1,x4 ≥ 0 showx1 ≤ 3, but
x5 = 1−x1+x3 andx1,x3,x5 ≥ 0 result inx1 ≤ 1. Hence,x1 = 1 is possible.

We update the tableau accordingly by rewriting the third row(to havex1 as left
hand side) and substituting this expression forx1 in the other rows. We get the new
tableau (with changes in bold)

x2 = 2 − x5
x4 = 2 + x5 − x3
x1 = 1 − x5 + x3

z = 3 − 2x5 + x3

associated withx2 = (1,2,0,2,0)T , B2 = {1,2,4} andz= 3.
Now, improvingz is possible only by increasing the value ofx3 (as increasingx5

would decreasez). From the tableau and non-negativity we see thatx4 = 2+x5−x3
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andx3,x4,x5 ≥ 0 result inx3 ≤ 2, while the rowx1 = 1− x5 + x3 does not restrict
the value ofx3. Hence,x3 = 2 is possible.

We update the tableau accordingly by rewriting the second row (to havex3 as left
hand side) and substituting this expression forx3 in the other rows. The resulting
tableau (again with changes in bold) is

x2 = 2 − x5

x3 = 2 + x5 − x4
x1 = 3 + 0 − x4

z = 5 − x5 − x4

associated withx3 = (3,2,2,0,0)T , B3 = {1,2,3} andz = 5. In this situation, we
cannot increase a non-basic variable further without decreasingz (asx5 andx4 ap-
pear with negative signs).

So, we are stuck. Butx3 is theoptimal solution: Any feasible solutioñx with
cT x̃ = z̃has to satisfy

z̃= 5− x̃5− x̃4

which impliesz̃≤ 5 (together with non-negativity). Hence,x3 is optimal!
In fact,x3 is the unique optimal solution (asz= 5 requiresx4 = x5 = 0 and the

equations uniquely determine the values ofx1,x2 andx3).
The geometric interpretation is as follows (see Figure 12):Starting with the ini-

tial basic feasible solutionx0 = (0,0) (in the original variables only), the simplex
method moves along the edges of the feasible region from one basic feasible solution
to another, while the objective function value grows until it reaches the optimum.

− x  + x   < 11 2

x  < 31x  > 01
x   > 02

x   < 22

1

x

x

2

x3

0x

Fig. 12 The geometric interpretation of the basis exchanges performed in Example 4.

The previous example illustrated the solution method for linear programs found
by Dantzig [7] (see also [8, 9]), now we state it formally:
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The Simplex Method (Dantzig [7])
Input: a matrixA ∈ Rm×n and vectorsb ∈ Rm,c ∈ Rn, defining a linear program
maxcTx s.t. Ax ≤ b,x ≥ 0

Output:a vectorx∗ maximizing the objective function

1. Transform the program into equational form (if necessary).
2. Find an initial basic feasible solutionx0 ∈ Rn and the corresponding basisB0 ⊆

{1, . . . ,n} s.t.AB0 is non-singular andx0
j = 0∀ j /∈ B0.

Generate the corresponding simplex tableauT(B0).
3. Move from one basic feasible solutionxi with basisBi to a basic feasible solution

xi+1 with basisBi+1 and higher objective function value by selectingj ∈ Bi and
ℓ ∈ {1, . . . ,n}\Bi and settingBi+1 := Bi \ { j}∪{ℓ} s.t.c(xi+1) ≥ c(xi) holds.

4. Stop if no further improvement is possible.

We will next discuss all the necessary steps of the Simplex Method in detail.

STEP 1 (Transformation).As we need linear programs given in equational form

maxcTx s.t. Ax = b, x ≥ 0,

inequalities and variables without sign restrictions are disturbing and the following
transformation becomes necessary: If the given (in)equality system has a

• row Ai·x ≤ bi , introduce aslack variable xn+i ≥ 0 and replace the row by

Ai·x + xn+i = bi

• row A j ·x ≥ b j , introduce aslack variable xn+ j ≥ 0 and replace the row by

−A j ·x + xn+ j = − b j

• variablexℓ without sign restriction, introduce two new variablesyℓ ≥0 andzℓ ≥ 0,
and substitutexℓ everywhere byyℓ−zℓ.

After applying an according transformation, the original linear program is in equa-
tional form, as required for the next step.

STEP 2 (Initial basic feasible solution).Consider a linear program in equational
form. We distinguish the following two cases.

If the original linear program was given in inequality form maxcTx s.t. Ax ≤
b,x ≥ 0, then the transformation in STEP 1 into equational form withthe help of
slack variablesxn+1, . . . ,xn+m yields

maxcTx s.t. Ax = b
x ≥ 0

with A= (A, I) andx = (x1, . . . ,xn,xn+1, . . . ,xn+m). By the structure ofA, an obvious
basic feasible solution of the transformed linear program is
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x0 =

(

0
b

)

with basisB0 = {xn+1, . . . ,xn+m} (i.e. containing all slack variables).
If the linear program is already given in equational form maxcTx s.t. Ax =

b, x ≥ 0, there is no obvious initial basic feasible solution (asx = 0 is infeasible if
b 6= 0). For each row ofAx = b, we introduce anauxiliary variable xn+i = bi −AT

i·x
and find values forx1, . . . ,xn s.t. xn+i = 0 holds for all 1≤ i ≤ m by solving the
auxiliary linear program ALP

max− ∑
i≤m

xn+i s.t. Ax = b, x ≥ 0

with A = (A, I) andx = (x1, . . . ,xn, . . . ,xn+1, . . . ,xn+m) if b ≥ 0 (otherwise, we mul-
tiply the equations withbi < 0 by−1). This works, since we have:

Lemma 2. The original linear program is feasible if and only if every optimal so-
lution x of ALP satisfies xn+1 = . . . = xn+m = 0. For any such optimal solution,
its basic vectorxB = (x1 . . . ,xn) is a basic feasible solution of the original linear
program.

Thesimplex tableau T(B0) determined byB0 is a system ofm+ 1 linear equa-
tions in variablesx1, . . . ,xn andz that has the same set of solutions as the original
systemAx = b, z= cTx. In matrix notation,T(B0) reads as

xB0 = b − AxN

z = z0 + cTxN

wherexB0 is the vector of basic variables,xN the vector of non-basic variables and
N = {1, . . . ,n}\B0, andb ∈ Rm, c∈ Rn−m, A∈ Rm×(n−m), z0 ∈ R.

This always works, since we have in general:

Lemma 3. For each feasible basis B, there exists exactly one simplex tableau T(B)

xB = b − AxN

z = z0 − cTxN

with A = A−1
B AN, b = A−1

B b, c = cN − (cT
BA−1

B AB)T and z0 = cT
BA−1

B b.

For theinitial basic feasible solutionx0, we often haveAB0 = I which simplifies
the construction of the first tableau by

A = AN,b = b,c = cN − (cT
BAN)T andz0 = cT

Bb.

Note that from any tableauT(B), we can read off immediately the basic feasible
solutionx0 by

x0
i = bi ∀i ∈ B andx0

i = 0 ∀i ∈ N,
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and the objective function valuecTx0 = z0 = z0 +cT0.

STEP 3 (Basis exchanges).In each basis exchange (calledpivot step) of the Sim-
plex Method, we go from the current basisB and its tableauT(B) to a new basisB′

and its tableauT(B′). Thereby, a nonbasic variablexℓ with ℓ ∈ N = {1, . . . ,n} \B
has to be exchanged by a basic variablexk with k ∈ B in order to obtain the new
basis

B′ = (B\ {k})∪{ℓ} .

We say thatxk leavesthe basis andxℓ entersthe basis. This leads to the following
questions:

• Which conditions havexk andxℓ to satisfy?
• How to select them if there is no unique choice?
• How to obtain the new tableauT(B′)?

We first discuss the conditions for entering and leaving variables. A nonbasic vari-
ablexℓ with ℓ ∈ N may enter the basis if and only if its coefficientcℓ in the last row
of the tableauT(B)

xB = b − A xN

z = z0 + cTxN

is positive, i.e., if cT
ℓ > 0 holds (as only incrementing such non-basic variables can

increase the valuezof the objective function). For chosenxℓ with ℓ ∈ N, the leaving
basic variable must correspond to a row of the tableau which limits the increment of
xℓ most strictly:

• All nonbasic variablesxi with i ∈ N\{ℓ} should remain zero, hence thej-th row
of the tableau together with non-negativity yields

x j = bj −ajℓxℓ ≥ 0.

• If ajℓ ≤ 0, this inequality does not restrict the increase ofxℓ in any way.

• For anyajℓ > 0, we havexℓ ≤ b j
a jℓ

.

Thus, we can choosexk with akℓ > 0 and bk
akℓ

minimal.
This leads to the following fundamental theorem which in addition shows how to

detect two exceptional cases:unboundedness(i.e. the case where the linear program
does not have a finite optimal solution) anddegeneracy(i.e. the case whereseveral
bases correspond to asinglebasic feasible solution). In degenerate basic feasible
solutions, some basic variables are zero: e.g., for the basic feasible solutionx0 =
(0,0,0,2)T , the following bases

B = {1,4} or B′ = {2,4} or B′′ = {3,4}

are possible.

Theorem 9 (Basis Exchange Theorem).Let x be a basic feasible solution with
basis B and simplex tableau T(B)
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xB = b − A xN

z = z0 + cTxN

and letℓ ∈ N withcℓ > 0. Then we have the following:

• If A·ℓ ≤ 0, then the linear program is unbounded.
• If A·ℓ 6≤ 0, we get a new basis B′ = (B\ {k})∪{ℓ} where k∈ B with akℓ > 0 and

bk

akℓ
= min

{

b j

ajℓ
: j ∈ B, ajℓ > 0

}

.

• If B is non-degenerate (asxB = b > 0), thencTx′ > cTx holds wherex′ is the
basic feasible solution associated with the new basis B′.

Remark. The geometric view may illustrate the basis exchanges. Basic feasible
solutions correspond to extreme points of the polyhedronP=(A,b). Pivot steps (i.e.
basis exchanges) of the Simplex Method move from one extremepoint to another
along an edge (i.e. an 1-dimensional face) of the polyhedron:

cc

redundant

Fig. 13 Basis exchanges in the non-degenerate and in the degeneratecase.

Exceptions aredegeneratepivot-steps, where we stay at the same extreme point
x0 as only the feasible basis changes. Possible reasons are superfluous variables or
redundant inequalities (whose removal resolves degeneracy) or geometric reasons
(e.g. that more than dim(P=(A,b)) hyperplanes meet inx0). The resulting difficulty
is so-calledcycling:

• If degeneracy occurs, longer runs of degenerate bases exchanges (without im-
provement in the objective function value) may be necessary.

• It may even happen that some tableau isrepeatedin a sequence of degenerate
exchange steps (called cycling) s.t. the algorithm passes through aninfinite se-
quence of tableaux and, thus, fails.

To finish a basis exchange, updating the simplex tableau according to the new
basis is required. For the new basisB′, one can calculate the new tableauT(B′)

xB′ = b − A xN′

z = z0 + cTxN′
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by A = A−1
B′ AN′ , b = A−1

B′ b, c = cN′ − (cT
B′ A−1

B′ AN′)T , z0 = cT
B′ A−1

B′ b from the origi-
nal matrixA and the vectorsb andc.

In computer implementations of the Simplex Method, however, this is never done
(as it is inefficient). Note that for the next basis exchange,we only need the vector
c (to select the next entering variableℓ ∈ N′ with cℓ > 0), and for the chosenℓ ∈ N′,
the columnA·ℓ and the vectorb (to find the next leaving variablek ∈ B′). For that,
the matrixA−1

B′ is computed (which is required to calculate all needed entries). This
procedure is known asRevised Simplex Algorithm, see [10].

Step 4 (Testing for Optimality) The Simplex Method stops if an optimal solution
is found. To detect this situation, we have the followingoptimality criterionof a
simplex tableau:

Lemma 4. Consider a feasible basis B and its simplex tableau T(B)

xB = b − A xN

z = z0 + cTxN

If the basic feasible solutionx0 corresponding to B is non-degenerate (i.e., ifb > 0),
then we have:x0 is the optimal solution if and only ifc≤ 0.

Indeed,x0 =
(b

0

)

has the objective function value equal toz0, while for any other
feasible solutioñx, we havẽxN ≥ 0 andcT x̃ = z0 +cT x̃N ≤ z0 (by c≤ 0).

It is left to discuss the efficiency of the Simplex Method and pivoting. The num-
ber of pivot steps (i.e. basis exchanges) for solving a linear program by the Simplex
Method strongly depends on the choices which variables should leave or enter the
basis: Figure 14 shows an example where, starting from an initial basic feasible
solution, the optimal solution could be reached in three or two steps.

Fig. 14 Different basis exchanges towards the optimal solution.

We do not know in advance which choices will be good if there are several possi-
bilities of improving variables(i.e. nonbasic variablesx j with j ∈N from the current
tableau withc j > 0). We denote the index set of the improving variables byN+.

A pivot rule is a rule how to select the entering variable among the improving
ones (some rules also specify the choice of the leaving variable, if necessary).
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Some well-known pivot rules are:

• Largest Coefficient Rule: choose an improving variablexℓ such thatcℓ =
max

{

c j : j ∈ N+
}

(to maximize the improvement ofzper unit increase ofxℓ)
• Largest Increase Rule:choose an improving variable that yields the maximal

improvement inz (this rule is computationally more expensive, but locally max-
imizes the progress)

• Steepest Edge Rule:choose an improving variable maximizing the value

cT(xnew−xold)

||xnew−xold||

(to move the current basic feasible solution into a direction closest to the one of
the objective functionc)

• Bland’s Rule: choose the improving variablexℓ with the smallest indexℓ ∈ N+;
if there are several possibilities for the leaving variable, also take the one with
the smallest index.

The Largest Coefficient Rule is the original rule by Dantzig [8], whereas the Steepest
Edge Rule is the champion in practice, and Bland’s rule is particularly important,
since we have:

Theorem 10 (Bland [4]).The Simplex Method with Bland’s rule is always finite, as
cycling is impossible.

Using other pivot rules, the Simplex Method may cycle (and theoretically, this is
the only possibility how it may fail). In fact, for (almost) all pivot rules, there are
worst case examples known that require an exponential number of pivot steps (e.g.
for Dantzig’s rule one inn variables and inequalities requiring 2n − 1 pivot steps
by Klee & Minty [23]). Note that in practice, most implementations of the Simplex
Method try to circumvent cycling via different perturbation techniques.

In theory, the best known worst case bound for the running time of the Simplex
Method is, therefore,ec

√
nlnn for linear programs withn variables and constraints,

using a simple randomized pivot rule (randomly permute the indices of the variables,
then apply Bland’s rule).

In practice, however, the Simplex Method performs very satisfactory even for
large linear programs. Computational experiments indicate that it reaches, for linear
programs withm equations, an optimal solution in something between 2m and 3m
pivot steps, with about O(m2) arithmetic operations per pivot step, such that the
expected running timeis about O(m3).

3.4 Linear Programming Duality

In this subsection, we address the problem to obtain bounds for the objective func-
tion value of a linear program, e.g. an upper bound for the value of an optimal
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solution of a maximization problem, without knowing the optimum before. To this
end, we shall start with an introductory example.

Example.Consider the following linear program:

max 2x1+3x2

s.t. 4x1+8x2 ≤ 12
2x1+ x2 ≤ 3
x1 , x2 ≥ 0

Without computing the optimumz∗, we can infer from the first inequality and non-
negativity thatz∗ ≤ 12 holds as

2x1 +3x2 ≤ 4x1 +8x2 ≤ 12.

We obtain a better bound by scaling the inequality by a factor2:

2x1 +3x2 ≤ 2x1+4x2 ≤ 6.

Adding the two inequalities and scaling by a factor 3 even yields:

2x1 +3x2 ≤ 2x1+3x2 ≤ 5.

How good can a so-obtainedupper bound u≥ cTx for all feasible solutionsx of the
studied linear program be? To answer this question, we shallderive an inequality of
the formd1x1+d2x2 ≤ u, whered1 ≥ 2, d2 ≥ 3, andu is as small as possible. Then,
for all x1,x2 ≥ 0, we indeed have

2x1 +3x2 ≤ d1x1 +d2x2 ≤ u.

For that, we combine the two inequalities of the linear program with some non-
negative coefficientsy1 andy2, obtain

(4y1 +2y2)x1 +(8y1+y2)x2 ≤ 12y1+3y2.

and infer thatd1 = 4y1+2y2, d2 = 8y1+y2, andu= 12y1+3y2 holds. For choosing
the best coefficientsd1 andd2, we must ensured1 ≥ 2, d2 ≥ 3 andu being minimal
under these constraints. This leads to

min 12y1+3y2

s.t. 4y1+2y2 ≥ 2
8y1+ y2 ≥ 3
y1 , y2 ≥ 0

the linear program beingdual to the original linear program we started with. Every
of its feasible solutions yields an upper bound for the objective function value of the
original (primal) linear program.
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We now shall formalize this process. Given a matrixA∈ Rm×n and vectorsb ∈
Rm,c∈ Rn. Consider theprimal linear program (P)

max cTx
s.t. Ax ≤ b

x ≥ 0.

To determine an upper boundu≥ cTx for all x∈P(A,b), combine them inequalities
of Ax ≤ b with non-negative coefficientsy1, . . . ,ym s.t. the resulting inequality has
the jth coefficient at leastc j , for 1 ≤ j ≤ m, the right hand side is as small as
possible. This leads to thedual linear program (D)

min bTy
s.t. ATy ≥ c

y ≥ 0.

The primal and the dual linear program are related as follows:

Theorem 11 (Weak Duality Theorem).Consider the dual linear programs

maxcTx s.t. Ax ≤ b, x ≥ 0 (P)
min bTy s.t. ATy ≥ c, y ≥ 0 (D)

• For each feasible solutiony of (D), the valuebTy provides anupper boundfor
the maximum objective function value of (P), i.e., we havecTx ≤ bTy for each
feasible solutionx of (P).

• If (P) is unbounded, then (D) is infeasible.
• If (D) is unbounded (from below), then (P) is infeasible.

Theorem 12 (Strong Duality Theorem).For the dual linear programs

maxcTx s.t. Ax ≤ b, x ≥ 0 (P)
min bTy s.t. ATy ≥ c, y ≥ 0 (D)

exactly one of the following possibilities occurs:

• Neither (P) nor (D) has a feasible solution.
• (P) is unbounded and (D) has no feasible solution.
• (P) has no feasible solution and (D) is unbounded.
• Both (P) and (D) have a feasible solution. Then both linear programs have an

optimal solution, sayx∗ of (P) andy∗ of (D), andcTx∗ = bTy∗ holds.

Proofs of the two duality theorems can be found in [26], for instance.

The two duality theorems are valid for all kinds of linear programs, we only have
to construct the dual program properly: For a maximization problem with constraint
matrix A∈ Rm×n, right hand side vectorb ∈ Rm, objective vectorc∈ Rn, the dual
program has
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• variablesy1, . . . ,ym whereyi corresponds to theith constraint and satisfies

yi







≥ 0
≤ 0
∈ R







if Ai·x







≤
≥
=







bi

• n constraints, where thejth constraint corresponds tox j and reads

A· jy







≥
≤
=







c j if x j







≥ 0
≤ 0
∈ R







• the objective functionbTy which is to be minimized.

We can summarize these conditions as the following “Dualization Recipe”:

Primal linear programDual linear program

Variables x1,x2, . . . ,xn y1,y2, . . . ,ym

Matrix A∈ Rm×n AT ∈ Rn×m

Right-hand side b ∈ Rm c∈ Rn

Objective function maxcTx minbTy

Constraints ith constraint has≤ yi ≥ 0
≥ yi ≤ 0
= yi ∈ R

x j ≥ 0 jth constraint has≥
x j ≤ 0 ≤
x j ∈ R =

The implications for the solvability of two dual linear programs are due to the
Farkas Lemma [14, 15] (see also [26] for a proof):

Theorem 13 (Farkas Lemma).For A∈ Rm×n andb ∈ Rm, exactly one of the fol-
lowing two possibilities occurs:

1. There is a vectorx ∈ Rn satisfying Ax = b andx ≥ 0.
2. There is a vectory ∈ Rm s.t.yTA≥ 0T andyTb < 0.

Remark. The Farkas Lemma has several variants for the different types of linear
programs, which can be summarized as follows:
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The systemAx ≤ b The systemAx = b

has a solution y ≥ 0 andyTA ≥ 0 yTA ≥ 0T implies
x ≥ 0 if and only if imply yTb ≥ 0 thatyTb ≥ 0

has a solution y ≥ 0 andyTA = 0 yTA = 0T implies
x ∈ R if and only if imply yTb ≥ 0 thatyTb = 0

That is: if the primal and the dual linear program are neitherinfeasible nor un-
bounded, then the maximum of the primal program (P) equals the minimum of the
dual program (D).

This leads to duality-based Simplex Methods to solve a linear program: the Dual
Simplex Method and so-called primal-dual methods:

• To solve a linear program, we can apply the Simplex Method either to the primal
linear program or to its dual linear program. TheDual Simplex Methodsolves
the dual linear program by starting with a dual feasible basis and trying to at-
tain primal feasibility while maintaining dual feasibility throughout. This can be
substantially faster if

– the dual linear program has less constraints than the primal linear program, or
– an initial (dual) basic feasible solution is easy to obtain, or
– the dual linear program is less degenerate.

• Primal-Dual Methodssolve a linear program by iteratively improving a feasible
solution of the dual linear program:

– Consider a primal linear program given by maxcTx s.t. Ax = b, x ≥ 0.
– For a feasible dual solutiony, defineJ = { j ∈ {1, . . . ,n} : A· jy = c j}.
– A dual solutiony is optimal if and only if there is a feasible primal solutionx

with
x j = 0 ∀ j ∈ {1, . . . ,n} \ J.

In addition to the aforementioned relations between primaland the dual linear
programs, we have even more: If a primal linear program is a formulation for a
combinatorial optimization problem, then its dual linear program has also an in-
terpretation as a combinatorial optimization problem, related to the combinatorial
object being dual to the original studied one.

We shall illustrate this relation with the help of our running example, the Network
Flow Problem.

Example 5 (Dualization of Maximum Network Flow).Given a networkN = (D;s,t;c)
with digraphD = (V,A) and capacitiesc∈ ZA. Recall from Problem 3 that the linear
programming formulation of the Maximum Network Flow Problem is:
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max ∑a∈δ+(s) xa

s.t. ∑a∈δ−(v) xa = ∑a∈δ+(v) xa ∀v∈V \ {s,t}
xa ≤ ca ∀a∈ A
xa ≥ 0 ∀a∈ A

With V ′ = V \ {s,t} denoting the set of internal nodes of the digraph, let

• F ∈ ZA×V′
be the matrix of the flow conservation constraints,

• d ∈ ZA with da = 1 if a∈ δ+(s), da = 0 otherwise be the objective vector.

Then theprimal linear program (P)encoding the Maximum Flow Problem reads in
matrix notation:

max dTx
s.t. F x = 0

I x ≤ c
x ≥ 0

For the dualization, we use one variable

• zv for the flow conservation constraint ofv∈V ′,
• ya for the capacity constraint ofa∈ A.

This leads to the followingdual linear program (D)

min cTy
s.t. FTz+ ITy ≥ d

y ≥ 0

A closer look to the dual program shows that the dual program has

• one variablezv ∈ R corresponding to the flow conservation for eachv∈V ′:

x(δ−(v))−x(δ+(v)) = 0

• one variableya ≥ 0 corresponding to the capacity constraint for eacha∈ A,
• for each primal variablexa,a∈ A, one constraintF·a z+ I·a y ≥ da which reads,

for a = (u,v) ∈ A
zv− zu+ ya ≥ 0 if u 6= s,v 6= t
zv + ya ≥ 1 if u = s,v 6= t
− zu+ ya ≥ 0 if u 6= s,v = t

• the objective functioncTy which is to be minimized.

What is the combinatorial interpretation of the dual program? For a network
N = (D;s,t;c) with D = (V,A), consider the dual program
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min cTy
s.t. zv−zu+ ya ≥ 0 ∀ a = (u,v) ∈ A

zs = 1
zt = 0

ya ≥ 0 ∀ a = (u,v) ∈ A

Recall that for a partition ofV = Vs∪Vt with s∈ Vs andt ∈ Vt , the subset of arcs
δ+(Vs) = {(u,v)∈A : u∈Vs,v∈Vt} is an(s,t)-cut. Hence, each(s,t)-cutδ+(Vs) of
a networkN = (D;s,t;c) with D = (V,A) corresponds to a feasible solution(z,y)T ∈
RV′×RA

+ of the dual program with

zv = 1 if v∈Vs, zu = 0 if u∈Vt

ya = 1 if a∈ δ+(Vs), ya = 0 if a 6∈ δ+(Vs).

Recall further that theflowacross the(s,t)-cut (Vs,Vt) is

f (Vs,Vt) = ∑
u∈Vs,v∈Vt

f (uv)− ∑
u∈Vs,v∈Vt

f (vu)

and itscapacityis
c(Vs,Vt) = ∑

u∈Vs,v∈Vt

c(uv).

Obviously,val( f ) ≤ c(Vs,Vt) holds for any(s,t)-cut. We have even more: Since ev-
ery (s,t)-flow f satisfies the capacity constraints, we have thatf (Vs,Vt) ≤ c(Vs,Vt)
and thus

val( f ) ≤ c(Vs,Vt)

holds for any(s,t)-cut. This upper bound for the maximum flow in a network also
follows from the Weak Duality Theorem (Theorem 11), and the Max-Flow Min-
Cut Theorem (Theorem 1), is a famous special case of the Strong Duality Theorem
(Theorem 12), which implies:

max dTx = min cTy
s.t. F x = 0 s.t. FTz+ ITy ≥ d

I x ≤ c y ≥ 0
x ≥ 0

In particular, the linear programming formulation for Maximum Network Flow
from Problem 3 is the “right” formulation as it does not only properly encode the
primal problem, but also its dual linear program has an interpretation as a Minimum
Cut Problem, the combinatorial problem being dual to the original studied Network
Flow Problem.
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4 Integer Programming and the Network Flow Problem

In the previous section, we considered a linear program, i.e. the problem to

maximize/minimize the value of cTx
among all vectorsx ∈ Rn satisfying A x ≤ b

x ≥ 0

whereA∈ Rm×n is a given matrix andb ∈ Rm,c∈ Rn are given vectors.
If in some practical settings, the studied objects are entities as workers, goods or

planes which cannot be divided, we do not consider variablesx ∈ Rn but x ∈ Zn.
This leads to anInteger Linear Optimization Problem. In this section we discuss

• how linear programs and integer linear programs are related,
• why integer linear programs are hard to solve in general, and
• what is special for solving Integer Network Flow Problems.

4.1 Integer linear programs and their linear relaxations

We first address the question what an integer linear program is.

Definition 7. An integer linear program (ILP)is as follows:
maximize/minimize the value of cTx
among all vectorsx ∈ Zn satisfying A x ≤ b

x ≥ 0
whereA∈ Rm×n is a given constraint matrix,b ∈ Rm a given right hand side vector,
andc∈ Rn a given objective function vector (typically, also the entries ofA,b,c are
integral in this case).

We illustrate this formal definition with the help of a small example:

Example 6.This example shows an integer linear program given explicitly as well
as in matrix formulation:

max x1 +x2 is the linear objective functioncTx
s.t. −x1 +x2 ≤ 1

x1 ≤ 3 form the linear constraintsAx ≤ b
x2 ≤ 2

x1,x2 ≥ 0 are the non-negativity constraintsx ≥ 0
x1,x2 ∈ Z are the integrality constraintsx ∈ Z2

Figure 15 gives the graphical interpretation of the constraints and the resulting poly-
hedronP(A,b).

In an integer linear program
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− x  + x   < 11 2

x  < 31x  > 01
x   > 02

x   < 22

Fig. 15 The graphical interpretation of the constraints and the polyhedronP(A,b) (the shaded
region) containing the feasible solutionsx ∈ Z2 of the integer linear program given in Example 6.

maxcTx,Ax ≤ b,x ∈ Zn

we still have a linear objective function, and the side constraintsATx ≤ b are linear
and describe a polyhedronP(A,b), but the feasible points are just thelattice points
x ∈ P(A,b)∩Zn.

In particular and in contrast to the case of Linear Programming, an optimal so-
lution of an integer linear program is not necessarily attained on the boundary of
P(A,b), but may be situated in its interior. Figure 16(a) illustrats the case where
none of the extreme points ofP(A,b) is integral.

(a) (b)

Fig. 16 The feasible points of an integer linear program (a) and a linear constraint system for the
convex hull of all its integral solutions (b).

This makes the problem hard in general (see, for instance, [22] for a proof and
[3, 20, 25, 26, 27] for further information):

Theorem 14.It is NP-hard to decide whether an integer linear program hasa solu-
tion above/below a certain threshold.

In contrary, the corresponding linear program obtained by dropping the integral-
ity requirement, can be solved in polynomial time. How are linear and integer linear
programs related to each other?

Definition 8. For an integer linear program

maxcTx,Ax ≤ b,x ∈ Zn
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the linear program
maxcTx,Ax ≤ b,x ∈ Rn

obtained by dropping the integrality requirements is called a linear relaxationas its
feasible regionP(A,b) contains all integral feasible pointsx ∈ P(A,b)∩Zn of the
corresponding integer linear program.

The linear relaxation can be solved in polynomial time, but its optimal solution
might be fractional and, thus, no solution of the corresponding integer linear pro-
gram.

However, the convex hull of all integral solutions of an integer linear program
is a polyhedron and, thus, can be described by means of linearinequalities, see
Figure 16(b). Thus, in principle there exists a constraint system for each integer
linear program, called ideal formulation, such that the feasible region has integral
extreme points only:

Definition 9. For an integer linear program

maxcTx,Ax ≤ b,x ∈ Zn

a linear program
maxcTx,Ax ≤ b,x ∈ Rn

is anideal formulationif

P(A,b) = {x ∈ Rn
+ : Ax ≤ b} = conv{x ∈ Zn

+ : Ax ≤ b}.

As the optimum of a linear program is always attained at an extreme point of
P(A,b), linear programming techniques can be applied to solve integer linear pro-
grams given as ideal formulations! This leads topolynomial time solvability, pro-
vided that the required inequalities can be separated in polynomial time (i.e., that it
can be checked efficiently whether a given point satisfies allinequalities or violates
some of them; for instance, this is the case if the ideal formulation contains only a
polynomial number of constraints).

In general, finding an ideal formulation for an integer linear program is as hard as
solving the problem itself. In some special cases, however,certain properties related
to the underlying combinatorial problem can lead to the desired situation, e.g. if the
constraint matrixA of the integer linear program has a special structure. We will
next define such a type of matrices.

Definition 10.
• A matrix A ∈ Zm×n of full row rank is unimodularif the determinant of each

basis ofA is in {−1,1}.
• A matrix A∈ Zm×n is totally unimodularif the determinant of each square sub-

matrix of A is in {−1,0,1}.

Remark. Unimodular and totally unimodularmatrices must have entries in{−1,0,1}
only. A matrixA∈ Zm×n is totally unimodular if and only if
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• (A, I) is totally unimodular;
• AT is totally unimodular.

The following matricesA, AT , (AT , I) are examples of totally unimodular matrices:

(

1 1 0
1 0 1

)





1 1
1 0
0 1









1 1 1 0 0
1 0 0 1 0
0 1 0 0 1





Recall that a polyhedron is integral if all its extreme points are integral. The
relation of unimodularity and the integrality of polyhedracoming from integer pro-
gramming formulations is as follows (see [21] for the proof and [3, 20, 25, 26, 27]
for further information):

Theorem 15.Consider a matrix A∈ Zm×n.

• For A with full row rank, P=(A,b) =
{

x ∈ Rn
+ : Ax = b

}

is integral for all right
hand side vectorsb ∈ Zm with P=(A,b) 6= /0 if and only if A has full row rank
and is unimodular.

• P (A,b) =
{

x ∈ Rn
+ : Ax ≤ b

}

is integral for all right hand side vectorsb∈ Zm

with P (A,b) 6= /0 if and only if A is totally unimodular.

Remark. The proof of the latter theorem is based onCramer’s rule: For a non-
singular matrixA∈ Rn×n andb ∈ Zn, we have

Ax = b ⇐⇒ x = A−1b ⇐⇒ xi =
det(Ai)

det(A)

whereAi is obtained fromA by replacing thei-th column byb. From det(A) ∈
{−1,1} for totally unimodular matrices, it followsxi ∈ Z.

Thus, all integer linear programs with (totally) unimodular constraint matrices
have an integral polyhedron as the convex hull of its feasible solutions and can be
solved with the help of linear programming techniques.

However, as the hardness of solving integer linear programsimplies, we do not
always have totally unimodular constraint matrices. A moregeneral setting involves
Linear Programming Duality:

Definition 11. A systemAx ≤ b of linear inequalities istotally dual integral (TDI)
if the linear program

minbTy s.t.ATy = c, y ≥ 0

has an integral optimal solution for every integral vectorc such that maxcTx,Ax≤ b
is bounded.

Note thatA is totally unimodular if and only if the systemAx≤ b, x≥ 0 is totally
dual integral forall integral vectorsb.

Also the concept of totally dual integrality, introduced byEdmonds & Giles [12],
is related to the integrality of polyhedra:
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Theorem 16.If the system Ax ≤ b is totally dual integral, A∈ Rm×n andb ∈ Rm,
then we have:

• The primal problem
maxcTx s.t. Ax ≤ b

has an integral optimal solution for allc∈ Zn;
• The polytope

P(A,b) = {x ∈ Rn : Ax ≤ b}
is integral.

To summarize: Ideal formulations follow the idea to go back to linear programs
in order to solve integer linear programs.

In fact, we can apply linear programming techniques and solve an integer linear
program in polynomial time in one of the following situations: the canonical integer
linear programming formulationA x ≤ b, x ≥ 0 is

• idealasP(A,b) is integral;
• not ideal, but the constraint systemA x ≤ b, x ≥ 0 with P(A,b) = conv{x ∈ Zn

+ :
A x ≤ b} is easy to find by adding (polynomially many) further constraints;

• not ideal in general, but is ideal for somespecial caseswhere additional combi-
natorial properties are satisfied.

Note that ideal formulations for integer linear programs typically involve a much
larger number of constraints than compact formulations using integrality require-
ments (which makes the separation problem harder).

For most integer optimization problems, no ideal formulation is known at all.
In this general situation, one might start from a canonical integer linear program
A x ≤ b, x ≥ 0 and try to find hyperplanes approximating conv{x ∈ Zn

+ : A x ≤ b}
at the “right place” (i.e. near the optimal solution as illustrated in Figure 17).

Such approaches to enhance the original formulation are called cutting plane
methodsand work as follows:

Generic Cutting Plane Method
Input: an integer linear program (ILP) maxcTx,Ax ≤ b,x ∈ Zn

Output:an optimal integer solutionx∗

1. Solve the linear relaxation (LP) maxcTx,Ax ≤ b,x ∈ Rn.
If P(A,b) is empty, then the ILP is also infeasible, and STOP.
Else, letx∗ be an optimal (extreme point) solution of the LP.

2. If x∗ is integral, then STOP becausex∗ is also optimal for the ILP.
3. If x∗ is not integral, then find an inequality that is satisfied by all feasible solu-

tions of the ILP, but is violated byx∗.
4. Append this inequality (thecutting plane) to the LP, and proceed with Step 1.

A classical way to generate new valid inequalities from the known constraints in
Ax≤ b are so-called Chvátal-Gomory cuts, introduced by Chvátal [5] and implicitly
by Gomory [19].
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Fig. 17 The feasible points of an integer linear program and additional linear constraints (cutting
planes) approximating the convex hull of all its integral solutions.

For any polyhedronP(A,b), let PI (A,b) denote the convex hull of all integer
points inP(A,b). If ∑aixi ≤ b is a valid inequality forP(A,b) and has integer co-
efficients only, then∑aixi ≤ ⌊b⌋ is a Chvátal-Gomory cut forP(A,b) and valid
for PI (A,b). In fact, every valid inequality for the convex hull of all integral so-
lutions can be generated by applying the Chvátal-Gomory procedure (i.e., adding
all Chvátal-Gomory cuts) toP(A,b) a finite number of times. This guarantees that
cutting plane methods indeed terminate.

It is a currently active field of research to find more efficientcutting planes than
the classical ones, as e.g. split cuts, intersection cuts and others [1, 2, 6, 11].

For more information on Integer Programming, see e.g. [3, 20, 25, 26, 27].

4.2 Computing integer network flows

We finally discuss the Integer Network Flow Problem. Given a network N =
(D;s,t;c) with D = (V,A), the problem of finding an integral(s,t)-flow f : A→ Z
maximizing the valueval( f ). In order to formulate this problem as integer linear
program, we again need

• the variablesxa to express the flowf (a) on each arca∈ A,
• the linear objective function max∑a∈δ+(s) xa of maximizing the flow leaving the

sources,
• the linear flow conservation constraints∑a∈δ−(v)xa =∑a∈δ+(v)xa ∀v∈V \{s,t},
• the linear capacity constraintsxa ≤ ca ∀a∈ A,

and in addition,integrality is required for all variables:

xa ∈ Z ∀a∈ A.

Thus, the problem of finding an integral(s,t)-flow f : A → Z of maximal value
val( f ) leads to:

Problem 4 (Integer Maximum Network Flow Problem). Given a networkN =
(D;s,t;c) with digraphD = (V,A). Finding an(s,t)-flow f : A→ Z maximizing the



36 Annegret K. Wagler

valueval( f ) by solving the following integer linear program:

max ∑a∈δ+(s) xa

s.t. ∑a∈δ−(v) xa = ∑a∈δ+(v) xa ∀v∈V \ {s,t}
xa ≤ ca ∀a∈ A
xa ≥ 0 ∀a∈ A
xa ∈ Z ∀a∈ A

With V ′ = V \ {s,t} denoting the set of internal nodes of the digraph, let again

• F ∈ ZA×V′
be the matrix of the flow conservation constraints,

• d ∈ ZA with da = 1 if a∈ δ+(s), da = 0 otherwise be the objective vector.

Then the program encoding the Integer Maximum Network Flow Problem reads in
matrix notation:

max dTx
s.t. F x = 0

I x ≤ c
x ∈ ZA

+

Indeed, every vectorx ∈ ZA satisfying all the above constraints corresponds to
an integral(s,t)-flow f , an optimal solution to a maximum flow. How hard or easy
is it to compute a maximum flow as optimal solution of the aboveinteger linear
program?

As integer linear programs are hard to solve in general, thisleads to the question
whether we can find an ideal formulation by taking advantage of special combina-
torial properties of the underlying Network Flow Problem.

Recalling that all integer linear programs with (totally) unimodular constraint
matrices have an integral polyhedron as the convex hull of its feasible solutions, we
wonder whether the constraint matrices for the Network FlowProblem satisfy this
property.

Indeed, one example for unimodularity are node/arc incidence matrices of di-
graphs, the underlying discrete structure for the networksof our flow problem:

Theorem 17.The node/arc incidence matrix of any digraph D= (V,A) is totally
unimodular.

The proof of the latter theorem is based on the following characterization of
totally unimodular matrices:

Theorem 18.A matrix M∈ Zm×n is totally unimodular if and only if each subset
I ⊆{1, . . . ,n} of columns has a bipartition I= IA∪ IB s.t. for all rows j∈ {1, . . . ,m},
we have∑i∈IA mji −∑i∈IB mji ∈ {−1,0,1}.

Thus, we shall study how our constraint matrix is related to this property.

In fact, for a networkN = (D;s,t;c) with digraphD = (V,A), the flow conserva-
tion matrixF ∈ ZV ′×A has one row for each of the constraints



Combinatorial optimization illustrated on network flow 37

∑
a∈δ−(v)

xa− ∑
a∈δ+(v)

xa = 0 ∀v∈V ′ = V \ {s,t}.

The column ofF for arca = (u,v) ∈ A reads as follows:

...... ... ...

... ... ...

...
...

...

F =
1

−1

u

v

a

Hence,F is the node/arc incidence matrix of a digraph and, thus indeed totally
unimodular. As adding the identity matrixI to a totally unimodular matrix yields
again a totally unimodular matrix, this implies:

Corollary 1. The Maximum Network Flow Problem

max dTx
s.t. F x = 0

I x ≤ c, x ≥ 0

has for all integral capacitiesc∈ ZA
+ an integral optimum.

As a matrix is totally unimodular if and only if its transposed matrix is totally
unimodular, it follows for the dual linear program:

Corollary 2. The Minimum Cut Problem

min cTy
s.t. FTz+ ITy ≥ d

y ≥ 0

has for all integral vectorsd ∈ ZA
+ an integral optimum.

To conclude: the latter results form an example par excellence in the field of so-
called Polyhedral Combinatorics, a powerful, coherent andunifying tool for Combi-
natorial Optimization, involving algorithms, the geometry of solution sets and min-
max relations with dual problems. The studied Network Flow Problem demonstrates
that these aspects are closely related in general:

”Often a polynomial-time algorithm yields, as a by-product, a description (in terms
of inequalities) of an associated polyhedron. Conversely,an appropriate description
of the polyhedron often implies the polynomial-time solvability of the associated
optimization problem, by applying linear programming techniques. With the duality
theorem of linear programming, polyhedral characterizations yield min-max rela-
tions, and vice versa.” Alexander Schrijver
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