N

N

Combinatorial Optimization: The Interplay of Graph
Theory, Linear and Integer Programming Illustrated on
Network Flow

Annegret K Wagler

» To cite this version:

Annegret K Wagler. Combinatorial Optimization: The Interplay of Graph Theory, Linear and Integer
Programming Illustrated on Network Flow. Large Scale Networks in Engineering and Life Sciences,
P. Benner et al. (eds.), Birkhauser, pp.225-262, 2014. hal-02045730

HAL Id: hal-02045730
https://hal.science/hal-02045730v1
Submitted on 22 Feb 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02045730v1
https://hal.archives-ouvertes.fr

Combinatorial optimization: The interplay of
graph theory, linear and integer programming
illustrated on network flow

Annegret K. Wagler

Abstract Combinatorial Optimization is one of the fields in mathemsitvith an
impressive developmentin recent years, driven by demaodsdpplications where
discrete models play a role. Here, we intend to give a congrelie overview of
basic methods and paradigms, in particular the beautifeiptay of methods from
graph theory, geometry, linear and integer programmingteel to combinatorial
optimization problems. To understand the underlying fraomi and the interrela-
tionships more clearly, we illustrate the theoretical tssand methods with the help
of flows in networks as running example. This includes on the loand a combi-
natorial algorithm for finding a maximum flow in a network, cbimatorial duality
and the Max Flow/Min Cut-Theorem as one of the fundamentalinatorial min-
max relations. On the other hand, we discuss solving thearktflow problem as
linear program with the help of the Simplex Method, lineangmamming duality
and the dual program for network flow. Finally, we addressgfablem of integer
network flows, ideal formulations for integer linear prograand consequences for
the network flow problem.

1 Introductory remarks on Combinatorial Optimization

Combinatorial optimization problems occur in a great vigragf contexts in science,
engineering and management. All such problems have thetgdiad the best of
something. In mathematical terms, this is expressed wighhtdlp of anobjective
function:

max or minc(x), x € R".

Annegret K. Wagler

Laboratoire d’'Informatique, de Modélisation et d'Optsation des Systemes (LIMOS) / CNRS
Université Blaise Pascal (Clermont-Ferrand I1)

BP 10125, 63173 Aubiére Cedex, France

e-mail: Annegret. WAGLER@univ-bpclermont.fr

2 Annegret K. Wagler

In practical settings, finding the best of something typjcalcludes somaide con-
straints In mathematical terms, this can be expressed with the Hedproe func-
tion(s) f : R" — R. The functions involve certainariablesx € R". This leads to the
following classical optimization problem:

max or minc(X)
subject tof1(x) < by

fi(x) < bk
x € R"
The pointsx € R" satisfying all side constraints(x) < b are calledfeasible The
set of all feasible points is called theasible regiorof the optimization problem. If
all side constraints are linear functions, the above optitidn problem is a linear
program and the feasible region is a convex set, which altoveslve the problem
in polynomial time.

If the studied objects are entities as workers, planedhictwcannot be divided, it
is necessary to use integral variabkes Z" or decision variables € {0,1}" which
makes the corresponding integer linear programs computaty more demanding.

This is typically the case for combinatorial optimizatioroplems, where the
goal is to search for an optimum object in a finite collectidncertain objects.
Hereby, the objects have a concise representation withiscaede structure (like a
graph or a network), but their number is huge such that scaraidl objects to select
the best one among them is not an option. The aim of Combiaatptimization
is to find more efficient solution methods.

The first step towards solving a problem is always to build éhematical model:
it helps to correctly formalize the problem, that is, to dkcivhich conditions are
crucial to describe the problem, and how to formalize therapriately. This can
reveal relationships by gaining structural insight of thekdem, for instance in
terms of bounds for the objective function value arisingrirdual combinatorial
objects. The second step is to develop methods for findinggildle solution, and
to certify optimality (without knowing the optimal solutidbefore). In addition, it
is important to study the complexity of the problem, thatésanswer the question
how hard or easy the studied problem is.

In this chapter, we shall discuss how to model and solve coatbiial optimiza-
tion problems, illustrated with the help of the well-studligetwork flow problem as
running example.

Problem 1 (Network Flow Problem). Find a maximal flow, that is, transport the
maximal amount of certain goods (or water, electricity,s¢ar.), through a given
transportation network (consisting of pipelines, streets.).

In Section 2, we first address the Network Flow Problem fronoilginatorial
point of view. This includes to model the problem with theghef an appropriate
discrete structure (a network) and the studied combiratobjects therein (a flow).

Combinatorial optimization illustrated on network flow 3

We discuss combinatorial duality and the Max Flow/Min Ciiedrem as one
of the fundamental combinatorial min-max relations. M@ we present Ford-
Fulkersons’s combinatorial algorithm for finding a maximélow in a network.

In Section 3, we introduce linear programs and show how tmdate the Net-
work Flow Problem in this context. Next, we discuss the getoynef the feasible
region of linear programs and its impact on solving lineargrams with the help
of the Simplex Method. Furthermore, we address linear @agning duality and
consider the dual program for network flow.

Finally, in Section 4, we introduce integer linear prografimear programming
relaxations for integer linear programs and ways to stiesigthem. We conclude
with the problem of integer network flows, discuss ideal fatations for integer
linear programs related to totally unimodular matrices] aonsequences for the
network flow problem.

2 A combinatorial algorithm for network flow

The combinatorial formulation of the Network Flow Problenvolves both an ap-
propriate discrete structure to model the input of that pgoband a combinatorial
object therein to describe the desired output:

e Model: construct a directed graph with transportation ways (pipgsets, ...) as
directed arcs, their crossing points (connections, swigbles, ...) as nodes, and
arc weights as capacities;

e Task:find a maximal flow through the network (respecting the aracijes).

We first introduce the underlying discrete structures. ait,tconsider aligraph
D = (V,A) with node se¥ and arc seA where each ara= (u,v) €V xV is an
ordered pair. We say that= (u,Vv) is the arcoutgoingfrom u andingoingto v and
denote by

0 (v)={acA:a=(uv)}

the set of arcs ingoing teand by
dT(v)={acA:a=(vu)}

the set of arcs outgoing from A directed pathis a subgraph ob with (distinct)
nodesvy,..., Vv € V and (exactly) the arc&s,vir 1) € Afor 1 <i <k, and is called
(v1,Vk)-path if it links v1 with v. Figure 1 shows a digraph with a directed path.

Fig. 1 A digraph with a directed path (induced by the black nodesthadiashed arcs).

4 Annegret K. Wagler

A digraph together with a source/sink pair and arc capachi#comes a network
(see Figure 2). More formally:

Definition 1. We callN = (D; s,t; c) anetworkif D = (V,A) is a digraph with two
specified nodes, a sourse V with 6~ (s) =0 and a sink € V with 3" (t) =0, and
arc capacities, for all ae A

Fig. 2 A network consisting of a digraph with soursgsinkt and arc capacities.

Networks are the studied combinatorial structures to méidets therein:

Definition 2. For a networkN = (D; s, t; ¢) with digraphD = (V,A), an(s,t)-flowis
a functionf : A — Ng satisfying
e capacity constraints € f(a) < c, for all arcsa € A, and

e flow conservation constraint®f)(v) = Y acs-v) f(@) — Yacs+(v) f(a) = 0 for
allnodesy e V\ {s;t}.

We denote by

val(f) := z f(a) = z f(a)

acd—(t) acd(s)

the value of the(s t)-flow f. For illustration, Figure 3 shows a network with an
(s,t)-flow f and its valueval(f).

1/3

2/2

Fig. 3 A network with (s,t)-flow f of valueval(f) = 8 (on each ar@ € A, its flow value and
capacity are indicated bf/(a)/ca).

This enables us to combinatorially formulate the NetwordwProblem:

Problem 2 (Maximum Network Flow Problem (Combinatorial For mulation)).
Given a networlN = (D;s,t; c) with digraphD = (V,A), find an(s,t)-flow f : A—
No with maximal valueval(f).

Combinatorial optimization illustrated on network flow 5

The existence of afs,t)-flow in a given networkN = (D;s,t;c) is ensured as
soon as there exists &g t)-path in the underlying digrapb (which can be easily
checked with the help of Breadth First Search techniquesrggan s). We will next
address the question whether and how we can find an upper owuitsl possible
value (without knowing the optimum before). For that, wekdor the combinatorial
structure in a digraph being dual to flows.

Definition 3. LetN = (D;s,t;c) be a network with digrapP = (V,A). An (s,t)-cut
(Vs, 1) is a partitionvV = VsUV; of V into subset¥s andV; =V \ Vs with s € Vs and
teW.

The capacity of ars,t)-cut (Vs, t) is

c(Vs, W) = \Z Cluyv)s
UeVs,veV

see Figure 4 for illustration.

Fig. 4 A network with an(s,t)-cutVs = {s,x,y}, \t = {t,w, z} and capacite(Vs, ;) = 24 (as sum
of the capacities of all forward arcs crossing the dasheg).lin

LetN = (D;s,t;c) be a network with digrap® = (V,A) and consider afs;t)-
flow f as well as ar(s,t)-cut (Vs,\t) in N. The flow across thé¢s,t)-cut (Vs,)

IS
f(Ve, M) = VX Vf((U,V))— ; Vf((V,U))-

Obviously,val(f) < c(Vs,Vt) holds for any(s,t)-cut in a network. We even have:

Theorem 1 (Max-Flow Min-Cut Theorem (Ford & Fulkerson [16])). For any
network N= (D; s,t; c) with digraph D= (V,A) and s#t €V, we have

max{val(f): f (s,t)-flowin N} = min{c(Vs,\t) : (Vs,t) (S,t)-cutin N}.

The Max-Flow Min-Cut Theorem is one of the fundamental tieeas in Com-
binatorial Optimization. It ensures that the minimum capyaef all (s,t)-cuts in a
network always equals the maximum value of (art)-flow. The next question is
how to construct such a maximum flow in a network. To state treesponding
combinatorial algorithm, we first have to introduce thedaling notions.

Definition 4. Let N = (D;s,t;c) be a network with digrapP = (V,A), f an(st)-
flow, andP = {s=vp,Vvi,...,W% =t} an (undirected]s,t)-path.

6 Annegret K. Wagler

e The residual capacity of an aamof P is

Af(a) =ca— f(a)if a= (vi,viy1) is a forward arc,
Af(a)=f(a) if a= (viy1,Vi) is a backward arc.

e The residual capacity of the pafhis
Af(P)=min{Af(a) : aarc of P}
andP is calledf-augmenting patif Af(P) > 0.

Finding f-augmenting paths can be done with Breadth First Searchmitpods
starting ins, where a node is considered as “neighbor” of the active nadéthere
is an arca with Af(a) > 0 linking v andu (or u andv), see Figure 5.

1/3

2/2

val(f) = 7 AfP)=1

Fig. 5 A network with(s,t)-flow f and augmentings, t)-pathP with residual capacit f (P) =1
(resulting as minimum value of the residual capacitiesoaits).

With the help of anf-augmenting path, we can increase the valukas follows:

Lemma 1.Let P be an f-augmentings,t)-path in a network N with{s,t)-flow f.
There exists aifs;t)-flow f' in N with val(f’) = val(f) + A f(P). We obtain f by
modifying f on the arcs of P as follows:

f'(a) = f(a) + Af(a) for any forward arc a of P,
f'(a) = f(a) — Af(a) for any backward arc a of P.

For illustration, Figure 6 show$ and the resulting flowf’ after augmentation
using thef-augmenting path from Figure 5.

1/3

2/2

val(f) = 7 AfP) =1

val(f) =8

Fig. 6 A network with a(s,t)-flow f and the flowf’ obtained by augmentation.

Combinatorial optimization illustrated on network flow 7

This augmentation can be repeated until no further augmegptath for the cur-
rent flow can be found. An optimally criterion from [16] guatees that this leads
indeed to the studied maximum flow:

Theorem 2 (Ford & Fulkerson [16]). An (s,t)-flow f in a network N= (D;s;t;c)
has maximal value if and only if there is no f-augmentgsg)-path in N.

Therefore, we arrived at the following combinatorial algom for computing
maximum flows due to Ford & Fulkerson [16]:

Max-Flow Algorithm (Ford & Fulkerson [16])

Input: DigraphD = (V, A) with arc weightsc € z¥ sourcese V, sinkt € V.
Output: Maximum (s,t)-flow f.

STEP 1:nitialize f with f(a) := 0 for all arcsa € A.

STEP 2:Find anf-augmenting patP.
IF such a patl® exists:
Augmentf by
f(a):=f(a) + Af(a) if ais a forward arc oP,
f(a):=f(a) — Af(a) if ais a backward arc dP.
Iterate STEP 2.
ELSE STOP.

Remark.

e The Max-Flow Algorithm by Ford & Fulkerson [16] terminatesreectly due to
the characterization of maximum flows by augmenting pattmefem 2). Note
that at this final step, the algorithm finds the shdyef an(s;t)-cut (Vs, i) such
that all arcs outgoing froris are saturated as the capacity of this cut equals the
value of the current flow which, therefore, cannot be impobfiather. Hence,
the capacity of thigs, t)-cut gives a certificate for the maximality of the obtained
flow.

e In the worst case, the algorithm performal(f*) augmentation steps using
each time anf-augmenting path with Af(P) = 1, wheref* is a maximum
flow. Finding an augmenting path and augmenting the flow in IS PEtakes
O(|V|+ |A]) time. Theoverall running timeof the Max-Flow Algorithm is there-
foreO(val(f*)- (|V|+ |A])).

e A variant of the Max-Flow Algorithm by Edmonds & Karp [13] égtnines in
STEP 2 an augmenting path of minimal combinatorial lengtiBbyadth First
Search techniques. It terminates aftéf- (|A| 4+ 1) augmentations and hasly-
nomialrunning timeO(|V| - |A[?).

An example how to perform the Max-Flow Algorithm is presehite Figure 7. More
information on network flows can be found in [17, 27].

8 Annegret K. Wagler

Fig. 7 The Max-Flow Algorithm starts with a flow with f (a) := 0 for alla € A. For each current
flow f, a Breadth First Search is performed that, starting, iadds a node as neighbor of the
active nodev if there is an ar@a with A f(a) > 0 linking v andu (or u andv), until t is reached.
This results in a uniqud-augmenting patt and f is augmented along to f’. The procedure
is repeated until no augmenting path can be found anymore she Breadth First Search tree
consists in one shoi of a (s,t)-cut (Vs,V;) where all arcs outgoing frofvs are saturated.

3 Solving network flow by linear programming techniques

"From an economic point of view, Linear Programming has b#®s most impor-
tant mathematical development in the 20th century” Martin Grotschel

Combinatorial optimization illustrated on network flow 9

In this section we discuss the following questions abougairProgramming:

e What is a linear program and how it is possible to model a reablem (for
instance network flow) as linear program?

e How does the feasible region of a linear program look from @ngetric point of
view?

e What are the consequences for solution techniques for LiPggramming?

3.1 Modeling a problem as a linear program

We first address the question what a linear program is.

Definition 5. A linear program (LP)is as follows:
Maximize/Minimize the value of c¢'x
among all vectorg € R" satisfyingAx < b
X > 0 (optional)
whereA € R™" s a given constraint matrixag € R™ a given right hand side vector,
andc € R" a given objective function vector.

We illustrate this formal definition with the help of a smalleenple:

Example 1This example shows a linear program given explicitly as welin ma-
trix formulation:

max X;+ X is the linear objective functioa' x
st. —Xx1+x <1
X1 <3 form the linear constraintdx < b
Xo < 2

X1,X2 > 0 are the non-negativity constrain¢s> 0

Figure 8 gives the graphical interpretation of the conatsaand the feasible region,
i.e. the set of all feasible solutionss R} satisfyingAx < b.

A

X< 2
feasible

- X1+ Xxp<1 solutions

Y

X120 X< 3

Fig. 8 The graphical interpretation of the constraints and thsiféa region (the shaded region)
of the linear program given in Example 1.

10 Annegret K. Wagler

We next discuss the reformulation of the Network Flow Prabkes linear pro-
gram. Given a networl = (D;s,t;c) with D = (V,A), the problem of finding an
(s;t)-flow f : A— R maximizing the valueval(f) can be encoded as follows:

e the required variables arg to express the flovi (a) on each ara € A;

e the objective function is mag 5c 5+ (s) Xa to maximize the flow leaving the source
s (or, equivalently, max; ac5- 1) Xa @s flow entering the sink);

e the flow conservation constraints readag s v¥a =Y acs+v¥a VVEV\{st};

e the capacity constraints leadx@< c; Vac A,

e in addition, non-negativity, > 0 Va € Ais required for all variables.

Thus, the Maximum Network Flow Problem of finding ést)-flow f : A— R
maximizing the valueal() reads as linear program:

Problem 3 (Maximum Network Flow Problem (LP Formulation)). Given a net-
work N = (D;s,t; c) with digraphD = (V, A), solve the following linear program:

Max 3 ae5+(s) Xa
St Yacs- () Xa = Yacs+(w) Xa WEV\ {st}
Xa < Ca YaeA
Xa >0 YacA

Indeed, every vectax € R” satisfying all the above constraints corresponds to
a valid (s;t)-flow f, an optimal solution of this linear program corresponds to a
maximal flow.

Example 2The Maximum Network Flow Problem with the network from Figut
reads as explicit linear program:

max Xsw +Xsx +Xsy

St. Xsw —Xwt —Xwy =0
Xsx —Xxy —Xxz =0

Xsy +Xwy +Xxy —Xyt —Xyz =0

Xxz +Xyz =Xzt = 0

Xsw <6
Xsx <5

Xsy <3

Xwt <3

Xwy <1

Xxy <1

Xxz <2

Xyt <7

Xyz <9

Xzt <5

Xsw, Xsx, Xsys Xuts Xwys Xxys Xxzo Xyts Xyz, Xot, >0

Combinatorial optimization illustrated on network flow 11

3.2 Geometry of the feasible region

For a given linear program
maxc'x st. Ax<b, x>0

the task is to find one vectarmaximizing the objective function value within the
feasible region described by the constraint system< b, x > 0. In general, a lin-
ear program can have the following sets of optimal soluti@nanique optimum,
infinitely many optima, or no optimal solutions at all due tdeasibility or un-
boundedness, see Figure 9.

A / A i

\ . c c
- —_—

unique optimum infinitely many optima no optimum

Fig. 9 The different situations for sets of optimal solutions okadible linear program: a unique
optimum, infinitely many optima, or no optimal solution dweunboundedness (in all cases, the
feasible region of the linear program is shaded and the ariodicate the direction of the objective
function vector).

In particular, whenever an optimal solution exist for a &n@rogram, it is at-
tained at the boundary of its feasible region. This is a etdsue for Linear Pro-
gramming (see, e.g. [26] for a proof):

Theorem 3 (Linear Programming Theorem).If a linear program has a (bounded)
optimal solution, then there exists an "extremal” point dretboundary of the fea-
sible region which is optimal.

Hence, as a first step towards finding an optimal solution, lved! slescribe the
feasible region of a linear program more formally and studyobundary (in partic-
ular the extremal points). For that, we need to introducddlewing notations.

Let xL,...,xk € R" be points and\y,...,Ax € R, with Yi<kAi = 1. The point
X = Ti«kAiX' € R"is aconvex combinationf x1,...,x*. A setC C R" is convexf
for any two pointsx,x’ € C, also any of their convex combinations

Ax+(1=2)X,A € (0,1)

belongs tcC. For a subseb C R", its convex hulicon(D) consists of all points in
R" being a convex combination of pointsin

A subsetC? C C of a convex se€ C R" is anextremal seif C° is convex, for all
x,x' € CandA € (0,1) with Ax + (1—A)x’ € C°, we havex,x’ € C°. Note that the
empty set an@ itself are trivial extremal sets &. Special extremal sets aggtreme

12 Annegret K. Wagler

pointsin C which cannot be obtained as proper convex combination otsuatimer
points inC, see Figure 10 for examples.

@V D

Fig. 10 Extremal sets of convex sets.

It turns out that the feasible regions of linear programssaecial convex sets:
Forae R"andb € R, the set

. gx ceR":a'x = b% is ahyperplaneof R",

e {xeR":a'x < blisaclosed half-spacef R".

A polyhedron PC R" is the intersection of finitely many closed half-spaces and/
hyperplanes ifR". A bounded polyhedron is callgzblytope

Every polyhedron is a convex set, as hyperplanes and hatfespare convex, and
the intersection of convex sets yields a convex set again.

The dimension dirtP) of a polyhedronP C R" is the smallest dimension of
an affine subspace containir®) or the largestd for which P contains points
x9 xL, ... x9 s.t. the vectors® — x1, ..., x° — x4 are linearly independent.

The extremal sets of a polyhedrénare calledfaces and in particular faces of
dimension

e 0 are extreme points,
e 1 are edges,
e dim(P)— 1 are facets.

Figure 11 illustrates different faces of a polytope.

extreme point

1
I
1
facet |
- ST

L 2 edge

Fig. 11 A polytope and different extremal sets (of dimension 0, 1 2nd

A bounded polyhedron, i.e. a polytope, has besides its giiser as intersection
of finitely many closed half-spaces and/or hyperplanes arskepresentation [24,
28]

Theorem 4 (Weyl-Minkowski Theorem). A bounded polyhedron is the convex
hull of its extreme points.

Combinatorial optimization illustrated on network flow 13
ForA € R™"™andb € R™ as constraint matrix and right hand side vector, let
P(A,b)={xeR":Ax < b}

denote the polyhedron defined by the corresponding halfegfa < b; or hyper-
planesA;. = bj. We can characterize its extreme points as follows (see[26pfor
a proof):

Theorem 5.For a polyhedron P= P(A,b) C R" andx* € P, the following asser-
tions are equivalent:

X* is an extreme point of P;

{x*} is a0-dimensional face of P;

X* is not a convex combination of other points in P;
P\ {x*} is still convex;

Jc € R\ {0} s.t.x* is unique optimum ahaxc'x, x € P.

The drawback of the above characterization is that noneeottimditions char-
acterizingx* as an extreme point is easy to check. This changes in theaspeci
case where the studied polyhedron is given by hyperplanis Bar A ¢ R™"
andb € R™, let

P=(A/b) ={xeR": Ax = b}.

Then we have the following (see, e.g. [26] for a proof):

Theorem 6.For a polyhedron P= P=(A,b) C R" andx* € P, the following asser-
tions are equivalent:

e X*is an extreme point of P;
e The columns Aof A with je supp(x*) are linearly independent.

As extreme points of the feasible regiBrof a linear program are crucial and can
be easily detected R is of the special forniP=(A,b), we consider linear programs
given in the so-calledquational form

maxc'x st. Ax=b
x>0

Remark:

e Linear programs in equational form are also called lineagpams given in stan-
dard form.

e Note that any linear program can be transformed into eqoatiform, namely,
by introducing so-calledlack variableyy € R™:

maxc'x st. Ax <b = maxc'x st. Ax+y=Db
x>0 X, y>0

e Forlinear programsin equational form, we assume that thaton systeni\x =
b has at least one solution (i.e. tit (A, b) # 0 holds), and that the rows of the
matrix A are linearly independent (i.e. no redundant constraintsigc

14 Annegret K. Wagler
We are interested in special feasible solution of a lineagmm:
Definition 6. A basic feasible solutionf the linear program in equational form

maxc'x st. Ax = b
X >0

with A€ R™" b € R™M is a feasible solutiom* € R" for which there exists am-
element subseB C {1,...,n}st. the (square) matrig is non-singular (i.e., the
columns ofA indexed byB are linearly independent), arxqi =0forall j ¢ B.

Example 3The vectox* = (0,2,0,1,0) is a basic feasible solution of the equation
system
X1 + 5Xo + 3X3 + 4x4 + 6x5 = 14
Xo + 3X3+5x4 +6X5s = 7

with B = {2,4}.

In fact, basic feasible solutions are crucial for Lineard?eonming due to the
following reason:

Theorem 7.Consider a linear program in equational form:
maxc'x st. Ax=b, x > 0.

e If there is at least one feasible solution and the objectivecfion is bounded
from above on P(A,b) "R, then there always exists an optimal solution.

e [f an optimal solution exists, then there is alsbasicfeasible solution which is
optimal.

In addition, basic feasible solutions are easy to detect:

Theorem 8.A feasible solutiox of a linear programmaxc™x st. Ax=b, x > 0is
basicif and only if the columns of the matrix/Aare linearly independent, where

K={je{l,....n}:x; > 0}.

This opens the possibility to solve linear programs withhibép of basic feasible
solutions.

A rather naive approach to solve linear programs would be:aFgiven linear
program max'x st. Ax=b, x >0,

¢ find all extreme points oP=(A,b), i.e., all basic feasible solutions (there are at
most () if Ae R™M),
¢ select the best one among them (i.e. thigith c" x maximal).

Is there a more clever idea to solve linear programs?

Combinatorial optimization illustrated on network flow 15

3.3 The Simplex Method for solving linear programs

Given a matrixA € R™" and vectord € R™ c € R", consider the linear program

maxc'xst. Ax < b
x> 0.

To solve the linear program with the help of the Simplex Methane takes advan-
tage of the following previously stated results: If a lingmogram has a bounded
optimal solution, then there exists artreme poinbn the boundary of the feasi-
ble region which is optimal (Main Theorem of Linear Prograimg). For a linear
program given irequational form

maxc'xst. Ax=b, x>0

we have even more:

e If P=(A,b) is non-empty and bounded, themeistsalways an optimal solution.

e Among all optimal solutions, there is alway$asicfeasible solution.

e Basic feasible solutions are easy to detect: A feasibletisolx is basicif and
only if the columns of the matriRg are linearly independent, where

B={je{1,....n}:x; > 0}.

The idea of the Simplex Method is to start with an arbitrargibdeasible solution
and, as long as the current solution is not optimal, to mowe"teeighbored” basic
feasible solution with a better objective function value.

We first shall illustrate this method with the help of an imtuatory example (the
linear program from Example 1) before stating it formally.

Example 4Given the following linear program:

max Xi+Xo
st. —x1+x <1
X1 <3
Xo < 2
X1,%2 > 0

As the linear program is not in equational form, we have togfarm it by intro-
ducingslack variablesn order to turn the inequalities into equations. The résglt
equational form of the above linear program (with slack alkes in bold) is:

max Xi + Xz

St. —Xg + X2 + X3 =1
X1 + Xz =3
X2 + X5 =2

XlaXZaX3aX47X5ZO

16 Annegret K. Wagler

From the linear program in equational form, we easily ¢t (0,0,1,3,2)T as
initial basic feasible solutiorby taking the slack variables as baB%$= {3,4,5}
and the original variables as non-basls= {1,2}.

We next rewrite the linear program as so-calkatplex tableaphaving the basic
variables as left hand side (in bold) and an additional roviife objective function

valuez=c'x:
X3=14+X3 — X

X4 =3 — X1
X5 = 2 — X2
Z= X1 + X2

Considering the simplex tableau associated with= (0,0,1,3,2), we obviously
havez = 0 as objective function value.

In order to improvez, we can increase the valuexafor xz, w.l.0.g. sayx, (keep-
ing X1 = 0). How much depends on the tableau and the non-negativitstiants:
fromxz = 1+ X1 — Xp, X1, %2,X3 > 0 we inferx, < 1, fromxs = 2 — x, andxp, X5 > 0
we inferx, < 2. Together, we conclude that = 1 is possible.

We update the tableau accordingly by rewriting the first rtoviavex, as left
hand side) and substituting this expression¥gpin the other rows. The resulting
tableau (with changes in bold) is

Xo=14+ X3 — X3
X4 =3—- X1

Xs=1— X+ X3
z=1+4 2X; — X3

associated with the basic feasible solutidn= (0,1,0,3,1)T, B! = {2,4,5} and
with objective function valug= 1.

Improvingz further is possible by increasing the valuexgfonly (as increasing
X3 would decreass).

From the tableau and non-negativity constraints we seenthegstriction comes
from X, = 1+ X1 — X3, the second row, = 3 — X1 andxy, X4 > 0 showx; < 3, but
X5 = 1 — X1+ X3 andxy, X3, X5 > 0 resultinx; < 1. Hencex; = 1 is possible.

We update the tableau accordingly by rewriting the third (tavhavex; as left
hand side) and substituting this expressiondoin the other rows. We get the new
tableau (with changes in bold)

Xp=2— Xg

X4 =2+ X5 —X3
X1 =1— X5+ X3
z=3— 2X5 + X3

associated with®> = (1,2,0,2,0)T, B2 = {1,2,4} andz= 3.
Now, improvingzis possible only by increasing the valuexaf(as increasings
would decreasg). From the tableau and non-negativity we see fhat 2+ x5 — X3

Combinatorial optimization illustrated on network flow 17

andxs, X4, x5 > 0 result inxg < 2, while the rowx; = 1 — x5 + X3 does not restrict
the value ofx3. Hencexs = 2 is possible.

We update the tableau accordingly by rewriting the secondto havexs as left
hand side) and substituting this expression¥gin the other rows. The resulting
tableau (again with changes in bold) is

Xp =2 — Xg

X3=2+ X5 — Xq
X1=3+ 0—Xx4
zZ=5—-—X5 — X4

associated with® = (3,2,2,0,0)7, B® = {1,2,3} andz = 5. In this situation, we
cannot increase a non-basic variable further without desingz (asxs andxy ap-
pear with negative signs).

So, we are stuck. But® is the optimal solution Any feasible solutiork with
c'% = Z has to satisfy

Z=5-%5—%X4
which impliesZ< 5 (together with non-negativity). Hence is optimal!

In fact, x3 is the unique optimal solution (as= 5 requiresx, = x5 = 0 and the
equations uniquely determine the valuesgf, andxs).

The geometric interpretation is as follows (see Figure $2arting with the ini-
tial basic feasible solutior® = (0,0) (in the original variables only), the simplex
method moves along the edges of the feasible region fromasie feasible solution
to another, while the objective function value grows urttikiaches the optimum.

A

x_2/
X2$2 /
Xl
Xt X< 1 A
1T X2 s
x° o

X, 20
2 X;>0 x;<3

oA |

Fig. 12 The geometric interpretation of the basis exchanges paddrin Example 4.

The previous example illustrated the solution method foedir programs found
by Dantzig [7] (see also [8, 9]), now we state it formally:

18 Annegret K. Wagler

The Simplex Method (Dantzig [7])

Input: a matrixA € R™" and vectord € R™ ¢ € R", defining a linear program

maxc'x st. Ax < b,x >0

Outputa vectorx* maximizing the objective function

1. Transform the program into equational form (if necesgary

2. Find an initial basic feasible solutiol € R" and the corresponding ba$8 C
{1,...,n} st.Ago is non-singular andf) = 0vj ¢ B°.

Generate the corresponding simplex tabl&4B°).

3. Move from one basic feasible solutigrwith basisB' to a basic feasible solution
x 1 with basisB'*1 and higher objective function value by selectipg B' and
¢e{1,...,n}\B and settingd** := B'\ {j}U{/} s.t.c(x*1) > c(x') holds.

4. Stop if no further improvementis possible.

We will next discuss all the necessary steps of the Simplethibtkin detail.

STEP 1 (Transformation). As we need linear programs given in equational form
maxc'x st. Ax = b, x >0,
inequalities and variables without sign restrictions astutbing and the following
transformation becomes necessary: If the given (in)etwsyistem has a
e rowA.x < by, introduce eslack variable x.; > 0 and replace the row by
ALX + Xnti = b
e rowAj.x > bj, introduce aslack variable ¥, ; > 0 and replace the row by
—AjX + Xnyj = — bj
e variablex, without sign restriction, introduce two new variabjgs> 0 andz, > 0,
and substitute, everywhere by, — z.
After applying an according transformation, the origiriaelar program is in equa-

tional form, as required for the next step.

STEP 2 (Initial basic feasible solution).Consider a linear program in equational
form. We distinguish the following two cases.

If the original linear program was given in inequality formamc’x st. Ax <
b,x > 0, then the transformation in STEP 1 into equational form wtita help of
slack variablesy 1, ...,Xn+m yields

maxc'x st. AX = b
X>0

AT

with A= (A1) andX = (Xq,...,Xn,Xn+1,-- - , Xn-m). By the structure oA, an obvious
basic feasible solution of the transformed linear program i

Combinatorial optimization illustrated on network flow 19

()

with basisB® = {Xn1,...,%m} (i.e. containing all slack variables).

If the linear program is already given in equational form rabx st. Ax =
b, x > 0, there is no obvious initial basic feasible solution Xas 0 is infeasible if
b # 0). For each row oAx = b, we introduce amuxiliary variable . = b — A,Tx
and find values foxy, ..., X St. Xy = 0 holds for all 1< i < m by solving the
auxiliary linear program ALP

max— z Xnti St.AX=Db,X >0
i<m

with A= (A1) andX = (X1, ..., Xn,- -+, Xn11,- - - Xnsm) if b > 0 (otherwise, we mul-
tiply the equations withp; < 0 by —1). This works, since we have:

Lemma 2. The original linear program is feasible if and only if evergtonal so-
lution X of ALP satisfies 341 = ... = Xnm = 0. For any such optimal solution,
its basic vectoXg = (x1...,Xn) is @ basic feasible solution of the original linear
program.

Thesimplex tableau TB°) determined byBC is a system o+ 1 linear equa-
tions in variablesq, ..., X, andz that has the same set of solutions as the original
systemAx = b, z= c"x. In matrix notation;T (B°) reads as

XBO = B - KXN
Z =7+ T Xy
wherexgo is the vector of basic variablesy the vector of non-basic variables and
N={1,...,n}\B% andb e R™ Tec R™™M Ac R™ ("M 7 cR,
This always works, since we have in general:
Lemma 3. For each feasible basis B, there exists exactly one simpldrau T(B)

XBZB—KXN
Z =2—C'xn

with A= Ag'Ay, b=Ag'b, T=cn — (cEAg Ae)T and 3 = cf A b,
For theinitial basic feasible solutior?, we often havedgo = | which simplifies
the construction of the first tableau by
A=Ay,b=b,c=cn— (ciAN)" andz = cib.

Note that from any tableali(B), we can read off immediately the basic feasible
solutionx® by ~
X =D VieBandX =0VieN,

20 Annegret K. Wagler

and the objective function valugx® = 2 = 2 + ' 0.

STEP 3 (Basis exchanges)n each basis exchange (callpwot step of the Sim-
plex Method, we go from the current baslsnd its tablea (B) to a new basi®’
and its tablea (B'). Thereby, a nonbasic variabke with £ € N ={1,...,n} \ B
has to be exchanged by a basic varialylevith k € B in order to obtain the new

basis
B'=(B\ {k})U{f}.

We say thak leavesthe basis and, entersthe basis. This leads to the following
questions:

e Which conditions havey andx, to satisfy?
e How to select them if there is no unique choice?
e How to obtain the new tableal(B')?

We first discuss the conditions for entering and leavingalaés. A nonbasic vari-
ablex, with £ € N may enter the basis if and only if its coefficientin the last row
of the tablead (B)

XB = B — E\XN

zZ =20+C xn

is positive i.e., ifc] > 0 holds (as only incrementing such non-basic variables can
increase the valueof the objective function). For chosepwith ¢ € N, the leaving
basic variable must correspond to a row of the tableau winigitd the increment of

X, most strictly

e All nonbasic variableg; with i € N\ {¢} should remain zero, hence tljyh row
of the tableau together with non-negativity yields

Xj =Dbj —aj% > 0.

e If 3j, <0, this inequality does not restrict the increase,ah any way.
e Foranyaj, > 0, we havex, < ab—J'(

Thus, we can choosg with g, > 0 and,b—k(minimal.

This leads to the following fundamental theorem which iniadd shows how to
detect two exceptional casesiboundednegge. the case where the linear program
does not have a finite optimal solution) atkelyeneracyi.e. the case whergeveral
bases correspond tosingle basic feasible solution). In degenerate basic feasible
solutions, some basic variables are zero: e.g., for thectaasible solution® =
(0,0,0,2)T, the following bases

B={1,4} or B'={24} or B'={34}

are possible.

Theorem 9 (Basis Exchange Theorem).et x be a basic feasible solution with
basis B and simplex tableau(B)

Combinatorial optimization illustrated on network flow 21

XBZB—KXN
Z =2+ T xn

and let? € N witht, > 0. Then we have the following:

o If Eg < 0, then the linear program is unbounded.
e If Ay £0, we getanew basis'B= (B\ {k})U{¢} where ke B witha,, > 0and

_b—kzmin _b—j:jGB,aj[>0 :
A aj¢

e If B is non-degenerate (ags = b > 0), thenc™x’ > c'x holds wherex is the
basic feasible solution associated with the new basis B

Remark. The geometric view may illustrate the basis exchanges.cBasisible
solutions correspond to extreme points of the polyhed®ofA,b). Pivot steps (i.e.
basis exchanges) of the Simplex Method move from one extpirg to another
along an edge (i.e. an 1-dimensional face) of the polyhedron

redundant
c (j c
Fig. 13 Basis exchanges in the non-degenerate and in the degecasate

Exceptions aralegenerateivot-steps, where we stay at the same extreme point
x9 as only the feasible basis changes. Possible reasons adlsaps variables or
redundant inequalities (whose removal resolves degeyeageometric reasons
(e.g. that more than dirR((A, b)) hyperplanes meet ix°). The resulting difficulty

is so-callectycling

e If degeneracy occurs, longer runs of degenerate bases rgehdwithout im-
provement in the objective function value) may be necessary

e It may even happen that some tableaueiseatedin a sequence of degenerate
exchange steps (called cycling) s.t. the algorithm pagsesigh aninfinite se-
quence of tableaux and, thus, fails.

To finish a basis exchange, updating the simplex tableaudiogpto the new
basis is required. For the new baBis one can calculate the new tableB(B’)

Xp = b — KXNI
Z =2+ C Xy

22 Annegret K. Wagler

by A=Ag'Ay, b=Agtb, t=cy — (c}, Ag' Av)T, 20 = cf, Ag'b from the origi-
nal matrixA and the vectorb andc.

In computer implementations of the Simplex Method, howgtés is never done
(as it is inefficient). Note that for the next basis exchangepnly need the vector
T (to select the next entering varialfle N’ with ©, > 0), and for the chosefe N’,
the columnA ;, and the vectob (to find the next leaving variablec B'). For that,
the matrixAg,l is computed (which is required to calculate all needed esitriT his
procedure is known aRevised Simplex Algorithreee [10].

Step 4 (Testing for Optimality) The Simplex Method stops if an optimal solution
is found. To detect this situation, we have the followipgtimality criterionof a
simplex tableau:

Lemma 4. Consider a feasible basis B and its simplex table@B)T

XBZB—KXN
Z =2+ T xn

If the basic feasible solutioxP corresponding to B is non-degenerate (i.ehQ i 0),
then we havex is the optimal solution if and only & < 0.

Indeed x° = (E) has the objective function value equalzg while for any other
feasible solutiork, we haveky > 0andc'% = zy+T' &y < 7o (by T < 0).

Itis left to discuss the efficiency of the Simplex Method anepng. The num-
ber of pivot steps (i.e. basis exchanges) for solving a fipeagram by the Simplex
Method strongly depends on the choices which variablesldHeave or enter the
basis: Figure 14 shows an example where, starting from dialitiasic feasible
solution, the optimal solution could be reached in threenar $teps.

AN

Fig. 14 Different basis exchanges towards the optimal solution.

We do not know in advance which choices will be good if theresmveral possi-
bilities ofimproving variablegi.e. nonbasic variableg with j € N from the current
tableau witht; > 0). We denote the index set of the improving variable$\dy

A pivot ruleis a rule how to select the entering variable among the impgpv
ones (some rules also specify the choice of the leavingMaié necessary).

Combinatorial optimization illustrated on network flow 23

Some well-known pivot rules are:

e Largest Coefficient Rule: choose an improving variablg, such thatt, =
max{c; : j € NT} (to maximize the improvement afper unit increase of,)

e Largest Increase Rule:choose an improving variable that yields the maximal
improvement ire (this rule is computationally more expensive, but locallgpm
imizes the progress)

e Steepest Edge Rulechoose an improving variable maximizing the value

c’ (Xnew— Xold)
|| Xnew— Xoldl|

(to move the current basic feasible solution into a direttitosest to the one of
the objective functior)

e Bland's Rule: choose the improving variable with the smallest index € N*;
if there are several possibilities for the leaving varialaso take the one with
the smallest index.

The Largest Coefficient Rule is the original rule by Dant8p vhereas the Steepest
Edge Rule is the champion in practice, and Bland’s rule isi@darly important,
since we have:

Theorem 10 (Bland [4]). The Simplex Method with Bland’s rule is always finite, as
cycling is impossible.

Using other pivot rules, the Simplex Method may cycle (arebtietically, this is
the only possibility how it may fail). In fact, for (almost}lgivot rules, there are
worst case examples known that require an exponential nuaflpévot steps (e.g.
for Dantzig’s rule one im variables and inequalities requiring 2 1 pivot steps
by Klee & Minty [23]). Note that in practice, most implemetitas of the Simplex
Method try to circumvent cycling via different perturbatitechniques.

In theory, the best known worst case bound for the running tfnthe Simplex
Method is, thereforee®"" for linear programs witim variables and constraints,
using a simple randomized pivot rule (randomly permuteiaécies of the variables,
then apply Bland’s rule).

In practice, however, the Simplex Method performs verys$atitory even for
large linear programs. Computational experiments inditiaat it reaches, for linear
programs withm equations, an optimal solution in something betwesra?d 3n
pivot steps, with about @?) arithmetic operations per pivot step, such that the
expected running timis about @nr).

3.4 Linear Programming Duality

In this subsection, we address the problem to obtain bowrdké objective func-
tion value of a linear program, e.g. an upper bound for theie/af an optimal

24 Annegret K. Wagler

solution of a maximization problem, without knowing the iopam before. To this
end, we shall start with an introductory example.

Example. Consider the following linear program:

max 1 + 3Xo

st. 4x1+8xp < 12
20+ %<3
X1, X2 >0

Without computing the optimurg’, we can infer from the first inequality and non-
negativity thatz* < 12 holds as

2X1 4+ 3Xp < 44Xy + 8xp < 12

We obtain a better bound by scaling the inequality by a fa2tor
2X1 + 3% < 2X1+ 4% < 6.

Adding the two inequalities and scaling by a factor 3 eveldgie
2X1+ 3% < 2X1+ 3% < 5.

How good can a so-obtainegper bound u> c' x for all feasible solutions of the
studied linear program be? To answer this question, we dkélle an inequality of
the formdixg + doxo < u, whered; > 2, d, > 3, andu is as small as possible. Then,
for all x;,%, > 0, we indeed have

2X1 + 3Xo < diXq + doxo < u.

For that, we combine the two inequalities of the linear pamgrwith some non-
negative coefficientg, andy,, obtain

(4y1 + 2y2)X1 + (8y1+ Y2)X2 < 12y; + 3y».

and infer thatly = 4y; + 2y, dp = 8y1 +Y», andu = 12y; + 3y, holds. For choosing
the best coefficientd; andd,, we must ensurd; > 2, d> > 3 andu being minimal
under these constraints. This leads to

min 12y; + 3y,
st. 4dy1+2y, > 2
8y1+ y2>3
yi, ¥2>0

the linear program beindualto the original linear program we started with. Every
of its feasible solutions yields an upper bound for the aibjedunction value of the
original (primal) linear program.

Combinatorial optimization illustrated on network flow 25

We now shall formalize this process. Given a matix R™" and vectord €
R™ c € R". Consider theorimal linear program (P)

max ¢’ x
st. AXx<b
X > 0.

To determine an upper bounid> ¢ x for all x € P(A, b), combine theninequalities
of Ax < b with non-negative coefficientg, ..., ym S.t. the resulting inequality has
the jth coefficient at leastj, for 1 < j < m, the right hand side is as small as
possible. This leads to tltaal linear program (D)

min by
st. ATy > ¢
y > 0.

The primal and the dual linear program are related as follows
Theorem 11 (Weak Duality Theorem).Consider the dual linear programs

maxc'x st. Ax<b, x>0 (P)
minbTy st. ATy > ¢, y >0 (D)

e For each feasible solutiop of (D), the valueb"y provides arupper boundor
the maximum objective function value of (P), i.e., we hdwe < b'y for each
feasible solutiorx of (P).

e If (P) is unbounded, then (D) is infeasible.

e If (D) is unbounded (from below), then (P) is infeasible.

Theorem 12 (Strong Duality Theorem).For the dual linear programs

maxc'xst. Ax<b, x>0 (P)
minbTy st. ATy > ¢, y>0 (D)

exactly one of the following possibilities occurs:

Neither (P) nor (D) has a feasible solution.

(P) is unbounded and (D) has no feasible solution.

(P) has no feasible solution and (D) is unbounded.

Both (P) and (D) have a feasible solution. Then both lineargpams have an
optimal solution, sax* of (P) andy* of (D), andc”x* = b'y* holds.

Proofs of the two duality theorems can be found in [26], fatamce.

The two duality theorems are valid for all kinds of linear grams, we only have
to construct the dual program properly: For a maximizatiosbem with constraint
matrix A € R™", right hand side vectds € R™, objective vector € R", the dual
program has

26 Annegret K. Wagler
e variablesy,...,ym wherey; corresponds to thigh constraint and satisfies
>0

yiq <0, if Ax
eR

1V IA
o

e nconstraints, where thgh constraint corresponds ¥ and reads

Ajy

ATV

>0
Cj if Xj <0
eR

e the objective functiom™y which is to be minimized.

We can summarize these conditions as the following “DutiineRecipe”:

Primal linear progranDual linear program
Variables X1,X2, .-, Xn Y1,Y25 - -+ Ym
Matrix Ac R™nN AT ¢ R™m
Right-hand side beRM ceR"
Objective function maxc’ x minbTy
Constraints ith constraint has< yi >0
> yi<0
= Vi€eR
Xj >0 jth constraint has>
Xj < 0 <
Xj€R =

The implications for the solvability of two dual linear pn@gns are due to the
Farkas Lemma [14, 15] (see also [26] for a proof):

Theorem 13 (Farkas Lemma).For A€ R™" andb € R™, exactly one of the fol-
lowing two possibilities occurs:

1. There is a vectox € R" satisfying & = b andx > 0.
2. There is a vectoy € R™s.t.yTA> 0" andy'b < 0.

Remark. The Farkas Lemma has several variants for the differentstygfdinear
programs, which can be summarized as follows:

Combinatorial optimization illustrated on network flow

The systenAx < b

The systemAx = b

has a solution
x > 0if and only if

y>0andy'A > 0
implyy™ > 0

y'A > 0" implies
thaty™b > 0

has a solution
x € Rif and only if

y>0andy'A =0
implyy™ > 0

y'A = 0" implies
thaty™b = 0

27

That is: if the primal and the dual linear program are neiinézasible nor un-
bounded, then the maximum of the primal program (P) equalsrtimimum of the
dual program (D).

This leads to duality-based Simplex Methods to solve a tipeagram: the Dual
Simplex Method and so-called primal-dual methods:

e To solve a linear program, we can apply the Simplex Methdteeito the primal
linear program or to its dual linear program. TBeial Simplex Methodolves
the dual linear program by starting with a dual feasible $asid trying to at-
tain primal feasibility while maintaining dual feasibjlithroughout. This can be
substantially faster if

— the dual linear program has less constraints than the pliimear program, or
— aninitial (dual) basic feasible solution is easy to obtam
— the dual linear program is less degenerate.

e Primal-Dual Methodsolve a linear program by iteratively improving a feasible
solution of the dual linear program:

— Consider a primal linear program given by ntdx st. Ax =b, x > 0.
— For afeasible dual solutioy) defined = {j € {1,...,n} : Ajy =¢j}.
— A dual solutiory is optimal if and only if there is a feasible primal solutirn
with
Xj=0Vje{l,...,n}\J

In addition to the aforementioned relations between priamal the dual linear
programs, we have even more: If a primal linear program isrentation for a
combinatorial optimization problem, then its dual lineaogram has also an in-
terpretation as a combinatorial optimization problemated to the combinatorial
object being dual to the original studied one.

We shall illustrate this relation with the help of our rungiexample, the Network
Flow Problem.

Example 5 (Dualization of Maximum Network Flo@jven a networlN = (D; s,t;c)
with digraphD = (V, A) and capacities € Z”. Recall from Problem 3 that the linear
programming formulation of the Maximum Network Flow Proiplés:

28 Annegret K. Wagler

max Za66+(s) Xa
st. Dacs- (v)Xa = za66+(v) Xa VeV \ {S,t}
Xa < Ca Vae A
Xa >0 YaeA

With V/ =V \ {s t} denoting the set of internal nodes of the digraph, let

e F c Z™V be the matrix of the flow conservation constraints,
e dcZAwithd,=1if ac 87(s), dy = 0 otherwise be the objective vector.

Then theprimal linear program (P)encoding the Maximum Flow Problem reads in

matrix notation:
max d' x

st F x=0
I x<c
x>0

For the dualization, we use one variable

e 7z, for the flow conservation constraint ofc V’,
e Yy, forthe capacity constraint @ < A.

This leads to the followinglual linear program (D)

min c'y
st. FTz+1Ty > d
y>0

A closer look to the dual program shows that the dual progras h

one variable, € R corresponding to the flow conservation for eachV':
X(87(v)) = x(8%(v)) =0

e one variable/; > 0 corresponding to the capacity constraint for eaehA,
e for each primal variableg,a € A, one constrainE.; z+ 1.5 y > dy which reads,
fora= (u,v) €A
2~ ZkYa> 0if u#sv#t
Z, +VYa>lifu=sv#£t
—ZF Ya>0ifu£sv=t

e the objective functiory which is to be minimized.

What is the combinatorial interpretation of the dual pregPaFor a network
N = (D;s,t;c) with D = (V,A), consider the dual program

Combinatorial optimization illustrated on network flow 29

min c'y
st.z,—ztY¥a>0Va=(uv)eA
Zs =1
Z =0

Ya>0Va=(uv)cA

Recall that for a partition of = VsUVW; with s € V5 andt € 4, the subset of arcs
0" (Vs) ={(u,v) € A:ueVs,ve Vi }is an(st)-cut. Hence, eacts,t)-cut o™ (Vs) of
anetworkN = (D;st; ¢) with D = (V, A) corresponds to a feasible solutigny)T €
RV'x R4 of the dual program with

z,=1lifveVs, z,=0ifueVv

Recall further that théow across thés, t)-cut (Vs, \t) is

f(Vs, M) = f(uv) — f(vu)
ue\g\/e\/{ ue\gle\/[

c(Vs, M) = \Z c(uv).
ueVs,veVy

Obviously,val(f) < c(Vs, W) holds for any(s,t)-cut. We have even more: Since ev-
ery (s,t)-flow f satisfies the capacity constraints, we have fit¥,) < c(Vs,)
and thus

and itscapacityis

val(f) < c(Vs,)

holds for any(s,t)-cut. This upper bound for the maximum flow in a network also
follows from the Weak Duality Theorem (Theorem 11), and thaxMFlow Min-
Cut Theorem (Theorem 1), is a famous special case of the gDoality Theorem
(Theorem 12), which implies:

max d"x = min cly
st.F x=0 st.F'z+I1Ty>d
I x<c y>0
x>0

In particular, the linear programming formulation for Mexim Network Flow
from Problem 3 is the “right” formulation as it does not onlsoperly encode the
primal problem, but also its dual linear program has an priation as a Minimum
Cut Problem, the combinatorial problem being dual to thgin&l studied Network
Flow Problem.

30 Annegret K. Wagler

4 Integer Programming and the Network Flow Problem
In the previous section, we considered a linear programthieeproblem to

maximize/minimize the value of c'x
among all vectorg € R" satisfyingAx < b
x>0

whereA € R™" is a given matrix anth € R™ ¢ € R" are given vectors.

If in some practical settings, the studied objects areiestés workers, goods or
planes which cannot be divided, we do not consider variabledR" butx € Z".
This leads to ainteger Linear Optimization Problenin this section we discuss

e how linear programs and integer linear programs are rejated
e why integer linear programs are hard to solve in general, and
e what is special for solving Integer Network Flow Problems.

4.1 Integer linear programs and their linear relaxations

We first address the question what an integer linear progsam i

Definition 7. An integer linear program (ILP)s as follows:
maximize/minimize the value of c"x
among all vectors € Z" satisfyingAx < b

x>0
whereA € R™" is a given constraint matrixy € R™ a given right hand side vector,
andc € R" a given objective function vector (typically, also the éggrofA, b, c are
integral in this case).

We illustrate this formal definition with the help of a smatleenple:

Example 6 This example shows an integer linear program given explies well
as in matrix formulation:

max Xi+ Xo is the linear objective functioa' x
st. —x1+x <1
X1 <3 form the linear constraintdx <b
Xp < 2
X1,X2 > 0 are the non-negativity constraings> 0
X1,% € Z are the integrality constrainise Z?2

Figure 15 gives the graphical interpretation of the comstsaand the resulting poly-
hedronP(A,b).

In an integer linear program

Combinatorial optimization illustrated on network flow 31

Xp<2 /
L] L]

X120 X< 3

Fig. 15 The graphical interpretation of the constraints and the/pdronP(A,b) (the shaded
region) containing the feasible solutiong Z2 of the integer linear program given in Example 6.

maxc' x,Ax < b,x € Z"

we still have a linear objective function, and the side cristsA™x < b are linear
and describe a polyhedrdt{A, b), but the feasible points are just ttattice points
x € P(A,b)nZ".

In particular and in contrast to the case of Linear Prograngnan optimal so-
lution of an integer linear program is not necessarily atdion the boundary of
P(A,b), but may be situated in its interior. Figure 16(a) illussréhe case where
none of the extreme points 8{A, b) is integral.

Fig. 16 The feasible points of an integer linear program (a) and ealirtonstraint system for the
convex hull of all its integral solutions (b).

This makes the problem hard in general (see, for instan@f¢2 a proof and
[3, 20, 25, 26, 27] for further information):

Theorem 14.1t is NP-hard to decide whether an integer linear program haolu-
tion above/below a certain threshold.

In contrary, the corresponding linear program obtaineddmpgding the integral-
ity requirement, can be solved in polynomial time. How anedir and integer linear
programs related to each other?

Definition 8. For an integer linear program

maxc'x,Ax < b,x € Z"

32 Annegret K. Wagler

the linear program
maxc' x,Ax < b,x € R"

obtained by dropping the integrality requirements is chlidinear relaxationas its
feasible regiorP(A,b) contains all integral feasible pointse P(A b) N Z" of the
corresponding integer linear program.

The linear relaxation can be solved in polynomial time, bsibiptimal solution
might be fractional and, thus, no solution of the correspogdhteger linear pro-
gram.

However, the convex hull of all integral solutions of an e linear program
is a polyhedron and, thus, can be described by means of linequalities, see
Figure 16(b). Thus, in principle there exists a constraygtam for each integer
linear program, called ideal formulation, such that thesfiele region has integral
extreme points only:

Definition 9. For an integer linear program
maxc'x,Ax < b,x € Z"

a linear program
maxc'x,Ax < b,x € R"

is anideal formulationif
P(Ab) ={xe R} :Ax<b} = con{x € Z} : Ax < b}.

As the optimum of a linear program is always attained at aneex¢ point of
P(A,b), linear programming techniques can be applied to solvgerténear pro-
grams given as ideal formulations! This leadptadynomial time solvabilitypro-
vided that the required inequalities can be separated ynpahial time (i.e., that it
can be checked efficiently whether a given point satisfiematjualities or violates
some of them; for instance, this is the case if the ideal fdatimn contains only a
polynomial number of constraints).

In general, finding an ideal formulation for an integer linpeogram is as hard as
solving the problem itself. In some special cases, howeegtain properties related
to the underlying combinatorial problem can lead to thergelssituation, e.qg. if the
constraint matrixA of the integer linear program has a special structure. We wil
next define such a type of matrices.

Definition 10.

e A matrix A € Z™" of full row rank is unimodularif the determinant of each
basis ofAisin {—1,1}.

e A matrix A€ Z™" is totally unimodularif the determinant of each square sub-
matrix of Ais in {—1,0,1}.

Remark. Unimodular and totally unimodular matrices must have estim{—1,0,1}
only. A matrixA € Z™" s totally unimodular if and only if

Combinatorial optimization illustrated on network flow 33

e (Al) is totally unimodular;
e AT is totally unimodular.

The following matrices, AT, (AT, 1) are examples of totally unimodular matrices:

11 11100
(iég) 10 10010
01 01001

Recall that a polyhedron is integral if all its extreme pesiate integral. The
relation of unimodularity and the integrality of polyhedmaming from integer pro-
gramming formulations is as follows (see [21] for the proofld3, 20, 25, 26, 27]
for further information):

Theorem 15.Consider a matrix Ac Z™<",

e For A with full row rank, P*(A,b) = {x € R} : Ax = b} is integral for all right
hand side vectorb € Z™ with P=(A,b) £ 0 if and only if A has full row rank
and is unimodular.

e P(Ab) ={xeR":Ax < b} isintegral for all right hand side vectots € Z™
with P (A,b) # 0if and only if A is totally unimodular.

Remark. The proof of the latter theorem is based Gramer’s rule For a non-
singular matrixA € R™" andb € Z", we have
~ det(A)

— —a1 .
AX=Dbh < x=A b(:>X'_de1(A)

whereA' is obtained fromA by replacing thei-th column byb. From detA) €
{—1,1} for totally unimodular matrices, it follows; € Z.

Thus, all integer linear programs with (totally) unimodutanstraint matrices
have an integral polyhedron as the convex hull of its feas#iolutions and can be
solved with the help of linear programming techniques.

However, as the hardness of solving integer linear progiamses, we do not
always have totally unimodular constraint matrices. A ngereral setting involves
Linear Programming Duality:

Definition 11. A systemAx < b of linear inequalities igotally dual integral (TDI)
if the linear program
minbTy s.t.Aly=c,y>0

has an integral optimal solution for every integral veaeuch that mag’ x, Ax < b
is bounded.

Note thatA s totally unimodular if and only if the systefAx < b, x > Qis totally
dual integral forall integral vectord.

Also the concept of totally dual integrality, introducedgmonds & Giles [12],
is related to the integrality of polyhedra:

34 Annegret K. Wagler

Theorem 16.1f the system A< b is totally dual integral, Ac R™" andb € R™,
then we have:

e The primal problem
maxc'x s.t. A&x<b

has an integral optimal solution for ad € Z";
e The polytope
P(Ajb) = {xe R": Ax < b}

is integral.

To summarize: Ideal formulations follow the idea to go bazkiiear programs
in order to solve integer linear programs.

In fact, we can apply linear programming techniques andesalvinteger linear
program in polynomial time in one of the following situatsrihe canonical integer
linear programming formulatioAx < b, x > 0is

e idealasP(A b) isintegral;

e notideal, but the constraint systefix < b, x > 0 with P(A,b) = con{x € Z') :
AXx < b} is easy to find by adding (polynomially many) further conistisy

e notideal in general, but is ideal for sorapecial caseshere additional combi-
natorial properties are satisfied.

Note that ideal formulations for integer linear programgitlly involve a much
larger number of constraints than compact formulationagigitegrality require-
ments (which makes the separation problem harder).

For most integer optimization problems, no ideal formwatis known at all.
In this general situation, one might start from a canonin&der linear program
Ax <b, x> 0and try to find hyperplanes approximating cgre Z' : Ax < b}
at the “right place” (i.e. near the optimal solution as ithased in Figure 17).

Such approaches to enhance the original formulation ateccalitting plane
methodsand work as follows:

Generic Cutting Plane Method
Input: an integer linear program (ILP) makx,Ax < b,x € Z"
Output:an optimal integer solutior*

1. Solve the linear relaxation (LP) makx,Ax < b,x € R".
If P(A,b) is empty then the ILP is also infeasible, and STOP.
Else, letx* be an optimal (extreme point) solution of the LP.

2. If x* isintegral, then STOP becausé is also optimal for the ILP.

3. If x* is not integral then find an inequality that is satisfied by all feasible solu
tions of the ILP, but is violated by*.

4. Append this inequality (theutting plané to the LP, and proceed with Step 1.

A classical way to generate new valid inequalities from thewn constraints in
Ax < b are so-called Chvatal-Gomory cuts, introduced by CHy&tand implicitly
by Gomory [19].

Combinatorial optimization illustrated on network flow 35

Fig. 17 The feasible points of an integer linear program and adutitiinear constraints (cutting
planes) approximating the convex hull of all its integrdusions.

For any polyhedrorP(A,b), let R (A b) denote the convex hull of all integer
points inP(A,b). If S ax < bis a valid inequality folP(A,b) and has integer co-
efficients only, theny aix < |b| is a Chvatal-Gomory cut foP(A,b) and valid
for B(Ab). In fact, every valid inequality for the convex hull of alltegral so-
lutions can be generated by applying the Chvatal-Gomoogeuiure (i.e., adding
all Chvatal-Gomory cuts) t®(A,b) a finite number of times. This guarantees that
cutting plane methods indeed terminate.

It is a currently active field of research to find more efficientting planes than
the classical ones, as e.g. split cuts, intersection catodrers [1, 2, 6, 11].

For more information on Integer Programming, see e.g. [328026, 27].

4.2 Computing integer network flows

We finally discuss the Integer Network Flow Problem. Given etwork N =
(D;s,t;c) with D = (V,A), the problem of finding an integrés,t)-flow f : A— Z
maximizing the valuesal(f). In order to formulate this problem as integer linear
program, we again need

e the variablex, to express the flow (a) on each ara € A,

e the linear objective function max ,c 5+ s) Xa Of maximizing the flow leaving the
Sources,

o the linear flow conservation constraiftge s- vXa =Y acs+v¥a VVEV\{st},

e the linear capacity constrairtg < c; Va < A,

and in additionjntegrality is required for all variables:
Xa € ZVaeA

Thus, the problem of finding an integréd,t)-flow f : A — Z of maximal value
val(f) leads to:

Problem 4 (Integer Maximum Network Flow Problem). Given a networkN =
(D;s,t;c) with digraphD = (V,A). Finding an(s,t)-flow f : A— Z maximizing the

36 Annegret K. Wagler

valueval(f) by solving the following integer linear program:

MaX 3 ae5+(s) Xa
St Yacs (v Xa = Yacs+(v) Xa WEV\ {st}

Xa < Ca Yaec A
Xa >0 Vac A
Xq € Z Yae A

With V/ =V \ {s,t} denoting the set of internal nodes of the digraph, let again

e F € ZAV' be the matrix of the flow conservation constraints,
e dcZAwithd,=1if ac 87(s), dy = 0 otherwise be the objective vector.

Then the program encoding the Integer Maximum Network FloabRem reads in

matrix notation:
max dTx

st.F x=0
I x<c

A

XeZzy

Indeed, every vectax € ZA satisfying all the above constraints corresponds to
an integral(s,t)-flow f, an optimal solution to a maximum flow. How hard or easy
is it to compute a maximum flow as optimal solution of the abimteger linear
program?

As integer linear programs are hard to solve in general |#ads to the question
whether we can find an ideal formulation by taking advantdggpecial combina-
torial properties of the underlying Network Flow Problem.

Recalling that all integer linear programs with (totally)ionodular constraint
matrices have an integral polyhedron as the convex hulsdégsible solutions, we
wonder whether the constraint matrices for the Network FRiblem satisfy this
property.

Indeed, one example for unimodularity are node/arc incdematrices of di-
graphs, the underlying discrete structure for the netwofleur flow problem:

Theorem 17.The node/arc incidence matrix of any digraph=D(V,A) is totally
unimodular.

The proof of the latter theorem is based on the following ahterization of
totally unimodular matrices:

Theorem 18.A matrix M€ Z™" is totally unimodular if and only if each subset
| €{1,...,n} of columns has a bipartition¥ IpUlg s.t. for all rows je {1,...,m},
we havey e, Mji — Yicip Mji € {—1,0,1}.

Thus, we shall study how our constraint matrix is relatects property.

In fact, for a networkN = (D; s,t; c) with digraphD = (V, A), the flow conserva-
tion matrixF € ZV"*A has one row for each of the constraints

Combinatorial optimization illustrated on network flow 37

Y Xa— Y xa=0weV'=V\{st}.

acd—(v) acot(v)

The column ofF for arca= (u,v) € Areads as follows:

Hence,F is the node/arc incidence matrix of a digraph and, thus idde&lly
unimodular As adding the identity matrik to a totally unimodular matrix yields
again a totally unimodular matrix, this implies:

Corollary 1. The Maximum Network Flow Problem

max d'x
st.F x=0
I x<c¢, x>0

has for all integral capacities € Z% an integral optimum.

As a matrix is totally unimodular if and only if its transpakmatrix is totally
unimodular, it follows for the dual linear program:

Corollary 2. The Minimum Cut Problem

min c'y
st. FTz+1Ty >d
y>0

has for all integral vectorsl € Z’i an integral optimum.

To conclude: the latter results form an example par excedlén the field of so-
called Polyhedral Combinatorics, a powerful, coherentamiéy/ing tool for Combi-
natorial Optimization, involving algorithms, the geomgedf solution sets and min-
max relations with dual problems. The studied Network Floatffem demonstrates
that these aspects are closely related in general:

"Often a polynomial-time algorithm yields, as a by-produetdescription (in terms
of inequalities) of an associated polyhedron. Converselgppropriate description
of the polyhedron often implies the polynomial-time soiltghof the associated
optimization problem, by applying linear programming tefues. With the duality
theorem of linear programming, polyhedral characteripa yield min-max rela-
tions, and vice versa.” Alexander Schrijver

38 Annegret K. Wagler
References
1. Balas, E., Saxena, A.: Optimizing Over the Split Closil@athematical Programmingj13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

219-240 (2008)

Basu, A., Cornugjols, G., Margot, M.: Intersection Cuith Infinite Split Rank. Mathematics
of Operations Resear@v, 21-40 (2012)

Bertsimas, D., Weismantel, R. : Optimization over Intsg®ynamic Ideas, Belmont, MA,
(2005)

Bland, R.G.: New finite pivoting rules for the simplex medh Mathematics of Operations
Researcl?, 103-107 (1977)

Chvatal, V.: Edmonds polytopes and a hierarchy of coatbiral problems. Discrete Mat#,
305-337 (1973)

Conforti, M., Cornuégjols, G., Zambelli, G.: Corner Plogdron and Intersection Cuts. Surveys
in Operations Research and Management Scié6c#05-120 (2011)

Dantzig, G.B.: Maximization of a linear function of vdslas subject to linear inequalities.
In T.C. Koopmans (ed.) Activity Analysis of Production anto&ation, John Wiley & Sons,
New York, (1951) pp. 339-347.

Dantzig, G.B.: Notes on linear programming. RAND Corpiora (1953)

Dantzig, G.B.: The Diet Problem. Interfaces, The PractitMathematical Programmir,
43-47 (1990)

Dantzig, G.B., Thapa, M.N.: Linear Programming 2/ Tlyemmd Extensions, Springer-Verlag
(2003)

Del Pia A., Wagner C., Weismantel R.: A probabilistic gamson of the strength of split,
triangle, and quadrilateral cuts. Operations Researctets39, 234-240 (2011)

Edmonds, J., Giles, R.: A min-max relation for submodtlactions on graphs. In: Studies
in Integer Programming (Proceedings of the Workshop orgert®rogramming, Bonn, 1975;
P.L. Hammer, E.L. Johnson, B.H. Korte, G.L. Nemhauser,) eti85-204 (1977)

Edmonds, J., Karp R.M.: Theoretical improvements intlgmic efficiency for network flow
problems, Journal Assoc. Comput. MadB, 248-264 (1972)

Farkas, G.: A Fourier-fele mechanikai elv alkamazadathematikai § Termszettudomanyi
Ertesitol2, 457-472 (1894)

Farkas, G.Uber die Theorie der Einfachen Ungleichungen. JournatiférReine und Ange-
wandte Mathematit24, 1-27 (1902)

Ford, L.R., Fulkerson, D.R.: Maximum flow through a netiy@anad. Journal of Mathemat-
ics 8, 399-404 (1956)

Ford, L.R., Fulkerson, D.R.: Network Flow Theory, Petan Press, Princeton (1962)

Gale, Kuhn, H., and Tucker:, "Linear Programming and fhieeory of Games -
Chapter XII”, in Koopmans, Activity Analysis of Productioand Allocation, Wiley,
http://cowles.econ.yale.edu/P/cm/m13/m13-19.pdf 5) Bee Lemma 1 on page 318.
Gomory, R.: Outline of an algorithm for integer solusoto linear programs. Bul. of the
American Math. Soc64, 275-278 (1958)

Grotschel, M., Lovasz, L., Schrijver, A.: Geometritgarithms and Combinatorial Optimiza-
tion. Springer, Berlin, 1988

Hoffman, A.J., Kruskal, J.B.: Integral Boundary Poiot£onvex Polyhedra. In Kuhn, H.W.;
Tucker, AW, Linear Inequalities and Related Systems, édsiof Mathematics Studie38,
Princeton University Press, Princeton, (1956) pp. 223-246

Kannan, R., Monma, C.L.: On the computational compjeadtinteger programming prob-
lems. Lecture Notes in Economws and Mathematical Sysfés7is161-172 (1978)

Klee, V., Minty, G.J.: How good is the simplex algorithim?Shisha, Oved. Inequalities IlI,
Academic Press, New York-London (1972), pp. 159-175

Minkowski, H.: Allgemeine Lehrsatze uber konvexeyRoler. Ges. Wiss. Gottingen, 198-219
(1897)

Nemhauser G.L., Wolsey L.A.: Integer Programming anchBioatorial Optimization. Wiley-
Interscience, New-York (1998)

Combinatorial optimization illustrated on network flow 39

26. Schrijver, A.: Theory of Linear and Integer Programmigley, Chichester (1986)

27. Schrijver, A.: Combinatorial Optimization: Polyhedend Efficiency. Springer, Berlin-
Heidelberg (2003)

28. Weyl, H.: Elementare Theorie der konvexen Polyeder. @ent. Math. Helvetici, 7 (1935)

