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Abstract. The class B of lacunary polynomials f (x) := −1 + x + xn + xm 1 + xm 2 +

. . .+ xm s , where s > 0 , m 1 − n > n− 1 , m q+1 −m q > n− 1 for 1 6 q < s , n > 3

is studied. A polynomial having its coefficients in { 0, 1 } except its constant coefficient

equal to −1 is called an almost Newman polynomial. A general theorem of factorization

of the almost Newman polynomials of the class B is obtained. Such polynomials possess

lenticular roots in the open unit disk off the unit circle in the small angular sector−π/18 6

arg z 6 π/18 and their nonreciprocal parts are always irreducible. The existence of

lenticuli of roots is a peculiarity of the class B . By comparison with the Odlyzko–

Poonen Conjecture and its variant Conjecture, an Asymptotic Reducibility Conjecture is

formulated aiming at establishing the proportion of irreducible polynomials in this class.

This proportion is conjectured to be 3/4 and estimated using Monte-Carlo methods. The

numerical approximate value ≈ 0.756 is obtained. The results extend those on trinomials

(Selmer) and quadrinomials (Ljunggren, Mills, Finch and Jones).
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1. Introduction

In this note, for n > 3 , we study the factorization of the polynomials

f (x) := −1 + x + xn + xm 1 + xm 2 + . . . + xm s , (1.1)

where s > 0 , m 1 − n > n − 1 , m q+1 − m q > n − 1 for 1 6 q < s . Denote by
B the class of such polynomials, and by Bn those whose third monomial is exactly xn , so
that

B =
⋃

n> 2

Bn .

The case s = 0 corresponds to the trinomials Gn (z) := −1 + z + z n studied by
Selmer [17]. Let θn be the unique root of the trinomial Gn (z) = 0 in (0, 1) . The
algebraic integers θ−1

n > 1 are Perron numbers. The sequence (θ−1
n )n > 2 tends to 1 if

n tends to +∞ .

Theorem 1 (Selmer [17]). Let n > 2 . The trinomials Gn (x) are irreducible if n 6≡
5 (mod 6) , and, for n ≡ 5 (mod 6) , are reducible as product of two irreducible factors
whose one is the cyclotomic factor x 2 − x + 1 , the other factor (−1 + x + xn) / (x 2 −
x + 1) being nonreciprocal of degree n − 2 .

Theorem 2 (Verger-Gaugry [20]). Let n > 2 . The real root θn = D (θn) + tl (θn) ∈
(0, 1) of the trinomial Gn admits the following asymptotic expansion:

D (θn) = 1 − Log n

n
×

×
(

1 −
( n− Log n

n Log n + n− Log n

)(

Log Log n− nLog
(

1− Log n

n

)

− Log n
)

)

, (1.2)

and

tl (θn) =
1

n
· O

((Log Log n

Log n

) 2)

, (1.3)

with the constant 1
2

involved in O (·) .

Remark 1. A simplified form of expression (1.2) is the following:

D (θn) = 1 − 1

n

(

Log n − Log Log n +
Log Log n

Log n

)

. (1.4)

By definition a Newman polynomial is an integer polynomial having all its coefficients in
{ 0, 1 } . A polynomial having its coefficients in { 0, 1 } except its constant coefficient equal
to −1 is called an almost Newman polynomial. It is not difficult to see that polynomials
f ∈ B are almost Newman polynomials. The following irreducibility Conjecture (called
Odlyzko–Poonen (OP)) holds for the asymptotics of the factorization of Newman

polynomials.
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Conjecture 1 (Odlyzko–Poonen [12]). Let P d,+ := {1 +
∑ d

j =1 a j x
j
∣

∣

∣
a j ∈

{0, 1} , a d = 1} denote the set of all Newman polynomials of degree d . We introduce
also the class P+ :=

⋃

d > 1 P d,+ . Then, in P+ , almost all polynomials are irreducible.
More precisely, if Ω d denotes the number of irreducible polynomials in P d,+ , then

lim
d → ∞

Ω d

2 d− 1
= lim

d → ∞

#{f ∈ P d,+

∣

∣

∣
f is irreducible }

2 d− 1
= 1 .

The best account of the Conjecture is given by Konyagin [7]:

Ω d ≫
2 d

Log d
.

Replacing the constant coefficients 1 by −1 gives the variant Conjecture (called “variant
OP ”) for almost Newman polynomials.

Conjecture 2. (Variant OP) Let P d,− := {−1 +
∑ d

j=1 a j x
j
∣

∣

∣
a j = 0 or 1 ,

a d = 1} denote the set of all almost Newman polynomials of degree d . Denote

P− =
⋃

d > 1

P d,− .

Then, in P− , almost all polynomials are irreducible. More precisely,

lim
d → ∞

#{f ∈ P d,−

∣

∣

∣
f is irreducible}

2 d− 1
= 1 .

There is a numerical evidence that the OP Conjecture and the variant OP Conjecture
are true (cf. Table 1, Sect. §6).

The objectives of this note consist in

(1) Establishing the type of factorization of the polynomials f of the class B (Theo-
rem 3), in the context of Schinzel’ s and Filaseta’ s theorems on the factorization
of lacunary polynomials [3, 13, 15].

(2) Characterizing the geometry of the zeroes of the polynomials f of the class B ,
in particular in proving the existence of lenticuli of zeroes in the angular sector
−π/18 6 arg z 6 π/18 inside the open unit disk in Solomyak’ s fractal (with
numerical examples to illustrate Theorem 4).

(3) Estimating the probability for a polynomial f ∈ B to be irreducible (Heuristics
called “Asymptotic Reducibility Conjecture”) by comparison with the variant OP
Conjecture.

Notations used in the sequel. If P (x) =
∑ r

j=0 a j x
r ∈ Z [x] , we refer to the reciprocal

polynomial of P (x) as P ∗ (x) =
∑ r

j=0 a r− j x
r . The Euclidean norm ||P || of P (x) =

∑ r
j=0 a j x

r ∈ Z [x] is ||P || :=
(

∑ r
j=0 a 2

j

)
1

2

. If α is an algebraic number, Pα (x)

denotes its minimal polynomial; if Pα (x) is reciprocal we say that α is reciprocal. A
Perron number α is either 1 or a real algebraic integer > 1 such that its conjugates
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α (i) are strictly less than α in modulus. The integer n is called the dynamical degree
of the real algebraic integer β > 1 if 1/β denotes the unique real zero of f (x) =
− 1 + x+ xn +

∑ s
q=1 xm q ∈ B . Let T denote the unit circle in the complex plane.

Theorem 3. For any f ∈ Bn , n > 3 , denote by

f (x) = A (x) · B (x) · C (x) = −1 + x + xn + xm 1 + xm 2 + . . . + xm s ,

where s > 1 , m 1 − n > n − 1 , m j+1 − m j > n − 1 for 1 6 j < s , the
factorization of f where A is the cyclotomic part, B the reciprocal noncyclotomic part, C
the nonreciprocal part. Then,

(1) the nonreciprocal part C is nontrivial, irreducible and never vanishes on the unit
circle,

(2) if β > 1 denotes the real algebraic integer uniquely determined by the sequence
(n, m 1, m 2, . . . , m s) such that 1/β is the unique real root of f in (θn− 1, θn) , the
nonreciprocal polynomial −C ∗ (x) of C (x) is the minimal polynomial of β , and β
is a nonreciprocal algebraic integer.

Remark 2. For all polynomials f , as described in Theorem 3, we observe numerically the
following lower bound on the degree of the nonreciprocal part C :

deg (C) > ⌊m s − 1

2
⌋ ,

At the current stage this minoration is a conjecture.

Let us now define the lenticular roots of an f of the class B . In the case s = 0 , i.e.
for the trinomials Gn (x) , from [19, Proposition 3.7], the roots of modulus < 1 of Gn all
lie in the angular sector − π/3 < arg z < π/3 . The set of these “internal” roots has the
form of a lenticulus, justifying the terminology (Figure 1(a) for n = 37); they are called
lenticular roots. For extending the notion of “lenticulus of roots” to general polynomials f
of the class B , with s > 1 , we view

f (x) = −1 + x + xn + xm 1 + xm 2 + . . . + xm s =

Gn (x) + xm 1 + xm 2 + . . . + xm s ,

(where n > 3 , s > 1 , m 1 − n > n − 1 , m j +1 − m j > n − 1 for 1 6 j < s) as a
perturbation of Gn (x) by xm 1 + xm 2 + . . . + xm s . The lenticulus of roots of f is then a
deformation of the lenticulus of roots of Gn (Figure 1(b)). In this deformation process, the
aisles of the lenticulus may present important displacements, in particular towards the unit
circle, whereas the central part remains approximately identical. Therefore it is hopeless
to define the lenticulus of roots of f in the full angular sector − π/3 < arg ω < π/3 .
From the structure of the asymptotic expansions of the roots of Gn (x) [20] it is natural to
restrict to the angular sector to − π/18 < arg ω < π/18 . More precisely,

Theorem 4 ([21]). Let n > 260 . There exist two positive constants cn and cA,n ,
cA,n < cn , such that the roots of f ∈ Bn ,

f (x) = −1 + x + xn + xm 1 + xm 2 + . . . + xm s ,
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where s > 1 , m 1 − n > n − 1 , m j+1 − m j > n − 1 for 1 6 j < s , lying in
− π/18 < arg z < π/18 either belong to

{

z
∣

∣

∣
| | z | − 1 | <

cA,n

n

}

, or to
{

z
∣

∣

∣
| | z | − 1 | >

cn

n

}

.

The lenticulus of zeroes of f is then defined as

Lβ :=
{

ω
∣

∣

∣
|ω | < 1 , − π

18
< arg ω <

π

18
, | |ω | − 1 | >

cn

n

}

,

where 1/β is the positive real zero of f . The proof of Theorem 4 requires the structure of
the asymptotic expansions of the roots of Gn and is given in [21].

A typical example of lenticularity of roots with n = 481 is given in Figure 8, in which

f (x) = −1 + x + x 481 + x 985 + x 1502 .

Let κ = 0.171573 . . . be the maximum of the function

y 7−→
1 − exp

(

− π

y

)

2 exp
(π

y

)

− 1

on (0, +∞) . The following formulation for cn is given in [21]:

cn = −
(

1 +
1

n

)

· Log κ +
1

n
· O

(

(Log Log n

Log n

) 2
)

,

with cn ≃ −Log κ ≈ 1.76274 . . . to the first-order. In the present note Theorem 4 is
only examplified. Namely, in Section 3 we show that the statement of this Theorem also
holds on examples, in particular pentanomials, for dynamical degrees n less than 260 .

Concerning the asymptotic probability of irreducibility of the polynomials of the class
B at large degrees, our numerical results shown in Figure 7, using the Monte-Carlo

method (see the pseudo-code 1), suggest the following

Conjecture 3 (Asymptotic Reducibility Conjecture). Let n > 2 and N > n . Let

B
(N)
n denote the set of the polynomials f ∈ Bn such that deg (f) 6 N . Let B (N) :=

⋃

2 6 n 6 N B
(N)
n . The proportion of polynomials in B =

⋃

N > 2 B (N) which are irre-
ducible is given by the limit, assumed to exist,

lim
N → ∞

#{ f ∈ B (N)
∣

∣

∣
f irreducible }

#{ f ∈ B (N) } =
3

4
.

2. Quadrinomials (s = 1)

Since every f ∈ B is nonreciprocal and such that f (1) 6= 0 , f is never divisible by
the cyclotomic nonreciprocal polynomial − 1 + x . When f ∈ B is a quadrinomial, the
following Theorems provide all the possible factorizations of f .
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Theorem 5 (Ljunggren [8]). If f ∈ B , as

f (x) = − 1 + x + xn + xm 1 ,

has no zeroes which are roots of unity, then f (x) is irreducible. If f (x) has exactly q
such zeroes, then f (x) can be decomposed into two rational factors, one of which is cyclo-
tomic of degree q with all these roots of unity as zeroes, while the other is irreducible (and
nonreciprocal).

Ljunggren’ s Theorem 5 is not completely correct. Mills corrected it (Theorem 8).
Finch and Jones completed the results (Theorem 9).

Theorem 6 (Ljunggren [8]). If f ∈ B , with s = 1 , as

f (x) = − 1 + x + xn + xm 1 ,

with e 1 = gcd (m 1, n − 1) , e 2 = gcd (n, m 1 − 1) , then all possible roots of unity of
f (x) are simple zeroes, which are to be found among the zeroes of

x e 1 = ± 1 , x e 2 = ± 1 , x = − 1 .

Theorem 7 (Ljunggren [8]). If f ∈ B , with s = 1 , as

f (x) = − 1 + x + xn + xm 1 ,

is such that both n and m 1 are odd integers, then f (x) is irreducible.

Theorem 8 (Mills [11]). Let f ∈ B , with s = 1 ,

f (x) = − 1 + x + xn + xm 1

decomposed as f (x) = A (x) ·B (x) where every root of A (x) and no root of B (x) is a root
of unity. Then A (x) is the greatest common divisor of f (x) and f ∗ (x) = xm 1 · f (1/x) ,
then reciprocal cyclotomic, and the second factor B (x) is irreducible, then nonreciprocal,
except when f (x) has the following form:

− 1 + x r + x 7 r + x 8 r = (x 2 r + 1) · (x 3 r + x 2 r − 1) · (x 3 r − x r + 1) .

In the last case, the factors x 3 r + x 2 r − 1 and x 3 r − x r + 1 are (nonreciprocal)
irreducible.

Theorem 9 (Finch – Jones, [5]). Let f ∈ B , with s = 1 ,

f (x) = − 1 + x + xn + xm 1 .

Let e 1 = gcd (m 1, n − 1) , e 2 = gcd (n, m 1 − 1) . The quadrinomial f (x) is irreducible
over Q if and only if

m 1 6≡ 0 ( mod 2 e 1) , n 6≡ 0 ( mod 2 e 2) .
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3. Noncyclotomic reciprocal factors

In this Section we investigate the possible irreducible factors, in the factorization of a
polynomial f ∈ Bn , with n large enough, which vanish on the lenticular zeroes, or a
subcollection of them. In Proposition 1 it is proved that the degrees of the noncyclotomic
reciprocal factors (if they exist), and therefore the degrees of such f , should be fairly large.
Proposition 1 does not say that the degrees of the noncyclotomic reciprocal factors are
large. For the sake of simplicity, the value cn (defining the lenticulus of zeroes of f) is
taken to be equal to − Log κ .

Proposition 1. If f (x) := − 1 + x + xn + xm 1 + xm 2 + . . . + xm s ∈ Bn ,
s > 1 , n > 260 , admits a reciprocal noncyclotomic factor in its factorization which has
a root of modulus > 1 + (1 − c) ·

(

− Log κ
n

)

+ c ( θ−1
n − 1 ) , for some 0 6 c 6 1 ,

then the number s + 3 of its monomials satisfies:

s + 3 >

(

1 +
1

n
Log

n c

κ (1− c)

)n− 1

+ 1

and its degree has the following lower bound

m s = deg f >

(

(

1 +
1

n
Log

n c

κ (1− c)

)n− 1

− 1

)

· (n − 1) + 1 . (3.1)

Proof. The Perron number θ−1
n is the dominant root of − 1 + x + xn , and θ−1

n− 1 of
− 1 + x + xn− 1 . Since f ∈ Bn , s > 1 , by Lemma 5.1 (ii) in [6] (cf. Section 5.4),
the dominant (positive real) zero of f ∗ (x) lies in the interval (θ−1

n , θ−1
n− 1) . The (external)

lenticulus of zeroes of f ∗ (x) is defined as the image of that of f by z 7−→ 1/z . The
existence of c ∈ [ 0, 1 ] and a reciprocal noncylotomic factor vanishing at the zeroes of the
subcollection of the lenticulus of f defined by c , implies that this reciprocal noncylotomic
factor also vanishes at the zeroes of the lenticulus of f ∗ , external to the unit disk, in the
same proportion.

Lemma 1 (Mignotte – Ştefănescu [10]). Let

P (x) = x q + a q− k x
q− k + . . . + a 1 x + a 0 ∈ Z [x] \ Z .

Then the moduli of the roots of P (x) are bounded by
(

| a 0 | + | a 1 | + . . . + | a q− k |
)1/k

. (3.2)

The number of monomials in f ∈ Bn , n > 2 , is equal to s + 3 . Then the sum
| a 0 | + | a 1 | + . . . + | a q− k | of Proposition 1, applied to P (x) ≡ f (x) with q = m s , is
equal to s + 2 , and k is > n − 1 . If we assume that f contains an irreducible reciprocal

noncyclotomic factor B having a root of modulus > 1 + (1 − c)·
(

− Log κ
n

)

+ c·(θ− 1
n − 1) ,

for some 0 6 c 6 1 then we should have, by Lemma 1 and by Equation (1.4),

(s + 2) 1/k > 1 +
1

n

(

− Log κ (1− c) + c Log n
)

.



D. Dutykh & J.-L. Verger-Gaugry 10 / 33

Therefore,
1

k
Log (s + 2) > Log

(

1 +
1

n
Log

n c

κ (1− c)

)

,

which implies

Log (s + 2) > Log

(

(

1 +
1

n
Log

n c

κ (1− c)

)n− 1
)

and the result. Moreover,

m s = (m s − m s− 1) + (m s− 1 − m s− 2) + . . . + (m 2 − m 1) + (m 1 − n) +

(n − 1) + 1 > (s + 1) · (n − 1) + 1 ,

from which (3.1) is deduced. �

Example 1. Let f ∈ Bn , with n = 400 , for which it is assumed that there exists a
reciprocal noncyclotomic factor of f vanishing on the subcollection of roots of the lenticulus
of f given by c = 0.95 . Then, by (3.1), the degree m s of f should be above 121 786 .

The case where the summit (real > 1) of the lenticulus of zeroes of f ∗ is a zero of a
reciprocal noncyclotomic factor of f never occurs by the following Proposition.

Proposition 2. If f (x) := − 1 + x + xn + xm 1 + xm 2 + . . . + xm s ∈ Bn ,
s > 1 , n > 3 , is factorized as f (x) = A (x) ·B (x) ·C (x) as in Theorem 3. Then, the
unique positive real root of f (x) is a root of the nonreciprocal part C (x) .

Proof. By Descartes’ s rule the number of positive real roots of f should be less than the
number of sign changes in the sequence of coefficients of the polynomials f . The number
of sign changes in f is 1 . If say 1/β is the unique root of f in (0, 1) , and assumed to
be a root of a factor of B then β and 1/β 6= β would be two real roots of f , what is
impossible. �

4. Lenticuli of zeroes: an example with s = 12 , and
various pentanomials (with s = 2)

In this paragraph let us examplify the fact that the roots of any

f (x) := − 1 + x + xn + xm 1 + xm 2 + . . . + xm s ,

where s > 1 , m 1 − n > n − 1 , m q+1 − m q > n − 1 for 1 6 q < s , n > 3 , are
separated into two parts, those which lie in a narrow annular neighbourhood of the unit
circle, and those forming a lenticulus of roots ω inside an angular sector − γ < arg ω < γ
with γ say < π/3 off the unit circle. This dichotomy phenomenon becomes particularly
visible when n and s are large. This lenticulus is shown to be a deformation of the lenticulus
determined by the trinomial − 1 + x + xn made of the first three terms of f ; the lenticulus
of zeroes of − 1 + x + xn is constituted by the zeroes of real part > 1/2 , equivalently
which lie in the angular sector − π/3 < arg (z) < π/3 , symmetrically with respect to
the real axis, for which the number of roots is equal to 1 + 2 ⌊n/6 ⌋ [20, Prop. 3.7].
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The value of γ is taken equal to π/18 as soon as n is large enough, due to the structure
of the asymptotic expansions of the roots of Gn [20], so that the number of roots of the
lenticulus of roots of f can be asymptotically defined by the formula

1 +

⌊

1

3

⌊ n

6

⌋

⌋

± 1 . (4.1)

At small values of n , the value of γ = π/18 is also kept as a critical threshold to estimate
the number of elements in the lenticulus of roots of f by (4.1). It can be shown [21] that
the lenticulus of roots of f is a set of zeroes of the nonreciprocal irreducible factor in the
factorization of f . Even though it seems reasonable to expect many roots of f on the unit
circle, it is not the case: all the roots α of the nonreciprocal irreducible component of f (x)
are never on the unit circle: |α | 6= 1 , as proved in Proposition 5.

(i) Example of a polynomial in B 37 with s = 12 :
Let the polynomial f (x) de defined as

f (x) := −1 + x + x 37 + x 81 + x 140 + x 184 + x 232 + x 285 + x 350 + x 389

+ x 450 + x 590 + x 649 ≡ G 37 (x) + x 81 + x 140 + x 184 + x 232 + x 285

+ x 350 + x 389 + x 450 + x 590 + x 649 (4.2)

The zeroes are represented in Figure 1(b), those of G 37 (x) = − 1 + x + x 37 in
Figure 1(a). The polynomial f is irreducible. The zeroes of f (x) are either lenticular or
lie very close to the unit circle. The lenticulus of zeroes of f contains 3 zeroes, compared
to 13 for the cardinal of the lenticulus of zeroes of the trinomial G 37 (x) . It is obtained by
a slight deformation of the restriction of the lenticulus of zeroes of G 37 (x) to the angular
sector | arg z | < π/18 .

(ii) Examples of pentanomials (s = 2) The examples show different factorizations of poly-
nomials f ∈ Bn for various values of n , having a small number of roots in their lenticulus
of roots; in many examples the number of factors is small (one, two or three). The last
examples exhibit polynomials f ∈ B having a larger number of zeroes in the lenticuli of
roots (5 , 7 and 27). Denser lenticuli of roots (for n > 1 000 for instance) are difficult to
visualize graphically for the reason that the lenticuli of roots are extremely close to the unit
circle, and apparently become embedded in the annular neighbourhood of the nonlenticular
roots.

(1) Dynamical degree n = 5 . Let f 1 (x) = − 1 + x + x 5 + x 9 + x 15 . It is
reducible and its factorization admits only one irreducible cyclotomic factor, the
second factor being irreducible nonreciprocal:

f 1 (x) = (1 + x + x 2) · (− 1 + 2 x − x 2 − x 3 + 2 x 4 − 2 x 6 +

2 x 7 − x 9 + x 10 − x 12 + x 13) .

Let f 2 (x) = − 1 + x + x 5 + x 9 + x 18 . In the factorization of f 2 (x) two
irreducible cyclotomic factors appear and where the third factor is irreducible and
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Figure 1. (a) The 37 zeroes of G37(x) = − 1 + x + x 37 ; (b) The 649 zeroes

of f (x) = G37 (x) + . . . + x 649 given in Equation (4.2). The lenticulus of
roots of f (having 3 simple zeroes) is obtained by a very slight deformation of the
restriction of the lenticulus of roots of G 37 (x) to the angular sector

| arg z | < π/18 , off the unit circle. The other roots (nonlenticular) of f can be
found in a narrow annular neighbourhood of | z | = 1 .

nonreciprocal:

f 2 (x) = (1 − x + x 2) · (1 + x + x 2) · (− 1 + x + x 2 − x 3 + x 5

− x 6 + x 8 − x 12 + x 14) .

In both cases, the lenticulus of zeroes of f 1, 2 (x) is the lenticulus of its nonreciprocal
factor. It is reduced to the unique real positive zero of f 1, 2 : 0.7284 . . . , resp.
0.7301 . . . , close to real positive zero 0.7548 . . . of G 5 (x) which is the only element
of the lenticulus of roots of G 5 (x) .

(2) Dynamical degree n = 12 . The lenticulus of zeroes of G 12 (x) is shown in Fig-
ure 2(a) and Figure 3(a). It contains 5 zeroes. Let f 1 (x) = − 1 + x + x 12 +
x 23 + x 35 , resp. f 2 (x) = − 1 + x + x 12 + x 250 + x 385 . Both polynomials
are irreducible. In both cases the lenticulus of zeroes of f (x) (Figures 2(b), 3(b))
only contains one point, the real root 0.8447 . . . , resp. 0.8525 . . . , close to the real
positive zero 0.8525 . . . of G 12 (x) : the lenticulus of f is a slight deformation of
the restriction of the lenticulus of G 12 (x) to the angular sector | arg z | < π/18 .
Comparing Figure 2(b) and Figure 3(b), the higher degree of f , 385 instead of 35 ,
has two consequences:
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Figure 2. (a) The 12 zeroes of G 12 (x) ; (b) The 35 simple zeroes of

f (x) = − 1 + x + x 12 + x 23 + x 35 . By definition, only one root is
lenticular, the one on the real axis, though the “complete” lenticulus of roots of
− 1 + x + x 12 , slightly deformed, can be guessed.

(a) the densification of the annular neighbourhood of | z | = 1 by the zeroes of
f (x) ,

(b) the decrease of the thickness of the annular neighbourhood containing the
nonlenticular roots of f (x) . This phenomenon is general (cf. Section 5.3).

(3) Dynamical degree n = 81 . Let f (x) = − 1 + x + x 81 + x 165 + x 250 . It is irre-
ducible. The lenticulus of zeroes of G 81 (x) contains 27 points (Figure 4(a)), while
that of f (x) (Figure 4(b)) contains 5 points, in particular the real root 0.9604 . . . ,
close to the real positive root 0.9608 . . . of G 81 (x) .

(4) Dynamical degree n = 121 . Let f (x) = − 1 + x + x 121 + x 250 + x 385 . It is
irreducible. The lenticulus of zeroes of G 121 (x) contains 41 points (see Figure 5(a)),
whereas the lenticulus of roots of f (x) (Figure 5(b)) contains 7 points, in particular
the real root 0.9709 . . . , close to the real positive root 0.971128 . . . of G 121 (x) .

5. Factorization of the lacunary polynomials of class B

In a series of papers Schinzel [13–16] has studied the reducibility of lacunary poly-
nomials, their possible factorizations, the asymptotics of their numbers of irreducible fac-
tors, reciprocal, nonreciprocal, counted with multiplicities or not, for large degrees. Do-

browolsky [2] has also contributed in this domain in view of understanding the problem
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Figure 3. (a) The 12 zeroes of G 12 (x) ; (b) The 385 zeroes of

f (x) = − 1 + x + x 12 + x 250 + x 385 . The lenticulus of roots of the
trinomial G 12 (x) = − 1 + x + x 12 can be guessed, slightly deformed and
almost “complete”. It is well separated from the other roots, and off the unit

circle. Only one root of f is considered as a lenticular zero, the one on the real
axis: 0.8525 . . . . The thickness of the annular neighbourhood of | z | = 1 which
contains the nonlenticular zeroes of f (x) is much smaller than in Figure 2(b).

of Lehmer. First let us deduce the following Theorem on the class B , from Schinzel’ s
Theorems.

Theorem 10. Suppose f ∈ B of the form

f (x) = − 1 + x + xn + xm 1 + . . . + xm s , n > 2 , s > 1 .

Then the number ω (f) , resp. ω 1 (f) , of irreducible factors, resp. of irreducible noncyclo-
tomic factors, of f (x) counted without multiplicities in both cases, satisfy

•

ω (f) ≪
√

m s Log (s + 3)

Log Log m s
, m s → ∞ ,

• for every ε ∈ (0, 1) ,

ω 1 (f) = o (m ε
s) ·

(

Log (s + 3)
) 1− ε

, m s → ∞ .

Proof. Theorem 1 and Theorem 2, with the “Note added in proof ” in Schinzel [16, p. 319].
�
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Figure 4. (a) Zeroes of G 81 (x) ; (b) Zeroes of

f (x) = − 1 + x + x 81 + x 165 + x 250 . On the right the distribution of the
roots of f (x) is zoomed twice in the angular sector −π/18 < arg (z) < π/18 .
The number of lenticular roots of f (x) is equal to 5 .
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Figure 5. (a) Zeroes of G 121 (x) ; (b) Zeroes of

f (x) = − 1 + x + x 121 + x 250 + x 385 . On the right the distribution of the
roots of f (x) is zoomed twice in the angular sector −π/18 < arg (z) < π/18 .
The lenticulus of roots of f (x) has 7 zeroes.
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5.1. Cyclotomic parts

Let us first mention some results on the existence of cyclotomic factors in the factoriza-
tion of the polynomials of the class B . Then, in Proposition 4, we prove the existence of
infinitely many polynomials f ∈ B which are divisible by a given cyclotomic polynomial
Φ p , for every prime number p > 3 .

Lemma 2. Suppose f ∈ B of the form

f (x) = − 1 + x + xn + xm 1 + . . . + xm s , n > 2 , s > 1 ,

and divisible by a cyclotomic polynomial. Then there is an integer m = p q 1

1 · . . . · p q r
r

having all its prime factors p i 6 s + 3 such that Φm (x) divides f (x) .

Proof. Lemma 3.2 in [4]. �

The divisibility of f ∈ B by cyclotomic polynomials Φ p (x) , where p are prime numbers,
implies a condition on those p ’ s by the following Proposition 3.

Lemma 3 (Boyd). Let p be a prime number. Suppose f ∈ B of the form

f (x) =

m s
∑

j=0

a j x
j = − 1 + x + xn + xm 1 + . . . + xm s , n > 2 , s > 1 .

Denote c i =
∑

k≡ i (p) a k . Then,

Φ p (x)
∣

∣ f(x) ⇐⇒ c 0 = c 1 = . . . = c p− 1 .

Proof. Φ p (x) divides f (x) if and only if (x p − 1) divides (x − 1) · f (x) . �

Proposition 3. Suppose f(x) ∈ B of the form

f (x) =
m s
∑

j=0

a j x
j = − 1 + x + xn + xm 1 + . . . + xm s , n > 2 , s > 1

and that Φ p (x)
∣

∣ f (x) for some prime number p . Then

p
∣

∣ (s + 1) .

Proof. Using Lemma 3, since f (1) = s + 1 =
∑

k a k =
∑p− 1

i=0

∑

k≡ i (p) a k = p · c 0 ,
we deduce the claim. �

A necessary condition for f (x) to be divisible by Φ p (x) is that s should be congruent
to −1 modulo p .

Proposition 4. Let p > 3 be a prime number. Let n > 2 . There exist infinitely many
f ∈ Bn such that

Φ p (x)
∣

∣ f (x) .
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Proof. Let ζ p denote the primitive root of unity e 2 iπ / p . Let us assume that f (x) ∈ Bn

vanishes at ζ p , as

f (ζ p) = − 1 + ζ p + ζ n
p + ζ m 1

p + . . . + ζm s

p = 0 .

We consider the residues modulo p of the (s + 1)−tuple (n, m 1, m 2, . . . , m s) so that
f (ζ p) can be written

f (ζ p) = c 0 + c 1 ζ p + c 2 ζ
2
p + . . . + c p− 1 ζ

p− 1
p = 0 ,

c 0, c 1, . . . , c p− 1 ∈ Z .

The polynomial Φ p (x) = 1 + x + x 2 + . . . + x p− 1 = (x p − 1) / (x − 1) is the
minimal polynomial of ζ p . Then, if c 0 or c p− 1 is equal to 0 , then all the coefficients c i

should be equal to 0 since {1, ζ p, ζ
2
p , . . . , ζ

p− 2
p } is a free system over Z . If c 0 ·c p− 1 6= 0

then the equalities

c 0 = c 1 = c 2 = . . . = c p− 1 6= 0

should hold since the polynomial
∑ p− 1

j =0 c j x
j vanishes at ζ p and is of the same degree as

Φ p (x) . The common value can be arbitrarily large. In both cases we have the condition

c 0 = c 1 = c 2 = . . . = c p− 1 .

It means that the distribution of the exponents n , m 1 , m 2 , . . ., m s by class of congruence
modulo p should be identical in each class.

Then, if p 6 n , the constant term − 1 “belongs to” the class “ ≡ 0 mod p ”, and ζ p

to the class “ ≡ 1 mod p ”. The term ζ n
p may belong to another class “ ≡ i mod p ”

with i 6= 0, 1 or to one of the classes “ ≡ 0 mod p ” or “ ≡ 1 mod p ”. If p > n then
the term ζ n

p belongs to another class “ ≡ i mod p” with i 6= 0 , 1 . In both cases we
can complete the classes by suitably adding terms “ζ m i

p ”. We now chose s > 1 and m 1 ,
m 2 , . . ., m s sequentially such that the distribution of the residues modulo p

m 1 mod p , m 2 mod p , . . . , m s mod p

in the respective classes “ ≡ i mod p ", with i = 0, 1, . . . , p − 1 , is equal.
If one solution (m 1, . . . , m s) is found, then Φ p (x) divides f (x) . Another solution

f ♯ ∈ Bn is now found with s ♯ = s + p and a suitable choice of the exponents
m s+1, . . . , m s+ p

f ♯ (x) = − 1 + x + xn + xm 1 + . . . + xm s + xm s+1 + . . . xm s+ p

so that

f ♯ (ζ p) = c ♯
0 + c ♯

1 ζ p + . . . + c ♯
p− 1 ζ

p− 1
p ,

where the p residues modulo p of m s+1, . . . , m s+ p are all distinct, satisfying

c ♯
0 = c ♯

1 = . . . = c ♯
p− 1 = c 0 + 1 .

Then Φ p (x) also divides f ♯ (x) . Iterating this process we deduce the claim. �
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5.2. Nonreciprocal parts

Proposition 5. If P (z) ∈ Z [z] , P (1) 6= 0 , is nonreciprocal and irreducible, then P (z)
has no root of modulus 1 .

Proof. Let P (z) = a d z
d + . . . + a 1 z + a 0 , with a 0 · a d 6= 0 , be irreducible and

nonreciprocal. We have gcd (a 0, . . . , a d) = 1 . If P (ζ) = 0 for some ζ , | ζ | = 1 ,
then P (ζ̄) = 0 . But ζ̄ = 1/ζ and then P (z) would vanish at 1/ζ . Hence P would be
a multiple of the minimal polynomial P ∗ of 1/ζ . Since deg (P ) = deg(P ∗) there exists
λ 6= 0 , λ ∈ Q , such that P = λP ∗ . In particular, looking at the dominant and
constant terms, a 0 = λ a d and a d = λ a 0 . Hence, a 0 = λ 2 a 0 , implying λ = ± 1 .
Therefore P ∗ = ±P . Since P is assumed nonreciprocal, P ∗ 6= P , implying P ∗ = −P .
Since P ∗ (1) = P (1) = −P (1) , we would have P (1) = 0 . Contradiction. �

For studying the irreducibility of the nonreciprocal parts of the polynomials f ∈ B ,
we will follow the method introduced by Ljunggren [8], used by Schinzel [13, 15] and
Filaseta [3].

Lemma 4 (Ljunggren [8]). Let P (x) ∈ Z [ x ] , deg (P ) > 2 , P (0) 6= 0 . The
nonreciprocal part of P (x) is reducible if and only if there exists w (x) ∈ Z [ x ] different
from ±P (x) and ±P ∗ (x) such that w (x) · w ∗ (x) = P (x) · P ∗ (x) .

Proof. Let us assume that the nonreciprocal part of P (x) is reducible. Then, there exists
two nonreciprocal polynomials u (x) and v (x) such that P (x) = u (x) · v (x) . Let
w (x) = u (x) · v ∗ (x) . We have:

w (x) · w ∗ (x) = u (x) · v ∗ (x) · u ∗ (x) · v (x) = P (x) · P ∗ (x) .

Conversely, let us assume that the nonreciprocal part c (x) of P (x) is irreducible and that
there exists w (x) different of±P (x) and ±P ∗ (x) such that w (x)·w ∗ (x) = P (x)·P ∗ (x) .
Let P (x) = a (x) · c (x) be the factorization of P where every irreducible factor in a is
reciprocal. Then,

P (x) · P ∗ (x) = a 2 (x) · c (x) · c ∗ (x) = w (x) · w ∗ (x) .

We deduce w (x) = ± a (x) · c (x) = ±P (x) or w (x) = ± a (x) · c ∗ (x) = ±P ∗ (x) .
Contradiction. �

Proposition 6. For any f ∈ Bn , n > 3 , denote by

f (x) = A (x) · B (x) · C (x) = − 1 + x + xn + xm 1 + xm 2 + . . . + xm s ,

where s > 1 , m 1 − n > n − 1 , m j+1 − m j > n − 1 for 1 6 j < s , the
factorization of f , where A is the cyclotomic component, B the reciprocal noncyclotomic
component, C the nonreciprocal part. Then, C is irreducible.

Proof. Let us assume that C is reducible, and apply Lemma 4. Then, there should exist
w (x) different of ± f (x) and ± f ∗ (x) such that w (x) ·w ∗ (x) = f (x) · f ∗ (x) . For short,
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we write

f (x) =
r

∑

j=0

a j x
d j and w (x) =

q
∑

j =0

b j x
k j ,

where the coefficients a j and the exponents d j are given, and the b j ’ s and the k j ’ s are
unkown integers, with | b j | > 1 , 0 6 j 6 q ,

a 0 = − 1 , a 1 = a 2 = . . . = a r = 1 ,

0 = d 0 < d 1 = 1 < d 2 = n < d 3 = m 1

< . . . < d r− 1 = m s− 1 < d r = m s ,

0 = k 0 < k 1 < k 2 < . . . < k q− 1 < k q .

The relation w (x) · w ∗ (x) = f (x) · f ∗ (x) implies the equality: 2 k q = 2 d r ; expanding

it and considering the terms of degree k q = d r , we deduce || f || 2 = ||w || 2 = r + 1
which is equal to s + 3 . Since f ∗ (1) = f (1) and that w ∗ (1) = w (1) , it also implies
f (1) 2 = w (1) 2 and b 0 · b q = − 1 . Then we have two equations

r − 1 =

q− 1
∑

j =1

b 2j , (r − 1) 2 =
(

q− 1
∑

j=1

b j

) 2

.

We will show that they admit no solution except the solution w (x) = ± f (x) or w (x) =
± f ∗ (x) .

Since all | b j | ’ s are > 1 , the inequality q 6 r necessarily holds. If q = r , then
the b j ’ s should all be equal to − 1 or 1 , what corresponds to ± f (x) or to ± f ∗ (x) . If
2 6 q < r , the maximal value taken by a coefficient b 2j is equal to the largest square

less than or equal to r − q + 1 , so that | b j | 6
√
r − q + 1 . Therefore, there is no

solution for the cases “q = r − 1” and “q = r − 2”. If q = r − 3 all b 2j ’ s are equal
to 1 except one equal to 4 , and

r − 1 =
r− 4
∑

j=1

b 2j , (r − 1) 2 >
(

r− 4
∑

j=1

b j

) 2

.

This means that the case “q = r − 3” is impossible. The two cases “q = r − 4” and
“q = r − 5” are impossible since, for m = 5 and 6 ,

∑ r−m
j=1 b 2j cannot be equal to r − 1 .

This is general. For q 6 r − 3 at least one of the | b j | ’ s is equal to 2 ; in this case we
would have

r − 1 = ±
q− 1
∑

j=1

b j 6

q− 1
∑

j =1

| b j | <

q− 1
∑

j=1

b 2j = r − 1 .

Contradiction. �
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5.3. Thickness of the annular neighbourhoods of | z | = 1 containing
the nonlenticular roots

Let n > 3 , and δn be a real number > 0 , smaller than 1 . Let

Dn, δn
:=

{

z
∣

∣ | z | < 1 , δn < |Gn (z) | } .

We now characterize the geometry of the zeroes, in Dn, δn
, of a given

f (x) := − 1 + x + xn + xm 1 + xm 2 + . . . + xm s ∈ Bn ,

where s > 0 , m 1 − n > n − 1 , m q+1 − m q > n − 1 for 1 6 q < s . Obviously a
zero x ∈ Dn, δn

of f is 6= 0 and is not a zero of the trinomial − 1 + x + xn . Moreover,

δn < | − 1 + x + xn | = |xm 1 + xm 2 + . . . + xm s |
< |x |m 1 + |x |m 2 + . . . + |x |m s . (5.1)

This inequality implies that 1 − | x | is necessarily small. Indeed the function Y : u 7−→
∑ s

j=1 um j is increasing, with increasing derivative, on ( 0, 1 ] , so that the unique real

value 0 < r < 1 which satisfies Y (r) = δn admits the upper bound e sup < 1 given

by s − δn = Y ′ (1) · (1 − e sup) =
(

∑ s
j=1 m j

)

· (1 − e sup) ; so that

r < e sup = 1 − s − δn
∑ s

j=1 m j

.

Let us now give a lower bound e inf of r , as a function of n , s , δn and m s . If s = 1 ,
using m 1 > n + (n − 1) , the inequality δn 6 |x |m 1 6 | x | 2n− 1 implies:

e inf = δ 1/(2 n− 1)
n 6 r .

As soon as the assumption lim sup
n → ∞

Log δn

n
= 0 is satisfied, then e inf tends to 1 as n

tends to infinity. This assumption means that the domain Dn, δn
should avoid small disks

centered at the lenticular roots of Gn .
If s > 2 , using the inequalities m q+1 − m q > n − 1 , 1 6 q < s , we deduce,

from Equation (5.1),

δn < |x |m 1 + |x |m 2 + . . . + | x |m s

6 |x | 2n− 1
(1 − |x | (n− 1)·(s− 1)

1 − |x |n− 1

)

+ | x |m s .

Putting H = |x |n− 1 , we are now bound to solve the following equation in H

δn = H 2 ·
( 1 − H s− 1

1 − H

)

+ H m s − 1
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to find e inf , for H < 1 close to one, of the form 1 − ε . It is easy to check that the
expression of ε , at the first-order, is

ε = 2
n s − δn n + δn − s

n s 2 + n s − s 2 + 2m s − 2n − s
,

leading to

e inf =

(

1 − 2
n s − δn n + δn − s

n s 2 + n s − s 2 + 2m s − 2n − s

) 1 / (n− 1)

.

For n , δn and s fixed, the function m s 7−→ ε is decreasing and then m s 7−→ e inf

is increasing. This means that the thickness of the annular neighbourhood of | z | = 1
containing the nonlenticular roots of f diminishes as the degree m s of f tends to infinity,
for a fixed number of monomials s + 3 and a fixed dynamical degree n .

Therefore all the zeroes of f which lie in Dn, δn
belong to

{

z
∣

∣ e inf < z < 1
}

.

An example of dependency of e inf with m s is given by Figure 2(b) and Figure 3(b): for
fixed n = 12 and s = 5 , and varying m s from 35 to 385 .

The Monte–Carlo approach allows to compare the thicknesses δn with numerical
values of thicknesses δ (n) obtained by numerical computation of roots for polynomials of
B with n 6 3 000 . The results are reported in Figure 6.

5.4. Proof of Theorem 3

(1) By Proposition 2 the nonreciprocal part C is nontrivial. By Proposition 6 the
nonreciprocal part C is irreducible. By Proposition 5 the irreducible factor C never
vanishes on the unit circle.

(2) For n > 3 the Rényi β−expansion of 1 in base θ−1
n > 1 is the sequence of digits

of the coefficient vector of Gn (x) + 1 (cf. Lothaire [9, Chap. 7]); the digits lie
in the alphabet {0, 1} . We have

d θ− 1
n

(1) = 0 . 1 0n− 2 1 .

Similarly d θ−1

n− 1
(1) = 0 . 1 0n− 3 1 , where the sequence of digits comes from the

coefficient vector of Gn− 1 (x) + 1 . Let β > 1 denote the real algebraic integer
such that the Rényi β−expansion of 1 in base β is exactly the sequence of digits
of the coefficient vector of f (x) + 1 . We have:

d β (1) = 0 . 1 0n− 2 1 0m 1 −n− 1 1 0m 2 −m 1 − 1 1 . . . 1 0m s −m s− 1 − 1 1 .

Since the two following lexicographical conditions are satisfied:

d θ−1
n

(1) = 0 . 1 0n− 2 1 4lex d β (1) 4lex d θ−1

n− 1
(1) = 0 . 1 0n− 3 1 .

Lemma 5.1 (ii) in Flatto, Lagarias and Poonen [6] implies:

θ−1
n < β < θ−1

n− 1 ⇐⇒ θn− 1 < 1/β < θn .
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Figure 6. Thickness δ (n) , proportional to 1/n at the first-order, of the annular

neighbourhood of the unit circle which contains the nonlenticular roots (of
modulus < 1), represented as a function of the dynamical degree n , for the
almost Newman polynomials f of the class B . The curve “lenticular roots”
represents the distance between 1 and the positive real zero (summit) of the

lenticulus of f ∈ B ; this distance is ∼ Log n/n at the first-order. The
Monte-Carlo method in Bn is used, for n less than 3 000 .

Since −C ∗ is nontrivial, monic, irreducible, nonreciprocal, and vanishes at β , it is
the minimal polynomial of β , and β is nonreciprocal.

6. Heuristics on the irreducibility of the polynomials of B

The Monte-Carlo method is used for testing the Odlyzko–Poonen Conjecture
(“OP Conjecture”) on the Newman polynomials, the variant Conjecture (“variant OP
Conjecture”) on the almost Newman polynomials and for estimating the proportion of
irreducible polynomials in the class B . The Conjectures “OP” and “variant OP” state
that the proportion of irreducible polynomials in the class of Newman polynomials, resp.



D. Dutykh & J.-L. Verger-Gaugry 24 / 33

almost Newman polynomials, is one. This value of one is reasonable in the context of the
general Conjectures on random polynomials [1].

The probability of f ∈ B to be an irreducible polynomial can be defined asymptotically

as follows. Let s > 1 , n > 2 and N > n . Let B
(N, s)
n denote the set of the polynomials

f ∈ Bn having s + 3 monomials such that deg (f) 6 N . Denote

B (N, s) :=
⋃

2 6 n 6 N

B (N, s)
n , B (N) :=

⋃

s > 1

B (N, s) .

Then B =
⋃

N > 2 B (N) . For s > 1 , let B [s] =
⋃

N > 2 B (N, s) . For every s > 1
though the two adherence values

lim inf
N → ∞

#{ f ∈ B (N, s)
∣

∣ f irreducible
}

#
{

f ∈ B (N, s)
} 6

lim sup
N → ∞

#
{

f ∈ B (N, s)
∣

∣ f irreducible
}

#
{

f ∈ B (N, s)
} , (6.1)

exist, and, in a similar way,

lim inf
N → ∞

#
{

f ∈ B (N)
∣

∣ f irreducible
}

#
{

f ∈ B (N)
} 6

lim sup
N → ∞

#
{

f ∈ B (N)
∣

∣ f irreducible
}

#
{

f ∈ B (N)
} , (6.2)

exist, without being equal a priori, we find that, for s = 1 and s = 2 , and for arbitrary
values of s > 1 , there is a numerical evidence that the limits exist in both (6.1) and
(6.2) (i.e. lim inf = lim sup). Table 1 reports the proportion of irreducible quadrinomials
(s = 1), resp. irreducible pentanomials (s = 2), in the class B , with the 90%−confidence
interval under the assumption that the limit exists in each case. We find that the proportion
of irreducible polynomials in B is

lim
N → ∞

#
{

f ∈ B (N)
∣

∣ f irreducible
}

#
{

f ∈ B (N)
} = 0.756 ± 0.02235 .

This value justifies the statement of the “Asymptotic Reducibility Conjecture”. The reason
of this residual reducibility finds its origin in Proposition 4 where cyclotomic polynomials
are asymptotically present in the factorizations, though the authors have no proof of it. By
Monte-Carlo methods, polynomials of degrees N up to 3 000 are tested (see Figure 7),

and the number of monomials s + 3 in each f ∈ B
(N)
n is random in the range of values

of s .
In the case “s = 0”,

⋃

n > 2 B (N =n, s=0) denotes the set of trinomials of the type
− 1 + x + xn , n > 2 , whose factorization was studied by Selmer [17]; the proportion
of irreducible trinomials is exact:

lim
n → ∞

#
{

f ∈ B (n, s=0)
∣

∣ f irreducible
}

#
{

f ∈ B (n, s=0)} =
5

6
= 0.8(3) . (6.3)
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Table 1. Asymptotic proportion of irreducible polynomials in various classes:
Newman polynomials, almost Newman polynomials, B and the subclasses B [ 0 ] ,
B [ 1 ] , B [ 2 ] of } (Maximal polynomial degree: 3 000 , number of Monte-Carlo

runs: 4 000)

Polynomials (class) Proportion 90%−confidence Expected

Interval (estimated)

OP (Newman) 0.967 0.00930 1 (Conjectured)

variant OP (almost Newman) 0.968 0.00916 1 (Conjectured)

Class B 0.756 0.02235 3/4 (Conjectured)

Trinomials (s = 0) 5/6 = 0.8(3) — 5/6 exact (Selmer)

Quadrinomials (s = 1) 0.575 0.02573 unkown

Pentanomials (s = 2) 0.826 0.01601 unkwon

0 500 1000 1500 2000 2500 3000

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Figure 7. Probability to be irreducible for a polynomial of the class B having
degree less than N . The estimated 90%−confidence intervals are represented. A
limit value, as N tends to infinity, is conjectured to exist and its value is

conjectured to be the rational number 3/4 .
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7. Lenticular roots on continuous curves stemming from
z = 1 and boundary of Solomyak’s fractal

In this paragraph we first recall the constructions of Solomyak [18] on the sets of zeroes
of the family W of power series having real coefficients in the interval [ 0, 1 ] , in the interior
of the unit disk, and Solomyak’ s Theorem 11. Then, we will recall how the polynomials
of the class B are related to elements of W .

Let

W :=
{

h (z) = 1 +

+∞
∑

j=1

a j z
j
∣

∣ a j ∈ [ 0, 1 ]
}

be the class of power series defined on | z | < 1 equipped with the topology of uniform
convergence on compacts sets of | z | < 1 . The subclass W 0, 1 of W denotes functions
whose coefficients are all zeros or ones. The space W is compact and convex. Let

G :=
{

λ
∣

∣ | λ | < 1 , ∃h (z) ∈ B such that h (λ) = 0
}

⊂
{

z
∣

∣ | z | < 1
}

be the set of zeroes of the power series belonging to W . The elements of G lie within the unit
circle and curves in | z | < 1 given in polar coordinates, close to the unit circle, by [20]. The
domain D (0, 1) \ G is star-convex due to the fact that: h (z) ∈ W =⇒ h (z / r) ∈ W ,
for any r > 1 (cf. [18, Section §3]).

For every φ ∈ (0, 2 π) , there exists λ = r e iφ ∈ G ; the point of minimal modulus
with argument φ is denoted λφ = ρφ e

iφ ∈ G , ρφ < 1 . A function h ∈ W is called
φ−optimal if h (λφ) = 0 . Denote by K the subset of (0, π) for which there exists a

φ−optimal function belonging to W 0, 1 . Denote by ∂ GS the “spike”:
[

− 1, 1
2
(1 −

√
5)

]

on the negative real axis.

Theorem 11 (Solomyak). (1) The union G
⋃

T
⋃

∂ GS is closed, symmetrical with
respect to the real axis, has a cusp at z = 1 with logarithmic tangency ( cf. [18,
Figure 1]).

(2) The boundary ∂ G is a continuous curve, given by φ 7−→ |λφ | on [ 0, π) , taking its

values in
[ √

5 − 1
2

, 1
)

, with |λφ | = 1 if and only if φ = 0 . It admits a left-limit

at π− , 1 > limφ → π− | λφ | > |λπ | = 1
2
(− 1 +

√
5) , the left-discontinuity at

π corresponding to the extremity of ∂ GS .
(3) At all points ρφ e

iφ ∈ G such that φ / π is rational in an open dense subset of
(0, 2) , ∂ G is non-smooth.

(4) There exists a nonempty subset of transcendental numbers L tr , of Hausdorff

dimension zero, such that φ ∈ (0, π) and φ 6∈ K
⋃

π Q ∪ π L tr implies that
the boundary curve ∂ G has a tangent at ρφ e

iφ (smooth point).

Proof. [18, Sections §3 and §4]. �

Let β > 1 be a real number and T β : [ 0, 1 ] 7−→ [ 0, 1 ] , x 7−→ β x − ⌊ β x ⌋ = { β x }
be the β−transformation. The i−iterate of T β is denoted by T i

β . The orbit (T i
β (1)) i > 1 of
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Figure 8. The representation of the 27 zeroes of the lenticulus of
f (x) = − 1 + x + x 481 + x 985 + x 1502 in the angular sector
−π/18 < arg z < π/18 in two different scalings in x and y (in (a) and (b)).

In this angular sector the other zeroes of f (x) can be found in a thin annular
neighbourhood of the unit circle. The real root 1/β > 0 of f (x) is such that β
satisfies:

1.00970357 . . . = θ−1
481 < β = 1.0097168 . . . < θ−1

480 = 1.0097202 . . . .

1 in the interval [ 0, 1 ] defines the sequence (t i) of digits t i := ⌊ β T i− 1
β (1) ⌋ , which belong

to the alphabet { 0, 1 } and satisfy the conditions of Parry (Lothaire [9, Chap. 7]). The
Parry Upper function f β (z) at β is defined as the power series having coefficient vector:
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Figure 9. Curves stemming from 1 which constitute the lenticular zero locus of
all the polynomials of the class B . These (universal) curves are continuous. The

first one above the real axis, corresponding to the zero locus of the first lenticular
roots, lies inside the boundary of Solomyak’ s fractal [18]. The lenticular roots
of the polynomials f in the examples of the Figures 4, 5 and 8 are represented by

the respective symbols ◦ , � , ⋄ . The dashed lines represent the unit circle and the
top boundary of the angular sector | arg z | < π/18 . The complete set of curves,
i.e. the locus of lenticuli, is obtained by symmetrization with respect to the real

axis.

“−1 t 1 t 2 t 3 . . . ”. When the Parry Upper function f β (z) at β is a polynomial, by
Lemma 5.1 (ii) in [6], and

1 < β < θ−1
2 =

1 +
√
5

2
,

the Conditions of Parry are exactly expressed by the defining conditions

n > 3 , s > 0 , m 1 − n > n − 1 , m q+1 − m q > n − 1 for 1 6 q < s

of the polynomial f of the class B in (1.1), with f (x) = − 1 + t 1 x + t 2 x
2 + t 3 x

3 + . . . .
The polynomials f of the class B can be viewed as all the polynomial sections of all
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the Parry Upper functions f β (z) at β for all 1 < β < θ−1
2 . The correspondance

β 7−→ f β (z) is one-to-one [19].
Now the identity ⌊ β T i− 1

β (1) ⌋ = β T i− 1
β (1) − T i

β (1) , i > 2 , implies the factorization

− 1 + t 1 x + t 2 x
2 + t 3 x

3 + . . . = − (1 − β x) ·
(

1 +
∑

j > 1

T i
β (1) x

i
)

for which the second factor belongs to W . Hence, except the collection of the real zeroes
1/β which are those of the polynomials f ∈ B in [ 0, 1 ] , all the zeroes of the polynomials
f ∈ B , of modulus < 1 , lie within Solomyak’ s fractal domain G , having boundary
described by Theorem 11. By construction the zero locus of the first roots in Figure 9 is
included in this boundary. Therefore it has logarithmic tangency at z = 1 . The zero
loci of the second roots, third roots, etc., closer to | z | = 1 , in Figure 9, lie within G .
In Figure 9 are represented these (universal) curves on which the zeroes of the preceding
examples are reported. A complete study of these curves will be performed in the nearest
future.
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A. Algorithms and programs

The pseudo-code of the employed Monte-Carlo algorithm and the PARI/GP pro-
gram A used in the present study is given below:
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Algorithm 1 Pseudo-code of the PARI/GP program used to estimate the probability to find an

irreducible polynomial in the class BNmax
= ∪Nmax

k=1 B k .

Require: Nmax ∈ N ⊲ Maximal polynomial degree
Require: M ∈ N ⊲ Number of Monte-Carlo drawings

Irreducible[1:M ] ← 0
for k = 1 to M do

N ← Random ( 2 . . . Nmax )
n ← Random ( 2 . . . N )
p (x) = −1 + x + xn ⊲ We initialize with this trinomial
m ← 2n − 1 ⊲ m 1 − n > n − 1
while m 6 N do

∆m ← Random ( 0 . . . N − m )
p (x) ← p (x) + xm+∆m

m ← m + ∆m + n − 1 ⊲ m s+1 − m s > n − 1

if IrreducibilityTest
(

p (x)
)

≡ True then

Irreducible [k] ← 1

P ≈ 1
M

∑M
k=1 Irreducible [k] ⊲ Approximate probability by frequency

The following PARI/GP script estimates the probability of finding a sparse irreducible
polynomial with coefficients in {−1, 0, 1} in the class B :

/∗ F i r s t , we i n c r e a s e the stack s i z e : ∗/

de f au l t ( p a r i s i z e , 1073741824) ; /∗ 1 Gb ∗/

/∗ Search hor i zon in polynomia l degree : ∗/

Nmax = 3000 ;

/∗ Number o f Monte−Carlo runs ∗/

M = 4000 ;

/∗ The vector , where we stock the r e s u l t s o f the i r r e d u c i b i l i t y t e s t : ∗/

I r r ed = vecto r (M) ;

p r i n t f ("Some in format ion about computation : \ n " ) ;

p r i n t f (" −> Maximal polynomia l degree : %d\n" , Nmax) ;

p r i n t f (" −> Number o f Monte−Carlo runs : %d\n\n" , M) ;

p r i n t f (" Computations s t a r t ed . Please , wait . . . " ) ;

t s = getabst ime ( ) ; /∗ Record s t a r t time ∗/

/∗ The main loop over r e a l i z a t i o n s ! : ∗/
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f o r ( i = 1 , M, {

p r i n t f (" i t e r = %d\n" , i ) ;

N = 2 + random(Nmax − 1 ) ;

n = 2 + random(N − 1 ) ;

/∗ p r i n t (n ) ; ∗/

/∗ P i s the vec to r o f c o e f f i c i e n t s ∗/

P = concat ( concat (1 , vec to r (n−2)) , [ 1 , −1]) ;

p = length (P) ; /∗ we s h a l l need i t below ∗/

m = 2∗n − 1 ; /∗ the next term has the degree >= m ∗/

whi l e (m <= N,

s = m + random(N − m + 1) ;

P = concat ( concat (1 , vec to r ( s − p ) ) , P ) ;

p = length (P) ;

m = s + n − 1 ;

) ;

pp = Pol (P, x ) ; /∗ Convert vec to r to the polynomia l : ∗/

/∗ p r i n t (pp ) ; ∗/

i f ( p o l i s i r r e d u c i b l e (pp ) , /∗ i f po lynomia l i s i r r e du c i b l e , we note i t ∗/

I r r ed [ i ] = 1 ;

) ;

} ) ;

t e = getabst ime ( ) ; /∗ Simulat ion end time ∗/

p r i n t f ("Done . Execution time = %.3 f s . \ n" , ( te−t s ) /1000 ) ;

/∗ Let ’ s do some s t a t i s t i c a l a n a l y s i s o f the obta ined data ∗/

Mean = vecsum ( I r r ed )/M;

Var = 0 . 0 ;

f o r ( i = 1 , M, {

Var += ( I r r ed [ i ] − Mean)^2 ;

} ) ;

Var = sq r t (Var/(M − 1 ) ) ;

Err = 1.645∗Var/ sq r t (M) ;

p r i n t f (" Estimated p r o bab i l i t y : %1.3 f \n" , Mean ) ;

p r i n t f (" Estimated 90%%−e r r o r : %1.5 f \n" , Err ) ;

p r i n t f (" Conf idence i n t e r v a l : [%1.5 f , %1.5 f ] \ n" ,\

max( 0 . 0 , Mean − Err ) , min (Mean + Err , 1 . 0 ) ) ;
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