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Hybrid adaptive control for the half-bridge inverter

S. Hadjeras, J. J. Prince Agbodjan, C. Albea Sanchez and G. Garcia

Abstract—In this work, we propose a hybrid adap-
tive control law for the half-bridge inverter subjected
to the common problem of unknown load. This con-
troller ensures the system robustness with respect to
the output, taking into account the real nature of the
signals, which means the continuous-time variables,
(voltage and current signals) and the discrete-time
variables, (switching signals). The adaptation is ac-
complished using a state observer and assuming that
all states are measurable. Then, stability properties
can be ensured using hybrid dynamical system the-
ory and singular perturbation analysis. Finally, the
proposed hybrid adaptive controller is validated in
simulation.

Index Terms—Half-bridge inverter, hybrid dynam-
ical system, adaptive control, singular perturbation
analysis.

I. Introduction

Nowadays, power converter control is a subject of
more and more research topics. This is mainly due to
the fact that power converters have a very wide range
of applications, for example, the half and full bridge
inverters, which are used in Adjustable Speed Drives
(ASDs), Uninterruptible Power Supplies (UPSs), static
var compensator, active filters, Flexible AC Transmis-
sion Systems (FACTSs) and voltage compensator [1].
Frequently, their connected loads can change or suffer
perturbations. This problem is usually solved by using
adaptation mechanisms, guarantying a robust output
signal with respect to these load changes. Hence, in [2],
a load adaptive control algorithm is designed to cover
a variety of loads largely inductive using square wave,
asymmetrical duty cycle, and pulse density modulation.
Likewise, in [3] a load adaptive tuned frequency track-
ing control strategy using PLL (Phase Locked Loop)
is used to control a half bridge series resonant inverter
for induction heating operations. And in [4], a multi-
loop nonlinear adaptive control is designed by using a
backstepping technique. It is important to emphasize
that all these control laws are based on averaged models,
losing the properties of the discrete signals.

In this work, we aim to use a more accurate model of
half-bridge inverters, considering the real nature of the
signals, which means, continuous (voltages and currents)
and discrete (on-off state of the switches) signals. To
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CNRS, Université de Toulouse, CNRS, Toulouse, France shad-
jera,calbea,garcia@laas.fr,

J. J. Prince Agbodjan was with LAAS-CNRS, Toulouse, France.
Now, J. J. Prince Agbodjan is with IETR, Centrale Supélec Rennes,
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this end, we extend the results presented in [5], where
a hybrid control is designed for the half-bridge inverter
considering a constant and known load.

The novelty of this work lies in the design of a hybrid
adaptive control for a half-bridge inverter regarding an
unknown or perturbed load. A similar problem is con-
sidered in [6], where the authors stabilize the output of
a DC-DC converter to a desired reference, considering
a regulation problem and an unknown load. However,
here the problem is different, because we are dealing
with a tracking problem. To this end, we transform the
problem in an output regulation problem [7][8] and we
propose an indirect adaptation mechanism in the hybrid
dynamical scheme, in order to adapt the load variations.
More precisely, we consider an adaptive law fed by a state
observer by assuming that all states are measurable. This
method is simpler than the one presented in [6]. Then,
uniformly locally asymptotically stability is ensured by
applying the scale-time separation and by using a singu-
lar perturbation analysis.

The paper is organized as follows: in Section II, a
model is defined under some assumptions and the prob-
lem is stated in Section III. Section IV proposes a
hybrid adaptive control that achieves the objectives of
our problem. Section V deals with the proof of our main
result. Some simulations are performed in Section VI.
Section VII draws the conclusion and future works.

Notation: Throughout the paper, R denotes the set
of real numbers, Rn the n-dimensional Euclidean space
and Rn×m the set of all real m×n matrices. The set Sn
denotes the set of symmetric positive definite matrices
of matrices Rn×n. Re(ς) is the real part of a complex
number ς.

II. system modeling

A. Inverter model

We consider a half-bridge inverter presented in Fig. 1,
which is fed by a DC input, 2Vin, and generates an AC
output. This inverter is composed by a load filter, L,C0,
a purely resistive load, R0. The parasite resistance RLS
models not only the switching energy dissipated, but also
the resistive component of the inductance. The dynamic
behavior of this system can then be described by the
following model:

d

dt

[
iL(t)
vC(t)

]
=

[
−RLS

L − 1
L

1
C0

− 1
R0C0

] [
iL(t)
vC(t)

]
+

[
Vin

L
0

]
u, (1)

where iL is the inductance current, vC is the capaci-
tor voltage and these two states are considered as the



continuous-time state variables. u:= U1−U2 is the control
input and it is assumed to be a discrete variable:{

u = −1, if U1 = OFF and U2 = ON.
u = 1, if U1 = ON and U2 = OFF.

RLS
L

iL

C0 R0 vc
+

-2Vin

U1

U2

C1

C2

Vin

Vin

+

+

-

+

-

Fig. 1. Half-bridge inverter.

Assumption 1: We assume that,

• current and voltage are measurable.
• All the components are ideal.
• The load R0 is an unknown constant and can suffer

disturbances in the interval [Rm0 , R
M
0 ].

let define β := 1
R0
∈ [βm, βM ], which belongs to the

following polytope

Ω := λβ,mβm + λβ,MβM , ∀ λβ,m, λβ,M ∈ [0, 1],

with λβ,m + λβ,M = 1.
Using definition of β, the system (1) is rewritten as

follows
ẋ = A(β)x+Bu,
y = x,

(2)

with x = [x1 x2]T = [iL vC ]T , and A(β) and B are
easily deduced from (1). Note that A(β) is Hurwitz for all
β > 0. Moreover, we assume that the following property
is verified.

Property 1: Consider matrix A(β) in (2), with β ∈
[βm, βM ], and a chosen matrix Q ∈ S2. Then there exists
a matrix P ∈ S2 satisfying the two following Lyapunov
inequalities:

AT (βm)P + PA(βm) +Q < 0,

AT (βM )P + PA(βM ) +Q < 0.

This property imposes finally a common Lyapunov func-
tion for the polytopic model (2). In the next subsection,
we propose a desired tracking trajectory, described by a
linear time-invariant model.

B. A reference model

The desired trajectory for the voltage and the current
can be modeled by the following equations:

x2e := VCd
(t) = Vmax sin(wt),

x1e := iLd
(t) = C0wVmax cos(wt) + βVmax sin(wt),

(3)

where Vmax and ω are the desired amplitude and fre-
quency of the voltage, respectively, applied to the load
R0. In order to impose such behavior, let us define the
exogenous input z ∈ R2 produced by this time-invariant
exosystem:

ż =

[
0 −w
w 0

]
z = Θz, z(0) =

[
0

Vmax

]
. (4)

From (3), and considering that β̂ is the estimated value
of β, we have[

VCd
(t)

iLd
(t)

]
= Π(β̂)z, with Π(β̂) =

[
wC0 β̂

0 1

]
. (5)

Remark 1: Note that from (4), it is simple to see that

z2
1(t) + z2

2(t) = V 2
max.

Consequently, let define the following compact set

Φ = {(z1, z2) ∈ R2, z2
1(t) + z2

2(t) = V 2
max}.

Firstly, define Γ(β̂), such that, the following algebraic
equation is verified:

A(β)Π(β̂) +BΓ(β̂) = Π(β̂)Θ. (6)

A simple calculation shows that, Γ(β̂) does not depend
on β and can be written as:

Γ(β̂) =
[
−wLβ̂Vin

− wRLSC0

Vin

(
1
L − C0w

2 + RLS β̂
L

)
L
Vin

]
.

The dynamics of the overall system is defined by

ẋ = A(β)x+Bu,
ż = Θz,

e = Cx+Dz = x−Π(β̂)z,
(7)

where e = [e1 e2]T ∈ R2 is the tracking error, C ∈ R2 is
the identity matrix and D = −Π(β̂).

Note that, equation (5) and (6) are the well known
”regulator equations” [7][8].

Then, by using (6)–(7), the tracking error dynamic is given
by

ė = ẋ−Π(β̂)ż − ˙̂
βΠ′(β̂)z = A(β)e+Bd(

˙̂
β, β̂, z),

with

d(
˙̂
β, β̂, z) :=

(
v(β̂, z)− L

Vin

˙̂
βz2

)
, (8)

v := u− Γ(β̂)z, (9)

where Π′ := dΠ
dβ̂

.

In order to present the control law, consider the fol-
lowing model:

ė = A(β)e+Bd(
˙̂
β, β̂, z),

ż = Θz,
(10)

where v is the available input given in (9) and it is
composed of a continuous-time signal Γ(β̂)z and a switch-
ing signal u. The following assumption must be hold to
ensure the existence of signal u, making e = 0.



Assumption 2: There exist two functions of time
λ1, λ−1 ∈ [0, 1] satisfying λ1 + λ−1 = 1, such that the
following equation holds:

λ1 − λ−1 − Γ(β̂)z = 0. (11)

Note that this assumption provides the existence of e = 0
with β̂ = β, allowing to be v = 0 through a convex
combination of the two operating modes of u as follows

v = λ1 − λ−1 − Γ(β̂)z.

Remark 2: It is important to understand that in As-
sumption 2, the solution e = 0 with β̂ = β, is obtained
in sense of Filoppov solution. Indeed, the signal u =
λ1−λ−1, is a periodic sequence of arbitrarily small period
T , spending a time equal to λ1T in mode u = 1, and
λ−1T in mode u = −1.

III. Problem statement

This paper focuses on the design of a switching signal

u ∈ {−1, 1} and an adaptive law
˙̂
β, which guarantee the

two following properties:

• a suitable trajectory tracking properties of the volt-
age x2(t) to a desired trajectory x2e(t), ensuring
that, the error e = x − xe with xe = [xe1xe2 ]T ,
converges to the equilibrium e = 0 in the Filippov
sense.

• The convergence of the estimation of the load β̂ to
its real value of β.

Inspired by [6], we extend the work presented in [5],
for model (2) with an unknown parameter β.

Problem 1: The idea represented by Fig. 2 is to de-
sign a hybrid adaptive controller that considers the
continuous-time dynamics, x1, x2, and the discrete-time
dynamic, u, estimating β in continuous-time, at the same
time that x1 and x2 converge to a sinusoidal references
given by (3).

xe
u

x

β̂

SY STEM(β)

OBSERV ER

CONTROL

ADAPTIVE
CONTROL

x̌

Fig. 2. Hybrid adaptive control scheme.

In order to solve Problem 1, we propose firstly an
adaptation control law with the aim of estimating the
unknown constant β. Then, we design a hybrid adaptive
controller that considers both, the continuous and the
discrete dynamics.

IV. Hybrid model and proposed control law

Consider that ê2 and β̂ are the estimated states of
e2 and β, respectively. Then, the system (10) and the
estimated variables mentioned before, can be modeled
as a hybrid dynamical system, following the paradigm
given in [9], wherein

• the continuous-time behavior encompasses the evo-
lution of e, z, ê2 and β̂ and,

• the discrete-time behavior captures the evolution of
the input signal u, (through v in (9)).

We characterize the overall dynamics by the following
hybrid model:

H :




ė
ż
v̇
˙̂e2

˙̂
β

 = f(ξ), ξ ∈ C,


e+

z+

v+

ê+
2

β̂+

 ∈ G(ξ), ξ ∈ D,

(12)

where ξ = [e z v ê2 β̂], f is the flow map and and G is
the jump map containing the evolution of the state after
jumps

f(ξ) :=


A(β)e+Bd(ξ),

Θz

−Γ(β̂)Θz
1
C0

(e1 − β̂e2) + α(e2 − ê2)

−γe2(e2−ê2)
C0

 ,

G(ξ) :=



x
z argmin

v=u−Γ(β)z

u∈[−1,1]

ẽTP (A(β̂)e+Bd(ξ))

− Γ(β̂)z

ê2

β̂


,

(13)
being

d(ξ) =

(
v(β̂, z) +

γLe2(e2 − ê2)

VinC0
z2

)
, (14)

and with α, γ >0 are design parameters. The error ẽ =
[ẽ1 ẽ2] is defined as follows{

ẽ1 = e1

ẽ2 = e2 + (e2 − ê2).
(15)

Inspired by [10] and as proposed by [6], we select the
so-called flow and jump sets

C :={ξ : ẽTP (A(β̂)e+Bd(ξ)) ≤ −ηẽTQẽ}, (16)

D :={ξ : ẽTP (A(β̂)e+Bd(ξ)) ≥ −ηẽTQẽ}, (17)

with η ∈ (0, 1) is a tunned parameter.



Remark 3: To achieve the control objectives, i.e. reach
the desired equilibrium, e = 0, the proposed control
generates arbitrary a fast switching in the steady-state,
due to the fact that this desired equilibrium is achieved
in Filippov sense. But from a practical point of view, the
switching frequency must present a minimal dwell-time
between consecutive switches. Note that the switching
frequency is reduced if η → 0 and, it is increased if η → 1.

Proposition 1: The hybrid system (12)− (17) satisfies
the basic hybrid conditions given in [9, Assumption 6.5]:

• sets C and D given in (16) and (17) respectively, are
closed.

• f is a continuous function, thus is therefore outer
semicontinuous and locally bounded. Moreover, f is
convex for all ξ ∈ C.

• G is closed, therefore it is outer semicontinuous [9,
Lemma 5.1] and locally bounded.

Then, we can conclude that the hybrid system (12)−(17)
is well-posed.

Next, we invoke Lemma in [10, Lemma 1], for setting
up stability properties.

Lemma 1: Consider matrices P,Q ∈ S2 satisfying
Property 1. Then for each e ∈ R2,

min ẽTP
v=u−Γ(β̂)z

u∈[−1,1]

(A(β)e+Bd(ξ)) ≤ −ẽTQẽ.

Remark 4: We note here that for η ∈ (0, 1) and if ẽ 6=
0, then

−ẽTQẽ < −ηẽTQẽ.
Thereafter, using the Hybrid Dynamical System

(HDS) theory, we will establish stability properties of the
given compact set

A := {ξ : e = 0, z ∈ Φ, u ∈ {−1, 1}, ê2 = e2, β̂ = β}. (18)

Theorem 1: Consider Assumption 1, 2 and matrices
P,Q ∈ S2 satisfying Property 1. Then attractor (18)
is Uniformly Locally Asymptotically Stable (ULAS) for
hybrid system (12)–(17).
The proof of this Theorem is given in the next Section.
Here we will comment the choice of matrices P and Q.
These matrices are selected following some optimization
criteria given in (34) for a hybrid system (12)–(17).
Specifically, we use [5, Theorem 2], where some LQ per-
formance level is guaranteed, then the following bound
holds along any solution of our hybrid system

J ≤ η−1ẽTP ẽ (19)

defined in a compact hybrid time domain [9, Definition
2.3].

On the other hand, we find that the suboptimal-level
corresponds to a high frequency switches, which can
increase the dissipated energy. Therefore, the choice of
η decides a trade-off between any LQ performance level
and switching frequency as noted in Remark (3).

This next section is devoted to prove the stability of
hybrid system (12)–(17).

V. Proof of theorem 1

Let us now remind the observer and adaptation dy-
namics given as

˙̂e2 =
1

C0
(e1 − β̂e2) + α(e2 − ê2), (20)

˙̂
β = −γe2(e2 − ê2)

C0
. (21)

Lemma 2: Considering Assumption 1, then ê2 = e2 =
0, e1 = 0 and β 6= β̂ is not an equilibrium of the
differential equation (1), (20) and (21).

Proof: Consider that β is unknown and constant.
Note that (5) is not accomplished, i.e. if β 6= β̂, then the
reference Π(β̂)z is different to the desired trajectory (3),
which directly depends on the real value of β. Therefore,

ė 6= 0, ˙̂e2 6= 0 and
˙̂
β 6= 0

Lemma 3: Regard system (10), Lemma 2 and Assump-
tion 1 and assume that its solutions are bounded. The
extended observer (20)–(21) has the following properties:

i) The estimated states ê2, β̂ are bounded.
ii) limt→∞ ê2(t) = e2(t).
iii) limt→∞ β̂(t) = β.

Proof: We can guarantee that the solutions of (10)
are bounded from [5, Theorem 1]. Let define the following
error variables:

e2 := e2 − ê2, β̃ := β − β̂. (22)

and from Assumption 1, we have
˙̃
β = − ˙̂

β. Next, from
(II-B), (20) and (21) the errors dynamics are given by

˙̌e2 = − β̃

C0
e2 − αe2 (23)

˙̃
β =

γe2e2

C0
. (24)

To ensure that the errors converge to 0, we propose to
design a suitable candidate Lyapunov function, given by

W =
1

2

(
e2

2 +
β̃2

γ

)
. (25)

The derivative of W along the trajectories (23)–(24)
gives:

< ∇W (e2, β̃), f(e2, e2, β̃) > = −αe2
2,

and from standard Lyapunov arguments, it follows that
the error variables e2 and β̃ are bounded. In addition,
by LaSalle invariant principle, we easily conclude that

e2 → 0, which implies from (24) that
˙̃
β → 0. Likewise,

from (23), and concluding from e2 → 0 and Lemma 2,
we get β̃ → 0.

To prove the stability of a hybrid system (12)–(17),
let us use the fact that we have two distinct behaviors.
In one hand, there are slow time-continuous variables
ξr := (e, z, v), in other hand, ξf := (ê2, β̂) represents the
fast time-continuous variables. Using this last assump-
tion and by considering these variables change, ν := 1

α ,



γ̄ := γ
C0

, we will rewrite the complete system in a singular
perturbation form given as follows:

Hp :




ė
ż
v̇

ν ˙̂e2

ν
˙̂
β

 = fp(ξ), ξ ∈ C,


e+

z+

v+

ê+
2

β̂+

 ∈ Gp(ξ), ξ ∈ D,

(26)

fp(ξ) :=


A(β)e+Bd(ξ)

Θz

−Γ(β̂)Θz
ν
C0

(e1 − β̂e2) + (e2 − ê2)

−νγ̄e2(e2 − ê2)

 ,

Gp(ξ) :=



x
z argmin

v=u−Γ(β̂)z

u∈[−1,1]

ẽTP (A(β̂)e+Bd(ξ))

− Γ(β̂)z

ê2

β̂


(27)

where ξ = [e z v ê2 β̂].
Remark 5: In order to ensure a singular perturbation

form, we need to establish that the response time of
the slow subsystem, tR(A(β)), is larger than the fast
subsystem time response. In this aim, we select γ = C0α
and

α >> max

{
1

tR(A(β))

}
for β ∈ [βm, βM ].

Note that, in the hybrid scheme (26)–(27), the fast
variables directly impact the stability of the slow vari-
ables. However, the jumps do not affect the fast variables,
because they do not present any jump (ê+

2 = ê2 and
β̂+ = β̂).

In order to fulfill a singular perturbation analysis, we
will check the assumptions given in [11] for the model
(26):

A. Regularity of system’s data

Regularity of system’s data comes directly from Propo-
sition 1.

B. Regularity of “manifold”

The “manifold”, which corresponds to the quasi-
steady-state equilibrium manifold of classical singular
perturbation theory [12], that means when ν → 0+ is

e2 − ê2 = 0

β − β̂ = 0.
(28)

Note that β − β̂ = 0 comes from Lemma 2,3. As (28) is
continuous, we can consider that the manifold is empty
outside of C, letting take the following set-valued:

M(e2) :=


[
e2

β

]
e2 ∈ C

0 e2 /∈ C,

for a given β. Note that M is outer semi-continuous,
locally bounded and nonempty.

C. Stability for reduced system

The reduced system is the system (12)–(13) in the
manifold M, which is

Hr :



ėż
v̇

 = fr(ξr), ξr ∈ C(M),e+

z+

v+

 ∈ Gr(ξr), ξr ∈ D(M),

(29)

fr(ξr) :=

 A(β)e+Bv
Θz

−Γ(β̂)Θz

 ,

Gr(ξr) :=


e
zargmin ẽTP

v=u−Γ(β̂)z

u∈[−1,1] .

(A(β̂)e+Bv)

− Γ(β̂)z

 ,
(30)

being ξr = (e, z, v). Note that, the reduced system
ignores ê2 and β̂ when determining jumps. Then, we
can guarantee asymptotic stability from [5, Theorem 1].
Indeed the attractor 18 is ULAS for the reduced system.

D. Stability of the boundary layer

The boundary layer, is given by

Hbl :=


ξ̇r = 0
˙̂e2 = ν

C0
(e1 − β̂e2) + (e2 − ê2)

˙̂
β = −νγ̄e2(e2 − ê2)

ξ ∈ C ∩ rB

being rB a closed ball of radius r. Note that the boundary
layer system ignores the jumps, and during flows ξr
remains constant.

In order to evaluate the stability of the boundary layer,
let consider the error equations of Hbl and let take as
particular solution ě2bl

∈ R equal to a constant value.
and re-scale time t to τ = (t− t0)/ν, getting

d

dτ
ĕ2 = − ν

C0
β̃ê2bl

− ĕ2 (31)

d

dτ
β̃ = νγ̄ê2bl

ĕ2. (32)

Then, the stability property of (31)–(32) can be es-
tablished using the Lyapunov function given in (25).
Note that, in this case, the derivative of W along the



trajectories in the boundary layer is relative to τ , instead
of to ordinary time t.

d

dτ
z = Jz,

with z = [ĕ β̃]T , and

J =

(
−1 − ν

C0
ê2bl

− ν
C0
γê2bl

0

)
z.

Therefore, we can define the next property:
Property 2: By replacing ν := 1/α, then the real part

of the eigenvalues of J , for ê2bl
∈ {R\{0}} are all strictly

negative, i.e.

λ1 = Re

{(
(−1 +

√
1− 4

γ

α2C2
0

ê2
2bl

)
/2

}
< 0

λ2 = Re

{(
−1−

√
1− 4

γ

α2C2
0

ê2
2bl

)
/2

}
< 0

Proof of theorem 1: From the analysis given in V-A,
V-B, V-C and V-D for the model (26) as ν → 0+, we
prove ULAS of attractor (18) by applying [11, Theorem
1].

VI. Simulations on half-bridge inverter

In this section, we perform some simulations in MAT-
LAB/Simulink by exploiting the HyEQ Toolbox [13] to
verify the properties of the closed loop (12)–(17).
Let us consider for these simulations, the parameters
given in Table I.

TABLE I

Simulation parameters

Parameter Convention Value Units
DC input voltage Vin 96 V

Reference peak voltage Vmax 220
√

2 V
Nominal angular ω 100π rad/s

frequency
Nominal load resistance R0 240 Ω

Estimated series RLS 2 Ω
resistance
Inductor L 50 mH

Output capacitor C0 200 µF

We assume that the load can vary in the following set:

R0 = 240Ω ∈ [120, 360]Ω⇔ β = 0.0042 ∈ [0.0028, 0.0083],
(33)

which corresponds to ±50% of variation with respect to
the nominal value of R0.

The desired trajectories are given following

xe =

[
vCe
iLe

]
=

[
220
√

2 sin(100πt)
19.5 sin(100πt+ 86◦)

]
.

Considering [10, theorem 2], let take the following cost
function to get any LQ performance level.

J = min
u

∑
k∈domj(ξ)

∫ tk+1

tk

ρ

R0
(vc(τ, k)−vCd)2+R(iL(τ, k)−iLd)2dτ

(34)

with ρ = 1000, and

P =

[
21.6862 0.1721
0.1721 0.0888

]
, Q =

[
RLS 0

0 ρ
R0

]
.

It satisfies Property 1 and constraint given in (19).
Finally, in order to avoid arbitrary fast switching, as men-
tioned in Remark 3, we introduce practically a sampling
time Ts = 10−6s. Moreover, from (1), (3) and the convex
combination u = λ1 − λ−1 with λ1 + λ−1 = 1, we get to
stabilize e in 0 in Filippov sense, noted in Remark 2, with
λ1 = 0.5 + 0.036 sin(100πt) + 0.32 cos(100πt), satisfying
the condition (11). Furthermore, we take η = 0.1 which
corresponds to a sub-optimal value that guarantees a
trade-off between performance level and switching fre-
quency, as shown in [10].

We select the convergence speed of the observer state,
α, according to Remark 5. Thus, we need to satisfy
max {30, 40} << α. For this issue, we choose α = 400
and α = 4000. Moreover, γ = C0α.

Finally, we force two load changes, in the transient
time at t = 0.001s and in the steady state at t = 0.03s,
changing β of ±50%. From β = 42 · 10−3 (R0 = 240Ω)
to β = 83 · 10−3 (R0 = 360Ω) at t = 0.001s and from
β = 83 · 10−3 (R0 = 360Ω) to β = 28 · 10−3 (R0 = 120Ω)
at t = 0.03s.
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Fig. 3. Evolution of voltage and current for α = 400.

Figures 3 and 4 show the evolution of the voltage and
current for α = 400 and for α = 4000, respectively. In
both cases, the states converge to their corresponding
references. On the other hand, Fig. 5 and Fig. 6 show
the evolution of β̂ and ě2, under the load change of
β in the transient time (t=0.001s) and in the steady
state (t=0.03s), respectively. The simulations in Fig. 5
a), Fig. 6 a), Fig. 5 b) and Fig. 6 b) are performed for a
value of α = 400 and Fig. 5 c), Fig. 6 c), Fig. 5 d) and
, Fig. 6 d) are done using α = 4000. Note as α larger is,
the convergence of β̂ to β faster is. Similar performance
is obtained with the error ě2.

Therefore, these figures show Theorem 1 statement.
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Fig. 4. Evolution of voltage and current for α = 4000.
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Fig. 5. Evolution of the estimation of β and the error ě2 in the
transit time, for α = 400 and for α = 400.

VII. Conclusions and future works

In this article, we have proposed a hybrid adaptive
control for a half-bridge inverter with unknown variable
load, which guarantees the robustness of the convergence
of the states toward the desired trajectories.

The interest of such approach is the use of a hybrid
control scheme that considers the continuous-time dy-
namics as well as the discrete-time dynamics, avoiding
the use an average control signal. An indirect adaptive
control is proposed to estimate the unknown resistive
load. Finally, ULAS of the full system is proven by using
a standard singular perturbation analysis.

A future work is to reduce the switching in the steady-
state by considering a time- or space-regulation in order
to generate a minimum dwell-time.
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