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In this work, we propose a hybrid adaptive control law for the half-bridge inverter subjected to the common problem of unknown load. This controller ensures the system robustness with respect to the output, taking into account the real nature of the signals, which means the continuous-time variables, (voltage and current signals) and the discrete-time variables, (switching signals). The adaptation is accomplished using a state observer and assuming that all states are measurable. Then, stability properties can be ensured using hybrid dynamical system theory and singular perturbation analysis. Finally, the proposed hybrid adaptive controller is validated in simulation.

I. Introduction

Nowadays, power converter control is a subject of more and more research topics. This is mainly due to the fact that power converters have a very wide range of applications, for example, the half and full bridge inverters, which are used in Adjustable Speed Drives (ASDs), Uninterruptible Power Supplies (UPSs), static var compensator, active filters, Flexible AC Transmission Systems (FACTSs) and voltage compensator [1]. Frequently, their connected loads can change or suffer perturbations. This problem is usually solved by using adaptation mechanisms, guarantying a robust output signal with respect to these load changes. Hence, in [START_REF] Lucia | Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating[END_REF], a load adaptive control algorithm is designed to cover a variety of loads largely inductive using square wave, asymmetrical duty cycle, and pulse density modulation. Likewise, in [START_REF] Kwon | Half-Bridge Series Resonant Inverter for Induction Heating Applications with Load-Adaptive PFM Control Strategy[END_REF] a load adaptive tuned frequency tracking control strategy using PLL (Phase Locked Loop) is used to control a half bridge series resonant inverter for induction heating operations. And in [START_REF] Kissaoui | Output-Feedback Nonlinear Adaptive Control of Single-Phase Half-Bridge Ups Systems[END_REF], a multiloop nonlinear adaptive control is designed by using a backstepping technique. It is important to emphasize that all these control laws are based on averaged models, losing the properties of the discrete signals.

In this work, we aim to use a more accurate model of half-bridge inverters, considering the real nature of the signals, which means, continuous (voltages and currents) and discrete (on-off state of the switches) signals. To this end, we extend the results presented in [START_REF] Albea | Hybrid control scheme for a half-bridge inverter[END_REF], where a hybrid control is designed for the half-bridge inverter considering a constant and known load.

The novelty of this work lies in the design of a hybrid adaptive control for a half-bridge inverter regarding an unknown or perturbed load. A similar problem is considered in [START_REF] Hadjeras | Hybrid adaptative control of the Boost Converter[END_REF], where the authors stabilize the output of a DC-DC converter to a desired reference, considering a regulation problem and an unknown load. However, here the problem is different, because we are dealing with a tracking problem. To this end, we transform the problem in an output regulation problem [START_REF] Francis | The linear multivariable regulator problem[END_REF][8] and we propose an indirect adaptation mechanism in the hybrid dynamical scheme, in order to adapt the load variations. More precisely, we consider an adaptive law fed by a state observer by assuming that all states are measurable. This method is simpler than the one presented in [START_REF] Hadjeras | Hybrid adaptative control of the Boost Converter[END_REF]. Then, uniformly locally asymptotically stability is ensured by applying the scale-time separation and by using a singular perturbation analysis.

The paper is organized as follows: in Section II, a model is defined under some assumptions and the problem is stated in Section III. Section IV proposes a hybrid adaptive control that achieves the objectives of our problem. Section V deals with the proof of our main result. Some simulations are performed in Section VI. Section VII draws the conclusion and future works.

Notation: Throughout the paper, R denotes the set of real numbers, R n the n-dimensional Euclidean space and R n×m the set of all real m × n matrices. The set S n denotes the set of symmetric positive definite matrices of matrices R n×n . Re(ς) is the real part of a complex number ς.

II. system modeling A. Inverter model

We consider a half-bridge inverter presented in Fig. 1, which is fed by a DC input, 2V in , and generates an AC output. This inverter is composed by a load filter, L, C 0 , a purely resistive load, R 0 . The parasite resistance R LS models not only the switching energy dissipated, but also the resistive component of the inductance. The dynamic behavior of this system can then be described by the following model:

d dt i L (t) v C (t) = -R LS L -1 L 1 C0 -1 R0C0 i L (t) v C (t) + Vin L 0 u, (1) 
where i L is the inductance current, v C is the capacitor voltage and these two states are considered as the continuous-time state variables. u:= U 1 -U 2 is the control input and it is assumed to be a discrete variable:

u = -1, if U 1 = OFF and U 2 = ON. u = 1, if U 1 = ON and U 2 = OFF. R LS L i L C 0 R 0 v c + - 2V in U 1 U 2 C 1 C 2 V in V in + + - + - Fig. 1. Half-bridge inverter.
Assumption 1: We assume that,

• current and voltage are measurable.

• All the components are ideal.

• The load R 0 is an unknown constant and can suffer

disturbances in the interval [R m 0 , R M 0 ]. let define β := 1 R0 ∈ [β m , β M ],
which belongs to the following polytope

Ω := λ β,m β m + λ β,M β M , ∀ λ β,m , λ β,M ∈ [0, 1], with λ β,m + λ β,M = 1.
Using definition of β, the system (1) is rewritten as

follows ẋ = A(β)x + Bu, y = x, (2) 
with x = [x 1 x 2 ] T = [i L v C ] T
, and A(β) and B are easily deduced from (1). Note that A(β) is Hurwitz for all β > 0. Moreover, we assume that the following property is verified. Property 1: Consider matrix A(β) in (2), with β ∈ [β m , β M ], and a chosen matrix Q ∈ S 2 . Then there exists a matrix P ∈ S 2 satisfying the two following Lyapunov inequalities:

A T (β m )P + P A(β m ) + Q < 0, A T (β M )P + P A(β M ) + Q < 0.
This property imposes finally a common Lyapunov function for the polytopic model [START_REF] Lucia | Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating[END_REF]. In the next subsection, we propose a desired tracking trajectory, described by a linear time-invariant model.

B. A reference model

The desired trajectory for the voltage and the current can be modeled by the following equations:

x 2e := V C d (t) = V max sin(wt), x 1e := i L d (t) = C 0 wV max cos(wt) + βV max sin(wt), (3) 
where V max and ω are the desired amplitude and frequency of the voltage, respectively, applied to the load R 0 . In order to impose such behavior, let us define the exogenous input z ∈ R 2 produced by this time-invariant exosystem:

ż = 0 -w w 0 z = Θz, z(0) = 0 V max . (4) 
From (3), and considering that β is the estimated value of β, we have

V C d (t) i L d (t) = Π( β)z, with Π( β) = wC 0 β 0 1 . ( 5 
)
Remark 1: Note that from (4), it is simple to see that

z 2 1 (t) + z 2 2 (t) = V 2 max . Consequently, let define the following compact set Φ = {(z 1 , z 2 ) ∈ R 2 , z 2 1 (t) + z 2 2 (t) = V 2 max }.
Firstly, define Γ( β), such that, the following algebraic equation is verified:

A(β)Π( β) + BΓ( β) = Π( β)Θ. (6) 
A simple calculation shows that, Γ( β) does not depend on β and can be written as:

Γ( β) = -wL β Vin -wR LS C0 Vin 1 L -C 0 w 2 + R LS β L L Vin .
The dynamics of the overall system is defined by

ẋ = A(β)x + Bu, ż = Θz, e = Cx + Dz = x -Π( β)z, (7) 
where e = [e 1 e 2 ] T ∈ R 2 is the tracking error, C ∈ R 2 is the identity matrix and D = -Π( β).

Note that, equation ( 5) and ( 6) are the well known "regulator equations" [START_REF] Francis | The linear multivariable regulator problem[END_REF] [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF]. Then, by using ( 6)-( 7), the tracking error dynamic is given by

ė = ẋ -Π( β) ż -βΠ ( β)z = A(β)e + Bd( β, β, z), with d( β, β, z) := v( β, z) - L V in βz 2 , (8) 
v := u -Γ( β)z, (9) 
where Π := dΠ d β . In order to present the control law, consider the following model:

ė = A(β)e + Bd( β, β, z), ż = Θz, ( 10 
)
where v is the available input given in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] and it is composed of a continuous-time signal Γ( β)z and a switching signal u. The following assumption must be hold to ensure the existence of signal u, making e = 0.

Assumption 2: There exist two functions of time λ 1 , λ -1 ∈ [0, 1] satisfying λ 1 + λ -1 = 1, such that the following equation holds:

λ 1 -λ -1 -Γ( β)z = 0. ( 11 
)
Note that this assumption provides the existence of e = 0 with β = β, allowing to be v = 0 through a convex combination of the two operating modes of u as follows

v = λ 1 -λ -1 -Γ( β)z. Remark 2:
It is important to understand that in Assumption 2, the solution e = 0 with β = β, is obtained in sense of Filoppov solution. Indeed, the signal u = λ 1 -λ -1 , is a periodic sequence of arbitrarily small period T , spending a time equal to λ 1 T in mode u = 1, and λ -1 T in mode u = -1.

III. Problem statement

This paper focuses on the design of a switching signal u ∈ {-1, 1} and an adaptive law β, which guarantee the two following properties:

• a suitable trajectory tracking properties of the voltage x 2 (t) to a desired trajectory x 2e (t), ensuring that, the error e = x -x e with x e = [x e1 x e2 ] T , converges to the equilibrium e = 0 in the Filippov sense.

• The convergence of the estimation of the load β to its real value of β.

Inspired by [START_REF] Hadjeras | Hybrid adaptative control of the Boost Converter[END_REF], we extend the work presented in [START_REF] Albea | Hybrid control scheme for a half-bridge inverter[END_REF], for model [START_REF] Lucia | Load-Adaptive Control Algorithm of Half-Bridge Series Resonant Inverter for Domestic Induction Heating[END_REF] with an unknown parameter β.

Problem 1: The idea represented by Fig. 2 is to design a hybrid adaptive controller that considers the continuous-time dynamics, x 1 , x 2 , and the discrete-time dynamic, u, estimating β in continuous-time, at the same time that x 1 and x 2 converge to a sinusoidal references given by (3). In order to solve Problem 1, we propose firstly an adaptation control law with the aim of estimating the unknown constant β. Then, we design a hybrid adaptive controller that considers both, the continuous and the discrete dynamics.

IV. Hybrid model and proposed control law

Consider that ê2 and β are the estimated states of e 2 and β, respectively. Then, the system (10) and the estimated variables mentioned before, can be modeled as a hybrid dynamical system, following the paradigm given in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF], wherein

• the continuous-time behavior encompasses the evolution of e, z, ê2 and β and, • the discrete-time behavior captures the evolution of the input signal u, (through v in ( 9)). We characterize the overall dynamics by the following hybrid model:

H :                                        ė ż v ė2 β       = f (ξ), ξ ∈ C,       e + z + v + ê+ 2 β+       ∈ G(ξ), ξ ∈ D, (12) 
where ξ = [e z v ê2 β], f is the flow map and and G is the jump map containing the evolution of the state after jumps

f (ξ) :=        A(β)e + Bd(ξ), Θz -Γ( β)Θz 1 C0 (e 1 -βe 2 ) + α(e 2 -ê2 ) -γe2(e2-ê2) C0        , G(ξ) :=           x z     argmin v=u-Γ(β)z u∈[-1,1] ẽT P (A( β)e + Bd(ξ))     -Γ( β)z ê2 β           , (13) 
being

d(ξ) = v( β, z) + γLe 2 (e 2 -ê2 ) V in C 0 z 2 , (14) 
and with α, γ >0 are design parameters. The error ẽ = [ẽ 1 ẽ2 ] is defined as follows

ẽ1 = e 1 ẽ2 = e 2 + (e 2 -ê2 ). ( 15 
)
Inspired by [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF] and as proposed by [START_REF] Hadjeras | Hybrid adaptative control of the Boost Converter[END_REF], we select the so-called flow and jump sets

C :={ξ : ẽT P (A( β)e + Bd(ξ)) ≤ -ηẽ T Qẽ}, (16) 
D :={ξ : ẽT P (A( β)e + Bd(ξ)) ≥ -ηẽ T Qẽ}, (17) 
with η ∈ (0, 1) is a tunned parameter.

Remark 3: To achieve the control objectives, i.e. reach the desired equilibrium, e = 0, the proposed control generates arbitrary a fast switching in the steady-state, due to the fact that this desired equilibrium is achieved in Filippov sense. But from a practical point of view, the switching frequency must present a minimal dwell-time between consecutive switches. Note that the switching frequency is reduced if η → 0 and, it is increased if η → 1.

Proposition 1: The hybrid system ( 12) -(17) satisfies the basic hybrid conditions given in [9, Assumption 6.5]:

• sets C and D given in ( 16) and (17) respectively, are closed. • f is a continuous function, thus is therefore outer semicontinuous and locally bounded. Moreover, f is convex for all ξ ∈ C. • G is closed, therefore it is outer semicontinuous [9, Lemma 5.1] and locally bounded. Then, we can conclude that the hybrid system ( 12)-( 17) is well-posed.

Next, we invoke Lemma in [10, Lemma 1], for setting up stability properties.

Lemma 1: Consider matrices P, Q ∈ S 2 satisfying Property 1. Then for each e ∈ R 2 , min ẽT

P v=u-Γ( β)z u∈[-1,1] (A(β)e + Bd(ξ)) ≤ -ẽ T Qẽ.
Remark 4: We note here that for η ∈ (0, 1) and if ẽ = 0, then -ẽ T Qẽ < -ηẽ T Qẽ. Thereafter, using the Hybrid Dynamical System (HDS) theory, we will establish stability properties of the given compact set A := {ξ : e = 0, z ∈ Φ, u ∈ {-1, 1}, ê2 = e 2 , β = β}. (18) Theorem 1: Consider Assumption 1, 2 and matrices P, Q ∈ S 2 satisfying Property 1. Then attractor (18) is Uniformly Locally Asymptotically Stable (ULAS) for hybrid system (12)-( 17). The proof of this Theorem is given in the next Section. Here we will comment the choice of matrices P and Q. These matrices are selected following some optimization criteria given in (34) for a hybrid system ( 12)-( 17). Specifically, we use [5, Theorem 2], where some LQ performance level is guaranteed, then the following bound holds along any solution of our hybrid system

J ≤ η -1 ẽT P ẽ (19) defined in a compact hybrid time domain [9, Definition 2.3].
On the other hand, we find that the suboptimal-level corresponds to a high frequency switches, which can increase the dissipated energy. Therefore, the choice of η decides a trade-off between any LQ performance level and switching frequency as noted in Remark (3).

This next section is devoted to prove the stability of hybrid system ( 12)-(17).

V. Proof of theorem 1

Let us now remind the observer and adaptation dynamics given as

ė2 = 1 C 0 (e 1 -βe 2 ) + α(e 2 -ê2 ), (20) β 
= - γe 2 (e 2 -ê2 ) C 0 . ( 21 
)
Lemma 2: Considering Assumption 1, then ê2 = e 2 = 0, e 1 = 0 and β = β is not an equilibrium of the differential equation ( 1), ( 20) and (21).

Proof: Consider that β is unknown and constant. Note that (5) is not accomplished, i.e. if β = β, then the reference Π( β)z is different to the desired trajectory (3), which directly depends on the real value of β. Therefore, ė = 0, ė2 = 0 and β = 0 Lemma 3: Regard system (10), Lemma 2 and Assumption 1 and assume that its solutions are bounded. The extended observer (20)-( 21) has the following properties:

i) The estimated states ê2 , β are bounded.

ii) lim t→∞ ê2 (t) = e 2 (t).

iii) lim t→∞ β(t) = β. Proof: We can guarantee that the solutions of ( 10) are bounded from [5, Theorem 1]. Let define the following error variables:

e 2 := e 2 -ê2 , β := β -β. ( 22 
)
and from Assumption 1, we have β = -β. Next, from (II-B), ( 20) and ( 21) the errors dynamics are given by ė2 = -β

C 0 e 2 -αe 2 (23) β = γe 2 e 2 C 0 . ( 24 
)
To ensure that the errors converge to 0, we propose to design a suitable candidate Lyapunov function, given by

W = 1 2 e 2 2 + β2 γ . ( 25 
)
The derivative of W along the trajectories ( 23)-(24) gives:

< ∇W (e 2 , β), f (e 2 , e 2 , β) > = -αe 2 2 ,
and from standard Lyapunov arguments, it follows that the error variables e 2 and β are bounded. In addition, by LaSalle invariant principle, we easily conclude that e 2 → 0, which implies from (24) that β → 0. Likewise, from (23), and concluding from e 2 → 0 and Lemma 2, we get β → 0.

To prove the stability of a hybrid system ( 12)-( 17), let us use the fact that we have two distinct behaviors. In one hand, there are slow time-continuous variables ξ r := (e, z, v), in other hand, ξ f := (ê 2 , β) represents the fast time-continuous variables. Using this last assumption and by considering these variables change, ν := 1 α , γ := γ C0 , we will rewrite the complete system in a singular perturbation form given as follows:

H p :                                        ė ż v ν ė2 ν β       = f p (ξ), ξ ∈ C,       e + z + v + ê+ 2 β+       ∈ G p (ξ), ξ ∈ D, (26) 
f p (ξ) :=       A(β)e + Bd(ξ) Θz -Γ( β)Θz ν C0 (e 1 -βe 2 ) + (e 2 -ê2 ) -ν γe 2 (e 2 -ê2 )       , G p (ξ) :=           x z     argmin v=u-Γ( β)z u∈[-1,1] ẽT P (A( β)e + Bd(ξ))     -Γ( β)z ê2 β           (27) where ξ = [e z v ê2 β].
Remark 5: In order to ensure a singular perturbation form, we need to establish that the response time of the slow subsystem, t R (A(β)), is larger than the fast subsystem time response. In this aim, we select γ = C 0 α and

α >> max 1 t R (A(β)) for β ∈ [β m , β M ].
Note that, in the hybrid scheme (26)-( 27), the fast variables directly impact the stability of the slow variables. However, the jumps do not affect the fast variables, because they do not present any jump (ê + 2 = ê2 and β+ = β).

In order to fulfill a singular perturbation analysis, we will check the assumptions given in [START_REF] Sanfelice | On singular perturbations due to fast actuators in hybrid control systems[END_REF] for the model (26):

A. Regularity of system's data Regularity of system's data comes directly from Proposition 1.

B. Regularity of "manifold"

The "manifold", which corresponds to the quasisteady-state equilibrium manifold of classical singular perturbation theory [START_REF] Khalil | Nonlinear Systems[END_REF], that means when ν → 0 + is

e 2 -ê2 = 0 β -β = 0. ( 28 
)
Note that β -β = 0 comes from Lemma 2,3. As ( 28) is continuous, we can consider that the manifold is empty outside of C, letting take the following set-valued:

M(e 2 ) :=    e 2 β e 2 ∈ C 0 e 2 / ∈ C,
for a given β. Note that M is outer semi-continuous, locally bounded and nonempty.

C. Stability for reduced system

The reduced system is the system ( 12)-( 13) in the manifold M, which is

H r :                  ė ż v  = f r (ξ r ), ξ r ∈ C(M),   e + z + v +   ∈ G r (ξ r ), ξ r ∈ D(M), (29) 
f r (ξ r ) :=   A(β)e + Bv Θz -Γ( β)Θz   , G r (ξ r ) :=       e z     argmin ẽT P v=u-Γ( β)z u∈[-1,1] . (A( β)e + Bv)     -Γ( β)z       , (30) 
being ξ r = (e, z, v). Note that, the reduced system ignores ê2 and β when determining jumps. Then, we can guarantee asymptotic stability from [5, Theorem 1]. Indeed the attractor 18 is ULAS for the reduced system.

D. Stability of the boundary layer

The boundary layer, is given by

H bl :=      ξr = 0 ė2 = ν C0 (e 1 -βe 2 ) + (e 2 -ê2 ) β = -ν γe 2 (e 2 -ê2 ) ξ ∈ C ∩ rB
being rB a closed ball of radius r. Note that the boundary layer system ignores the jumps, and during flows ξ r remains constant.

In order to evaluate the stability of the boundary layer, let consider the error equations of H bl and let take as particular solution ě2 bl ∈ R equal to a constant value. and re-scale time t to τ = (t -t 0 )/ν, getting

d dτ ȇ2 = - ν C 0 βê 2 bl -ȇ2 (31) 
d dτ β = ν γê 2 bl ȇ2 . (32) 
Then, the stability property of (31)-( 32) can be established using the Lyapunov function given in (25). Note that, in this case, the derivative of W along the trajectories in the boundary layer is relative to τ , instead of to ordinary time t.

d dτ z = Jz,
with z = [ȇ β] T , and

J = -1 -ν C0 ê2 bl -ν C0 γê 2 bl 0 z.
Therefore, we can define the next property: Property 2: By replacing ν := 1/α, then the real part of the eigenvalues of J, for ê2 bl ∈ {R\{0}} are all strictly negative, i.e.

λ 1 = Re (-1 + 1 -4 γ α 2 C 2 0 ê2 2 bl /2 < 0 λ 2 = Re -1 -1 -4 γ α 2 C 2 0 ê2 2 bl /2 < 0
Proof of theorem 1: From the analysis given in V-A, V-B, V-C and V-D for the model (26) as ν → 0 + , we prove ULAS of attractor (18) by applying [START_REF] Sanfelice | On singular perturbations due to fast actuators in hybrid control systems[END_REF]Theorem 1].

VI. Simulations on half-bridge inverter

In this section, we perform some simulations in MAT-LAB/Simulink by exploiting the HyEQ Toolbox [START_REF] Sanfelice | A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid equations (HyEQ) toolbox[END_REF] to verify the properties of the closed loop ( 12)-( 17). Let us consider for these simulations, the parameters given in Table I. We assume that the load can vary in the following set:

R 0 = 240Ω ∈ [120, 360]Ω ⇔ β = 0.0042 ∈ [0.0028, 0.0083], (33) 
which corresponds to ±50% of variation with respect to the nominal value of R 0 .

The desired trajectories are given following

x e = v Ce i Le = 220 √ 2 sin(100πt) 19.5 sin(100πt + 86 • )
.

Considering [10, theorem 2], let take the following cost function to get any LQ performance level.

J = min u k∈dom j (ξ) t k+1 t k ρ R 0 (vc(τ, k)-v Cd ) 2 +R(i L (τ, k)-i Ld ) 2 dτ (34)
with ρ = 1000, and

P = 21.6862 0.1721 0.1721 0.0888 , Q = R LS 0 0 ρ R0 .

It satisfies Property 1 and constraint given in (19).

Finally, in order to avoid arbitrary fast switching, as mentioned in Remark 3, we introduce practically a sampling time T s = 10 -6 s. Moreover, from (1), (3) and the convex combination u = λ 1 -λ -1 with λ 1 + λ -1 = 1, we get to stabilize e in 0 in Filippov sense, noted in Remark 2, with λ 1 = 0.5 + 0.036 sin(100πt) + 0.32 cos(100πt), satisfying the condition [START_REF] Sanfelice | On singular perturbations due to fast actuators in hybrid control systems[END_REF]. Furthermore, we take η = 0.1 which corresponds to a sub-optimal value that guarantees a trade-off between performance level and switching frequency, as shown in [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF].

We select the convergence speed of the observer state, α, according to Remark 5. Thus, we need to satisfy max {30, 40} << α. For this issue, we choose α = 400 and α = 4000. Moreover, γ = C 0 α.

Finally, we force two load changes, in the transient time at t = 0.001s and in the steady state at t = 0.03s, changing β of ±50%. From β = 42 Figures 3 and4 show the evolution of the voltage and current for α = 400 and for α = 4000, respectively. In both cases, the states converge to their corresponding references. On the other hand, Fig. 5 and Fig. 6 show the evolution of β and ě2 , under the load change of β in the transient time (t=0.001s) and in the steady state (t=0.03s), respectively. The simulations in Fig. VII. Conclusions and future works In this article, we have proposed a hybrid adaptive control for a half-bridge inverter with unknown variable load, which guarantees the robustness of the convergence of the states toward the desired trajectories.

• 10 -3 (R 0 = 240Ω) to β = 83 • 10 -3 (R 0 = 360Ω) at t = 0.001s and from β = 83 • 10 -3 (R 0 = 360Ω) to β = 28 • 10 -3 (R 0 = 120Ω) at t = 0.03s.
The interest of such approach is the use of a hybrid control scheme that considers the continuous-time dynamics as well as the discrete-time dynamics, avoiding the use an average control signal. An indirect adaptive control is proposed to estimate the unknown resistive load. Finally, ULAS of the full system is proven by using a standard singular perturbation analysis.

A future work is to reduce the switching in the steadystate by considering a time-or space-regulation in order to generate a minimum dwell-time. 
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 45 Figures3 and 4show the evolution of the voltage and current for α = 400 and for α = 4000, respectively. In both cases, the states converge to their corresponding references. On the other hand, Fig.5and Fig.6show the evolution of β and ě2 , under the load change of β in the transient time (t=0.001s) and in the steady state (t=0.03s), respectively. The simulations in Fig.5a), Fig.6a), Fig.5 b) and Fig.6 b) are performed for a value of α = 400 and Fig.5 c), Fig.6 c), Fig.5 d) and , Fig.6 d) are done using α = 4000. Note as α larger is, the convergence of β to β faster is. Similar performance is obtained with the error ě2 .Therefore, these figures show Theorem 1 statement.
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 6 Fig.6. Evolution of the estimation of β and the error ě2 in the steady state for α = 400 and for α = 400.

TABLE I

 I 

	Simulation parameters			
	Parameter	Convention	Value	Units
	DC input voltage Reference peak voltage	V in Vmax	96 220 √	2	V V
	Nominal angular	ω	100π	rad/s
	frequency				
	Nominal load resistance	R 0	240		Ω
	Estimated series	R LS	2		Ω
	resistance				
	Inductor	L	50		mH
	Output capacitor	C 0	200		µF