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I. Introduction

During the last decades, the control of multilevel power converters has been widely studied in the literature, since they can achieve high power using mature medium-power semiconductor technology and present more advantages compared with conventional ones. These advantages are the output signal quality and a nominal power increase in the converter [START_REF] Leon | The age of multilevel converters arrives[END_REF]. Particularly, the control of threephase, three-level Neutral Point Clamped (NPC) converter, well-known as AC/DC rectifier proposed by [START_REF] Takahashi | A new neutral-pointclamped pwm inverter[END_REF], has attracted a lot of attention. From the electronic community, it is one of the most used multilevel power converter for AC/DC conversion (DC motor drives, battery charging systems, appliances [START_REF] Leon | The age of multilevel converters arrives[END_REF] [START_REF] Espinoza | Pwm regenerative rectifiers: state of the art[END_REF]) due to its high power rating and its lower total harmonic distortion. From the control community, the control design of such system is recognized to be a challenging task, since the dynamical behavior can be modeled as a nonlinear time-varying and hybrid system. Indeed, voltages and currents are continuous-time signals, whereas the control signals are generated by switches devices, which are consequently of a discrete nature. This fact makes the control design a complex task.

The main control objectives of this class of system are twofold. Firstly, we aim to obtain desired sinusoidal input currents. Secondly, we desire to generate a dc link voltage keeping it constant at the desired reference value, while S. Hadjeras and C. Albea Sanchez are with LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse France. shadjera,calbea@laas.fr F. Gomez-Estern Aguilar is with Universidad Loyola Andalucía Seville Spain. fgestern@uloyola.es F. Gordillo is with Universidad of Seville, Seville Spain. gordillo@us.es G. Garcia is with both LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse France. garcia@laas.fr maintaining the neutral point voltage close to zero. In order to achieve these control objectives, some control strategies have been developed in the literature. A first classical approach widely studied relies on the control design of averaged models [START_REF] Al-Haddad | Modelling and control of three-phase/switch/level fixed-frequency pwm rectifier: state-space averaged model[END_REF] [START_REF] Yazdani | A generalized state-space averaged model of the three-level npc converter for systematic dcvoltage-balancer and current-controller design[END_REF]. The most employed averaged controller for the NPC rectifier is called Direct Power Control (DPC) method. This approach uses generally several PI controllers, one for the instantaneous powers, the second one to keep the neutral point voltage close to zero and the third one to regulate the dc-link voltage to a desired value [6][7].

Recently, some control strategies have been proposed to directly control the switches without considering an averaged model, which led to discontinuous control laws. Among them, we can cite predictive control algorithms (for inverters in [START_REF] Cho | Predictive control algorithm for capacitor-less inverters with fast dynamic response[END_REF] and converters in [START_REF] Xie | Predictive functional control for buck dc-dc converter[END_REF]), sliding mode controllers (for inverters in [START_REF] Kalyanraj | Design of sliding mode controller for three phase grid connected multilevel inverter for distributed generation systems[END_REF] [START_REF] Hou | Sliding-mode control for grid-connected inverter with a passive damped lcl filter[END_REF] and converters in [START_REF] Bouziane | Sliding mode control of two-level boost dc-dc converter[END_REF] [START_REF] Sachin | Design and simulation for sliding mode control in dc-dc boost converter[END_REF]) and hybrid controllers (for inverters in [START_REF] Albea | Hybrid control scheme for a half-bridge inverter[END_REF] and converters in [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF]). For the case of the NPC, to the best of our knowledge, only a few papers have considered explicitly the discrete nature of the switches. In [START_REF] Barros | Optimal predictive control of three-phase npc multilevel converter for power quality applications[END_REF][17], a predictive control algorithm is used to predict the capacitor voltages for the next sampling time. In [START_REF] V. Utkin | Sliding mode control of ac/dc power converters[END_REF], a sliding mode control design is considered and the sliding surfaces use directly the error between the state variables and their references.

In this work, we propose to model the NPC as a hybrid model by considering, the voltage and current signals as continuous dynamics, as well as, the switching signals as discrete dynamics. However, the challenge in this article is to consider the nonlinear time-varying nature of the system. Following the Hybrid Dynamical System (HDS) theory [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF], we propose a control guaranteeing Uniform Global Asymptotic Stability (UGAS) of the operating point.

This paper is organized as follows: In section II, a first model for the NPC is proposed in abc coordinates, afterward, this model is transformed into αβγ coordinates, and a coordinate change is introduced in order to consider the active and reactive powers instead of phase currents. Important assumptions, properties and control problems are also stated in this section. Section III proposes the model using the hybrid framework, and describes the hybrid control law ensuring stability properties using the HDS theory. Some simulations are performed in section IV. Finally, the conclusion of the proposed work is addressed in Section V.

Notation: Throughout the paper, R denotes the set of real numbers, R n the n-dimensional Euclidean space and R n×m the set of all real m × n matrices. We denote with 1 4 the identity matrix R 4×4 . The set S n denotes the set of symmetric positive definite matrices in R n×n . The symbol ., . denotes the standard Euclidean inner product and ⊗ define the Kronecker product.

II. Dynamical model of the npc rectifier

A. The NPC architecture and dynamical modeling

The considered system is a three-phase three-level NPC converter working as a rectifier [START_REF] Takahashi | A new neutral-pointclamped pwm inverter[END_REF], which structure is depicted in Figure 1. This converter is connected to the grid through inductors, L, and parasitic resistances, R LS . These parasitic resistances model not only the resistive components of the inductance, but also the dissipated switching energy. The phase voltages and the phase currents are denoted by v sa , v sb , v sc and i a , i b , i c , respectively. The dc link contains two capacitors C 1 and C 2 , which are assumed to have the same value C 1 = C 2 = C and which respective voltages are denoted by v c1 and v c2 . The parasitic resistances R p1 and R p2 for capacitors C 1 and C 2 , respectively, are considered and assumed to have the same value, R p1 = R p2 = R p . This dc link is also connected to a pure resistive load R, and the voltage across this load is denoted v dc . This voltage is the sum of the capacitor voltages (v dc = v c1 + v c2 ). The circuit contains 6 complementary switches (S i l , S i l ), with i = {a, b, c} and l = {1, 2}. The control inputs d ij ∈ {0, 1}, with i = {a, b, c} and j = {p, o, n}, control the switches and they are assumed to be discrete variables:

d ij = 1, if phase i is connected to level j 0, else.
Moreover, this control variables present the following constraint [START_REF] Bordonau | A state-space model for the comprehensive dynamic analysis of three-level voltage-source inverters[END_REF]:

d ip + d io + d in = 1, for i = {a, b, c}.
Assumption 1: We assume in the following that the phase voltages and currents are balanced, that is:

v sa + v sb + v sc = 0, i a + i b + i c = 0.
Then, considering Assumption 1 and Fig. 1, a model of the NPC converter in abc coordinates can be expressed as:

L dia dt = vsa -RLSia + 2dan -2dap -d bn + d bp -dcn + dcp 6 v dc + -2dan -2dap + d bn + d bp + dcn + dcp 6 v d L di b dt = v sb -RLSi b - dan -dap -2d bn + 2d bp + dcn -dcp 6 v dc + dan + dap -2d bn -2d bp + dcn + dcp 6 v d L dic dt = vsc -RLSic - dan -dap + d bn -d bp -2dcn + 2dcp 6 v dc + dan + dap + d bn + d bp -2dcn -2dcp 6 v dc C dv dc dt = (dap -dan)ia + (d bp -d bn )i b + (dcp -dcn)ic - 2 R + 1 Rp v dc C dv d dt = (dap + dan)ia + (d bp + d bn )i b + (dcp + dcn)ic - 1 Rp v d ,
where v d represents the dc-link capacitor voltage difference (v d = v c1 -v c2 ). Notice that, v sa , v sb , v sc are the grid voltage in the so-called abc coordinates. In order to take into account the balanced phase voltages and currents, the Clarke Transformation [START_REF] Gordillo | Model-based npc converter regulation for synchronous rectifier applications[END_REF] is used to obtain the model in αβγ coordinates: The voltage variables, v sα and v sβ , and the current variables, i α and i β , are the transformations in αβγ of the phase voltages and phase currents, respectively. Notice that, according to Assumption 1, as the phase voltages and phase currents are assumed to be balanced, then the last transformation leads to:

                     L diα dt = v sα -R LS i α -(d αp -d αn ) v dc 2 -(d αp + d αn ) v d 2 L di β dt = v sβ -R LS i β -(d βp -d βn ) v dc 2 -(d βp + d βn ) v d 2 C dv dc dt = (d αp -d αn )i α + (d βp -d βn )i β -( 2 R + 1 Rp )v dc C dv d dt = (d αp + d αn )i α + (d βp + d βn )i β -1 Rp v d , (1) 
v γ = 0 i γ = 0.

B. Modeling of the input voltage v sα and v sβ

The grid voltages in αβγ coordinates are expressed as follows:

v sα (t) = V sα sin(wt) v sβ (t) = V sβ cos(wt), (2) 
where V sα , V sβ and w are, respectively, the amplitude and the frequency of the grid voltage. We assume in the following that

V sα = V sβ = V s . S a 1 S a 1 S a 2 S b 2 S b 1 S b 1 S b 2 S c 1 S c 1 S c 1 S c 2 Rp 1 o C1 + - vc 1 C2 + - vc 2 Rp 2 p n R + - vdc vsa RLS L ia a vsb RLS L ib b vsc RLS L ic c
Fig. 1. Three-phase three-level neutral point clamped (NPC) rectifier.

Remark 1:

Note that from (2), it is simple to deduce that v 2 sα (t) + v 2 sβ (t) = V 2 s .
We can therefore define the following set

Φ = {(v sα (t), v sβ (t)) ∈ R 2 , v 2 sα + v 2 sβ (t) = V 2 s }. (3) 
As depicted in Fig. 2, the set (3) can be embedded into a polytope described as:

Ω := 4 j=1 ν j Ω j for 0 ≤ ν j ≤ 1 and 4 j=1 ν j (t) = 1,
where Ω j (j = 1, 2, 3, 4) represents the vertices of the polytope in the (v sα , v sβ )-plane: 

Ω 1 = V sα V sβ , Ω 2 = -V sα V sβ , Ω 3 = V sα -V sβ , Ω 4 = -V sα -V sβ . V sα V sβ -V sα -V sβ v sβ v sα

C. The NPC dynamical model based on instantaneous powers

The control algorithm is easier to express using instantaneous powers instead of current variables [START_REF] Liserre | Overview of control and grid synchronization for distributed power generation systems[END_REF]. Furthermore, phase currents i α and i β can be also expressed in terms of instantaneous active and reactive powers [START_REF] Kanazawa | Generalized theory of the instantaneous reactive power in three-phase circuits[END_REF]:

i α = 1 V 2 s (v sα p -v sβ q) (4) i β = 1 V 2 s (v sβ p + v sα q) (5) 
where p and q represent the instantaneous active and reactive powers of the system, respectively. Then, model (1) can be rewritten according to the new state variable

x = [p q v dc v d ] T : ẋ = Au(t)      -R LS L 2πf -ξ1 2L -ξ3 2L -2πf -R LS L ξ2 2L ξ4 2L ξ1 CV 2 s -ξ2 CV 2 s -( 2 RC + 1 RpC ) 0 ξ3 CV 2 s -ξ4 CV 2 s 0 -1 RpC      x+ B     V 2 s L 0 0 0     , (6) 
where, f is the frequency of the phase voltages, and

ξ 1 = u 1 v sα (t) + u 2 v sβ (t), ξ 2 = u 1 v sβ (t) -u 2 v sα (t), ξ 3 = u 3 v sα (t) + u 4 v sβ (t), ξ 4 = u 3 v sβ (t) -u 4 v sα (t).
These equations can be rewritten as follows:

ξ = Γ 0 0 Γ u. ( 7 
) with ξ = [ξ 1 ξ 2 ξ 3 ξ 4 ] T and Γ = v sα (t) v sβ (t) v sβ (t) -v sα (t) . u = [u 1 u 2 u 3 u 4 ]
T is a vector containing the control variables

u 1 = d αp -d αn u 2 = d βp -d βn u 3 = d αp + d αn u 4 = d βp + d βn .
At this stage, let consider vector u = [u 1 u 2 u 3 u 4 ] T with u ∈ U , where U is a set of all possible combinations for the control inputs. For the considered synchronous rectifier, there are 27 possible combinations of the switches [START_REF] Gordillo | Model-based npc converter regulation for synchronous rectifier applications[END_REF], but as there are redundant switching states, we only need to consider 25 combinations, meaning that u ∈ {u (1) , ..., u (25) } with u ∈ R 4 . Note that, the model ( 6) is a nonlinear time-variant system.

To ease the stability analysis, a new formulation of this nonlinear time-varying system is proposed, based on a polytopic presentation. First of all, notice that the matrix Γ defined in [START_REF] Zhang | A novel direct power control strategy for three-level pwm rectifier based on fixed synthesizing vectors[END_REF] can be written as a polytope:

Γ = 4 j=1 µ j (t)Γ j ,
where µ j (t) ∈ [0, 1] is a function satisfying 4 j=1 µ j (t) = 1 and Γ j are defined as

Γ 1 = V sα V sβ V sβ -V sα , Γ 2 = -V sα V sβ V sβ V sα Γ 3 = V sα -V sβ -V sβ -V sα , Γ 4 = -V sα -V sβ -V sβ V sα .
Then, equation ( 7) can be written as:

ξ = 4 j=1 µ j (t) Γ j 0 0 Γ j u.
Matrix A u (t) defined in system [START_REF] Gordillo | Model-based npc converter regulation for synchronous rectifier applications[END_REF], can also be written as follows:

A u (t) = 4 j=1 µ j (t)A u (j), (8) 
where

A u (j) = M 1 M 2 M 3 M 4 Γ j 0 0 Γ j u ⊗ 1 4 + M 0 (9) 
and

M 0 =     -R LS L 2πf 0 0 -2πf -R LS L 0 0 0 0 -( 2 RC + 1 RpC ) 0 0 0 0 -1 RpC     M 1 =     0 0 -1 2L 0 0 0 0 0 1 CV 2 s 0 0 0 0 0 0 0     , M 2 =     0 0 0 0 0 0 1 2L 0 0 -1 CV 2 s 0 0 0 0 0 0     M 3 =     0 0 0 -1 2L 0 0 0 0 0 0 0 0 1 CV 2 s 0 0 0     , M 4 =     0 0 0 0 0 0 0 1 2L 0 0 0 0 0 -1 CV 2 s 0 0     .
Consequently, the original nonlinear model ( 6) can be rewritten as a polytopic system as follows:

ẋ = 4 j=1 µ j (t)A u (j)x + B. (10) 
The next assumption is necessary to guarantee the existence of a switching signal that ensures forward invariance of the equilibrium point, x e , in the generalized sense of Filippov, considering u ∈ {u (1) , ..., u (25) } and equation [START_REF] Cho | Predictive control algorithm for capacitor-less inverters with fast dynamic response[END_REF].

Assumption 2: There exist 25 functions of time λ 1eq (t), λ 2eq (t), ..., λ 25eq (t) satisfying 25 l=1 λ ieq (t) = 1 for all t > 0, such that the following convex combination holds for every t:

25 l=1 λ leq (t)(A u (l) (t)x e + B) = 0, (11) 
with

A u (l) (t) = M 1 M 2 M 3 M 4 Γ 0 0 Γ u (l) ⊗1 4 +M 0
where u (l) ∈ U and x e is the desired value of the regulation, meaning that the equilibrium point is reached in sense of Filippov.

In order to establish the stability properties of the equilibrium point x e , we introduce the following property.

Property 1: For matrices A u (j) defined in (9), there exist common matrices P, Q ∈ S 4 satisfying A u (i) (j) T P + P A u (i) (j) + 2Q < 0, [START_REF] Bouziane | Sliding mode control of two-level boost dc-dc converter[END_REF] for all j ∈ {1, ..., 4} and u (i) ∈ U with i ∈ {1, ..., 25}. Therefore, matrices A u (i) (j) are Hurwitz.

Proof: The statement can be easily proved choosing

P =     L 0 0 0 0 L 0 0 0 0 CV 2 s 0 0 0 0 CV 2 s     , Q =     -R LS 0 0 0 0 -R LS 0 0 0 0 -( 1 R + 1 2Rp )V 2 s 0 0 0 0 -g 2Rp     ,
which are found from the system structure and energylike arguments.

D. The control objectives

The objectives of the control problem are summarized as follows:

1) The instantaneous active power p and the instantaneous reactive power q should track their references denoted p * and q * , respectively,

p → p * q → q * .
2) The sum of the converter capacitors voltages v dc should be regulated towards its reference denoted v * dc , v dc → v * dc .

3) The difference of the converter capacitors voltages v d should be as small as possible,

v d → 0.
Then, the desired equilibrium point can be represented as x e = [x e1 x e2 x e3 x e4 ] T = [p * q * v * dc 0] T . In order to achieve these objectives, while taking into account the real nature of the system, we propose a control algorithm described in the next section.

III. Hybrid model and proposed control law

Continuous-time and discrete-time dynamics are present in the considered system and the HDS theory developed in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] is a natural way to take both dynamics into consideration. The continuous evolution (or flows) represents the evolution of the instantaneous active and reactive power states and the voltages v dc and v d . Likewise, the discrete evolution (or jumps) represents switching control inputs u ∈ {u (1) , ..., u (25) }.

Then, the closed loop system can be modeled easily as a hybrid system of the form H = (C, f, D, G):

H :        ẋ u = f (x, u), (x, u) ∈ C, x + u + ∈ G(x, u), (x, u) ∈ D, (13) 
f (x, u) := A u (t)x + B 0 , G(x, u) := x argmin i∈K xT P (A u (i) (t)x + B) (14) 
with i ∈ {1, 2, ..., 25} and x = xx e the error between x and the equilibrium x e .

The flow and jump set are given as:

C :={(x, u) : xT P (A u (t)x + B) ≤ -ηx T Qx}, ( 15 
) D :={(x, u) : xT P (A u (t)x + B) ≥ -ηx T Qx}, (16) 
where η ∈ (0, 1) is a design parameter.

The basic idea used in model ( 13)-( 16) is as follows: assume there exists a common Lyapunov function, V = x T P x, for all modes of the system, then

• if the Lyapunov function is sufficiently decreasing for a given control input, then this value of control is maintained. • If the derivative of the Lyapunov function is not sufficiently negative, the control input is changed in order to improve the decreasing of V . Remark 2: Note that, parameter η can adjust the switching frequency. Indeed, by decreasing η, we reduce the switching frequency and on the contrary, by increasing η, we raise the switching frequency. For practical reasons, the switching frequency must be low enough. Nevertheless, according to [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF], this tuned parameter can manage some LQ performances.

Proposition 1: The hybrid system ( 13) -( 16) satisfies the following basic hybrid conditions given in [19, Assumption 6.5]:

• sets C and D given in ( 15) and ( 16) respectively, are closed. • f is a continuous function, thus is therefore outer semicontinuous and it is also locally bounded. Moreover, f is convex for all (x, u) ∈ C. • G is outer semicontinuous [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Definition 5.9] and locally bounded relative to D. Then, we can conclude that the hybrid system ( 13)-( 16) is well-posed.

The next Lemma guarantees the control mechanism described before, ensuring that the Lyapunov function is decreasing enough after each jump.

Lemma 1: Consider matrices P, Q ∈ S 4 satisfying Property 1, a point x e ∈ R 4 satisfying Assumption 2, then, for each x ∈ R 4 , min

i∈K xT P (A u (i) (t)x + B) ≤ -x T Qx, (17) 
with x = xx e .

Proof: Considering the left hand side of ( 17), we get:

min i∈K xT P (A u (i) (t)x + B) ≤ min i∈K xT P A u (i) (t)x + min i∈K xT P (A u (i) (t)x e + B).
Using Property 1, we obtain that min

i∈K xT P A u (i) (t)x ≤ -x T Qx.
Following [START_REF] Garcia | Switched affine systems control design with application to DC-DC converters[END_REF], min i∈K xT P (A u (i) (t)x e + B) can also be expressed as:

min i∈K xT P (A u (i) (t)x e + B) = xT P min λn∈[0,1] 25 n=1 λ n (t)(A un (t)x e + B) ≤ xT P 25 n=1 λ neq (t)(A un (t)x e + B) .
Then, from Assumption 2, we obtain min

i∈K xT P (A u (i) (t)x e + B) ≤ 0, (18) 
which concludes the proof.

Remark 3:

We note here that, if x = 0

-x T Qx < -ηx T Qx. because η < 1.
Following the hybrid system theory, we will establish stability properties of the given compact set

A := {(x, u) : x = x e , u ∈ U }. (19) 
Theorem 1: Consider Assumption 2 and matrices P, Q ∈ S 4 satisfying Property 1. Then, the set ( 19) is UGAS for hybrid system (13)-( 16) for each x e satisfying Assumption 2.

Proof: Let consider the Lyapunov function candidate V (x) = xT P x, with x = x-x e which is continuously differentiable. Along the trajectories of the system ( 13)- [START_REF] Barros | Optimal predictive control of three-phase npc multilevel converter for power quality applications[END_REF] • in the flow set, C (15), the derivative of V (x) is:

∇V (x), f (x, u) = xT P (A u (t)x + B) ≤ -ηx T Qx. (20) 
• Moreover, in the jump set, D (16), the evolution of V (x) is :

V (x + ) -V (x) = xT P x -xT P x = 0. (21) 
We can remark that along the jumps, the strictly decreasing of the Lyapunov function is not guaranteed. Nevertheless, this property can be ensured applying [START_REF] Teel | Relaxed persistent flow/jump conditions for uniform global asymptotic stability[END_REF]Theorem 1]. For this goal, we need to prove that system (13)-( 16) presents semiglobal persistent flow.

Let us firstly build a restricted hybrid system H δ,∆ , corresponding to the intersection of the flow set C and the jump set D with the closed and bounded set:

S δ,∆ = {x :| x |≥ δ and | x |≤ ∆}, (22) 
for each pair 0 < δ < ∆ of positive scalars, and with the distance of x to the attractor [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] defined by |x| A = |xx e | = |x|. Notice that from the definition of ( 22), the solution x is bounded. The restricted hybrid system H δ,∆ is then defined as [24, eq.( 3)]:

H δ,∆ := (C ∩ S δ,∆ , f, D ∩ S δ,∆ , G).
We can remark that, any solution to H δ,∆ jumps to the interior of the flow bounded set C ∩ S δ,∆ , Moreover, from Lemma 1, we get:

x+ (A u (t)x + + B) ≤ -x + T Qx + < -ηx + T Qx + (23)
with x+ = x +x e , and from G in [START_REF] Albea | Hybrid control scheme for a half-bridge inverter[END_REF], after each jump x + = x, leading to x+ = xx e = x. In [START_REF] Garcia | Switched affine systems control design with application to DC-DC converters[END_REF], we get:

x(A u (t)x + B) ≤ -x T Qx < -ηx T Qx (24) 
with x = 0, because x ∈ S δ,∆ . This implies that the solutions must flow for some time after each jump. It also means that there is a strictly positive uniform dwell-time ρ(δ, ∆) between each pair of consecutive jumps. Then, all assumptions of [24, Theorem 1] are satisfied, and UGAS of A is proven.

IV. Simulations In this section, some simulations are performed on the proposed closed loop system by using MAT-LAB/Simulink and by exploiting the HyEQ Toolbox [START_REF] Sanfelice | A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid equations (HyEQ) toolbox[END_REF] to verify the properties of the closed loop ( 13)- [START_REF] Barros | Optimal predictive control of three-phase npc multilevel converter for power quality applications[END_REF]. The parameters of the NPC are given in Table I. The simulations are made for different values of sampling time T s (where the switching frequency is f s = 1 Ts ). Moreover, we choose η = 0.1 following up the trade-off between switching frequency and performance mentioned in Remark 2. The chosen matrix Q can achieve some LQ performance level, for example, reduce the levels of dissipated energy, following [START_REF] Albea | Hybrid dynamic modeling and control of switched affine systems: application to DC-DC converters[END_REF]Theorem 2]:

Q =     1 0 0 0 0 1 0 0 0 0 0.5 0 0 0 0 0.1     .
Further, a common matrix P can be obtained such that Property 1 is satisfied:

P =     7.91 0 0 0 0 7.91 0 0 0 0 2773.78 0 0 0 0 3040.37     • 10 -2 .
The desired equilibrium point is given as follows:

x e = x 1e 0 V * dc 0 T ,
where x 1e is obtained from the equilibrium of model ( 6)

x 1e = 2V 2 s -V 2 s 4 -8R LS V 2 s 2Rp+R R * Rp V * 2 dc 4R LS ,
which is, x e = [782.4 0 150 0] T . Figure 3 shows the evolution of states for different values of sampling time T s = {10 -4 , 10 -5 , 10 -6 }s. Note that, for these different values of T s , the instantaneous active and reactive power, p and q, and the voltages v dc and v d converge, respectively, towards their desired references with a response time of to 0.02s. Furthermore, we can notice that the instantaneous active and reactive powers signals admit a high-frequency ripple phenomenon due to switching control. Note also that, when the switching frequency is increased, then the ripple amplitude is reduced. Similar arguments are found for the phase currents, as shown in Figure 4, showing the trade-off between switching frequency and performance (if T s increases, then the ripple signal increases). These simulations illustrate Theorem 1 statement.

Furthermore, the evolution of the Lyapunov function is depicted in Fig. 5, we can remark that when T s is small then the steady state error of V is reduced. Likewise, when T s is large, the Lyapunov function increases because we forbid the switches along period T s .

Consequently, we can conclude from the simulations that:

• the desired equilibrium point is reached in the generalized sense of Filippov as expected in Assumption. 2. It means that the desired equilibrium is generally obtained for a not constant control, meaning that the control switches between several values at an infinite switching frequency. As expected, a Zeno behavior appears • In practical applications, as well as in simulation purposes, it is necessary to include a maximal switching frequency to avoid a Zeno behavior at the steady-state. However, a significant impact on the quality of the convergence towards the desired equilibrium is expected as shown in Fig. 3 and Fig.

4.

• If the switching frequency is reduced, then the difference between the balance and the state increases, and the ripple also increases. Hence, it appears that a right trade off between the number of switches and error should be found. This phenomenon has not only been studied in the context of hybrid framework (see report [START_REF] Sanchez | Practical stabilisation of switched affine systems with dwell-time guarantees[END_REF]), but also in the problem of the discretization of the sliding mode control [START_REF] Galias | Discretization effects in single input delayed sliding mode control systems[END_REF].

V. Conclusions and Future work

In this article, we have considered a nonlinear time varying model of a three-phase three-level NPC converter. Furthermore, to ease the design of an efficient control law, a polytopic model is developed. Then a hybrid control scheme is proposed, ensuring that a desired attractor is UGAS for this hybrid closed loop system. Finally, the main result is validated in simulation.

Future works will be dedicated to ensure a practical global asymptotic stability including a minimum dwelltime in our hybrid scheme. Moreover, we expect to implement the control algorithm on a real system. The proposed control law needs also knowledge of the circuit parameters including the load resistance. Future work will also include adaptive approaches to deal with this drawback.
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  where the control inputs d αp , d αn , d βp and d βn are the transformed of the control inputs d ij ∈ {0, 1}, with i = {a, b, c} and j = {p, o, n}, given before. Notice that the control inputs d γj and d io do not appear in this model.
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