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Hybrid Control Law for a Three-Level NPC Rectifier

S. Hadjeras, C. Albea Sanchez, F. Gomez-Estern Aguilar, F. Gordillo and G. Garcia

Abstract— In this article, a hybrid control law
is proposed for the three-phase three-level Neutral
Point Clamped (NPC) converter working as a rectifier
in order to regulate the output DC voltage. The
control problem deals with the unbalance capacitor
voltages as well as the phase currents. The proposed
algorithm is based on the Hybrid Dynamical System
theory, which takes into account the hybrid nature of
the NPC converter, i.e., the continuous and discrete
dynamics, ensuring uniform global asymptotic stabil-
ity of the operating point. Finally, the effectiveness
of the proposed control algorithm is validated in
simulation.

Index Terms— Three-phase three-level neutral
point clamped converter, rectifier, hybrid dynamical
system, nonlinear time-varying system.

I. Introduction

During the last decades, the control of multilevel power
converters has been widely studied in the literature, since
they can achieve high power using mature medium-power
semiconductor technology and present more advantages
compared with conventional ones. These advantages are
the output signal quality and a nominal power increase
in the converter [1]. Particularly, the control of three-
phase, three-level Neutral Point Clamped (NPC) con-
verter, well-known as AC/DC rectifier proposed by [2],
has attracted a lot of attention. From the electronic com-
munity, it is one of the most used multilevel power con-
verter for AC/DC conversion (DC motor drives, battery
charging systems, appliances [1][3]) due to its high power
rating and its lower total harmonic distortion. From the
control community, the control design of such system is
recognized to be a challenging task, since the dynamical
behavior can be modeled as a nonlinear time-varying
and hybrid system. Indeed, voltages and currents are
continuous-time signals, whereas the control signals are
generated by switches devices, which are consequently of
a discrete nature. This fact makes the control design a
complex task.

The main control objectives of this class of system are
twofold. Firstly, we aim to obtain desired sinusoidal input
currents. Secondly, we desire to generate a dc link voltage
keeping it constant at the desired reference value, while
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maintaining the neutral point voltage close to zero. In
order to achieve these control objectives, some control
strategies have been developed. A first classical approach
widely studied relies on the control design of averaged
models [4][5]. The most employed averaged controller for
the NPC rectifier is called Direct Power Control (DPC)
method. This approach uses generally two or more PI
controllers, one for the instantaneous powers, the second
one to keep the neutral point voltage close to zero and
the third one to regulate the dc-link voltage to a desired
value [6][7].

Recently, some control strategies have been proposed
to directly control the switches without considering an
averaged model, which led to discontinuous control laws.
Among them, we can cite predictive control algorithms
(for inverters in [8] and converters in [9]), sliding mode
controllers (for inverters in [10][11] and converters in
[12][13]) and hybrid controllers (for inverters in [14] and
converters in [15]). For the case of the NPC, to the best
of our knowledge, only a few papers have considered
explicitly the discrete nature of the switches. In [16][17],
a predictive control algorithm is used to predict the
capacitor voltages for the next sampling time. In [18] a
sliding mode control design is considered and the sliding
surfaces use directly the error between the state variables
and their references.

In this work, we propose to model the NPC as a hybrid
model by considering, the voltage and current signals as
continuous dynamics, as well as, the switching signals as
discrete dynamics. However, the challenge in this article
is to consider the nonlinear time-varying nature of the
system. Following the Hybrid Dynamical System (HDS)
theory [19], we propose a control guaranteeing Uniform
Global Asymptotic Stability (UGAS) of the operating
point.

This paper is organized as follows: In section II, a
first model for the NPC is proposed in abc coordinates,
afterward, this model is transformed into αβγ coordi-
nates, and a coordinate change is introduced in order to
consider the active and reactive powers instead of phase
currents. Important assumptions, properties and control
problems are stated in this section. Section III proposes
the model using the hybrid framework, and describes
the hybrid control law ensuring stability properties using
the HDS theory. Some simulations are performed in
section IV. Finally, the conclusion of the proposed work
is addressed in Section V.

Notation: Throughout the paper, R denotes the set of
real numbers, Rn the n-dimensional Euclidean space and



Rn×m the set of all real m×n matrices. We denote with
14 the identity matrix R4×4. The set Sn denotes the set
of symmetric positive definite matrices of matrices Rn×n.
The symbol 〈., .〉 denotes the standard Euclidean inner
product and ⊗ define the Kronecker product.

II. Dynamical model of the npc rectifier

A. The NPC architecture and dynamical modeling

The considered system is a three-phase three-level
NPC converter working as a rectifier [2], whose structure
is depicted in Figure 1. This converter is connected to
the grid through inductors, L, and parasitic resistances,
RLS . These parasitic resistances model not only the
resistive components of the inductance, but also the
dissipated switching energy. The phase voltages and the
phase currents are denoted by vsa, vsb, vsc and ia, ib,
ic, respectively. The dc link contains two capacitors C1

and C2, which are assumed to have the same value
C1 = C2 = C and whose respective voltages are denoted
by vc1 and vc2 . The parasitic resistances Rp1 and Rp2 for
capacitors C1 and C2, respectively, are considered and
assumed to have the same value, Rp1 = Rp2 = Rp. This
dc link is also connected to a pure resistive load R, and
the voltage across this load is denoted vdc. This voltage
is the sum of the capacitor voltages (vdc = vc1 + vc2).

The control inputs dij ∈ {0, 1}, with i = {a, b, c} and
j = {p, o, n} are assumed to be discrete variables:

dij =

{
1, if phase i is connected to level j
0, else.

Moreover, this control variables present the following
constraint [20]:

dip + dio + din = 1, for i = {a, b, c}.

Assumption 1: We assume in the following that the
phase voltages and currents are balanced, that is:

vsa + vsb + vsc = 0,

ia + ib + ic = 0.

Then, considering Assumption 1 and Fig. 1, a model of
the NPC converter in abc coordinates can be expressed
as:

L
dia
dt

= vsa−RLSia+
2dan− 2dap− dbn+ dbp− dcn+ dcp

6
vdc

+
−2dan− 2dap+ dbn+ dbp+ dcn+ dcp

6
vd

L
dib
dt

= vsb−RLSib−
dan− dap− 2dbn+ 2dbp+ dcn− dcp

6
vdc

+
dan+ dap− 2dbn− 2dbp+ dcn+ dcp

6
vd

L
dic
dt

= vsc−RLSic−
dan− dap+ dbn− dbp− 2dcn+ 2dcp

6
vdc

+
dan+ dap+ dbn+ dbp− 2dcn− 2dcp

6
vdc

C
dvdc
dt

= (dap− dan)ia+ (dbp− dbn)ib+ (dcp− dcn)ic

−
(

2

R
+

1

Rp

)
vdc

C
dvd
dt

= (dap+ dan)ia+ (dbp+ dbn)ib+ (dcp+ dcn)ic−
1

Rp
vd,

where vd represents the dc-link capacitor voltage differ-
ence (vd = vc1−vc2). Notice that, vsa, vsb, vsc are the grid
voltage in the so-called abc coordinates. In order to take
into account the balanced phase voltages and currents,
the Clarke Transformation [6] is used to obtain the model
in αβγ coordinates:



Ldiαdt = vsα−RLSiα− (dαp− dαn) vdc2 − (dαp+ dαn)vd2

L
diβ
dt = vsβ−RLSiβ− (dβp− dβn) vdc2 − (dβp+ dβn) vd2

C dvdc
dt = (dαp− dαn)iα+ (dβp− dβn)iβ− ( 2

R+ 1
Rp

)vdc

C dvd
dt = (dαp+ dαn)iα+ (dβp+ dβn)iβ− 1

Rp
vd,

(1)
where the control inputs dαp, dαn, dβp and dβn are the
transformed of the control inputs dij ∈ {0, 1}, with i =
{a, b, c} and j = {p, o, n}, given before. Notice that the
control inputs dγj and dio do not appear in this model.

The voltage variables, vsα and vsβ , and the current
variables, iα and iβ , are the transformations in αβγ of the
phase voltages and phase currents, respectively. Notice
that, according to Assumption 1, as the phase voltages
and phase currents are assumed to be balanced, then the
last transformation leads to:

vγ = 0

iγ = 0.

B. Modeling of the input voltage vsα and vsβ

The grid voltages in αβγ coordinates are expressed as
follows: {

vsα(t) = Vsα sin(wt)
vsβ(t) = Vsβ cos(wt),

(2)

where Vsα, Vsβ and w are, respectively, the amplitude
and the frequency of the grid voltage. We assume in the
following that Vsα = Vsβ = Vs.
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Fig. 1. Three-phase three-level neutral point clamped (NPC) rectifier.

Remark 1: Note that from (2), it is simple to deduce
that

v2
sα(t) + v2

sβ(t) = V 2
s .

We can therefore define the following set

Φ = {(vsα(t), vsβ(t)) ∈ R2, v2
sα(t) + v2

sβ(t) = V 2
s }. (3)

As depicted in Fig. 2, the set (3) can be embedded into
a polytope described as:

Ω :=

4∑
j=1

νjΩj for 0 ≤ νj ≤ 1 and

4∑
j=1

νj(t) = 1,

where Ωj (j = 1, 2, 3, 4) represents the vertices of the
polytope in the (vsα, vsβ)-plane:

Ω1 =

[
Vsα
Vsβ

]
, Ω2 =

[
−Vsα
Vsβ

]
, Ω3 =

[
Vsα
−Vsβ

]
,

Ω4 =

[
−Vsα
−Vsβ

]
.

Vsα

Vsβ

−Vsα

−Vsβ
vsβ

vsα

1

2

3

4

Φ
Ω

Fig. 2. Representation of a set (3) and the proposed polytope.

C. The NPC dynamical model based on instantaneous
powers

The control algorithm is easier to express using instan-
taneous powers instead of current variables [21]. Further-
more, phase currents iα and iβ can be also expressed in
terms of instantaneous active and reactive powers [22]:

iα =
1

V 2
s

(vsα(t)p− vsβ(t)q) (4)

iβ =
1

V 2
s

(vsβ(t)p+ vsα(t)q) (5)

where p and q represent the instantaneous active and
reactive powers of the system, respectively.

Then, model (1) can be rewritten according to the new
state variable x = [p q vdc vd]

T :

ẋ=

Au(t)︷ ︸︸ ︷
−RLSL 2πf − ξ1

2L − ξ3
2L

−2πf −RLSL
ξ2
2L

ξ4
2L

ξ1
CV 2

s
− ξ2
CV 2

s
−( 2

RC + 1
RpC

) 0
ξ3
CV 2

s
− ξ4
CV 2

s
0 − 1

RpC

x+
B︷ ︸︸ ︷
V 2
s

L
0
0
0

,
(6)

where, f is the frequency of the phase voltages, and

ξ1 = u1vsα(t) + u2vsβ(t), ξ2 = u1vsβ(t)− u2vsα(t),

ξ3 = u3vsα(t) + u4vsβ(t), ξ4 = u3vsβ(t)− u4vsα(t).

These equations can be rewritten as follows:

ξ =

[
Γ 0
0 Γ

]
u. (7)

with ξ = [ξ1 ξ2 ξ3 ξ4]T and Γ =

[
vsα(t) vsβ(t)
vsβ(t) −vsα(t)

]
.

u = [u1 u2 u3 u4]T is a vector containing the control



variables

u1 = dαp − dαn u2 = dβp − dβn
u3 = dαp + dαn u4 = dβp + dβn.

At this stage, let consider vector u = [u1 u2 u3 u4]T with
u ∈ U , where U is a set of all possible combinations for
the control inputs. For the considered synchronous rec-
tifier, there are 27 possible combinations of the switches
[6], but as there are redundant switching states, we
only need to consider 25 combinations, meaning that
u ∈ {u(1), ..., u(25)} with u ∈ R4. Note that, the model
(6) is nonlinear time-variant system.

To ease the stability analysis, a new formulation of this
nonlinear time-varying system is proposed, based on a
polytopic presentation. First of all, notice that the matrix
Γ defined in (7) can be written as a polytope:

Γ =

4∑
j=1

µj(t)Γj ,

where µj(t) ∈ [0, 1] is a function satisfying
∑4
j=1 µj(t) =

1 and Γj are defined as

Γ1 =

[
Vsα Vsβ
Vsβ −Vsα

]
, Γ2 =

[
−Vsα Vsβ
Vsβ Vsα

]
Γ3 =

[
Vsα −Vsβ
−Vsβ −Vsα

]
, Γ4 =

[
−Vsα −Vsβ
−Vsβ Vsα

]
.

Then, equation (7) can be written as:

ξ =

4∑
j=1

µj(t)

[
Γj 0
0 Γj

]
u.

Matrix Au(t) defined in system (6), can also be written
as follows:

Au(t) =

4∑
j=1

µj(t)Au(j), (8)

where

Au(j) =
[
M1 M2 M3 M4

]([Γj 0
0 Γj

]
u

)
⊗ 14 +M0

(9)
and

M0 =


−RLSL 2πf 0 0
−2πf −RLSL 0 0

0 0 −( 2
RC + 1

RpC
) 0

0 0 0 − 1
RpC



M1 =


0 0 − 1

2L 0
0 0 0 0
1

CV 2
s

0 0 0

0 0 0 0

 , M2 =


0 0 0 0
0 0 1

2L 0
0 − 1

CV 2
s

0 0

0 0 0 0



M3 =


0 0 0 − 1

2L
0 0 0 0
0 0 0 0
1

CV 2
s

0 0 0

 , M4 =


0 0 0 0
0 0 0 1

2L
0 0 0 0
0 − 1

CV 2
s

0 0

 .

Consequently, the original nonlinear model (6) can be
rewritten as a polytopic system as follows:

ẋ =

4∑
j=1

µj(t)Au(j)x+B. (10)

The next assumption is necessary to guarantee the
existence of a switching signal that ensures forward
invariance of the equilibrium point, xe, in the generalized
sense of Filippov, considering u ∈ {u(1), ..., u(25)} and
equation (8).

Assumption 2: There exist 25 functions of time
λ1eq (t), λ2eq (t), ..., λ25eq (t) satisfying

∑25
l=1 λieq (t) = 1 for

all t > 0, such that the following convex combination
holds for every t:

25∑
l=1

λleq (t)(Au(l)(t)xe +B) = 0, (11)

with

Au(l)(t) =
[
M1 M2 M3 M4

]([Γ 0
0 Γ

]
u(l)

)
⊗14+M0

where u(l) ∈ U and xe is the desired value of the
regulation, meaning that the equilibrium point is reached
in sense of Filippov.

In order to establish the stability properties of the
equilibrium point xe, we introduce the following prop-
erty.

Property 1: For matrices Au(j) defined in (9), there
exist common matrices P,Q ∈ S4 satisfying

Au(i)(j)TP + PAu(i)(j) + 2Q < 0, (12)

for all j ∈ {1, ..., 4} and u(i) ∈ U with i ∈ {1, ..., 25}.
Therefore, matrices Au(i)(j) are Hurwitz.

Proof: The statement can be easily proved choosing

P =


L 0 0 0
0 L 0 0
0 0 CV 2

s 0
0 0 0 CV 2

s

 ,

Q =


−RLS 0 0 0

0 −RLS 0 0
0 0 −( 1

R + 1
2Rp

)V 2
s 0

0 0 0 − g
2Rp

 ,
which are found from the system structure and energy-
like arguments.

D. The control objectives

The objectives of the control problem are summarized
as follows:

1) The instantaneous active power p and the instanta-
neous reactive power q should track their references
denoted p∗ and q∗, respectively,

p→ p∗

q → q∗.



2) The sum of the converter capacitors voltages vdc
should be regulated towards its reference denoted
v∗dc,

vdc → v∗dc.

3) The difference of the converter capacitors voltages
vd should be as small as possible,

vd → 0.

Then, the desired equilibrium point can be represented
as xe = [xe1 xe2 xe3 xe4]T = [p∗ q∗ v∗dc 0]T .

In order to achieve these objectives, while taking into
account the real nature of the system, we propose a
control algorithm described in the next section.

III. Hybrid model and proposed control law

Continuous-time and discrete-time dynamics are
present in the considered system and the HDS the-
ory developed in [19] is a natural way to take both
dynamics into consideration. The continuous evolution
(or flows) represents the evolution of the instantaneous
active and reactive power states and the voltages vdc and
vd. Likewise, the discrete evolution (or jumps) represents
switching control inputs u ∈ {u(1), ..., u(25)}.

Then, the closed loop system can be modeled easily as
a hybrid of the form H = (C, f,D, G):

H :


[
ẋ
u̇

]
= f(x, u), (x, u) ∈ C,[

x+

u+

]
∈ G(x, u), (x, u) ∈ D,

(13)

f(x, u) :=

[
Au(t)x+B

0

]
,

G(x, u) :=

[
x

argmin
i∈K

x̃TP (Au(i)(t)x+B)

]
(14)

with i ∈ {1, 2, ..., 25} and x̃ = x − xe the error between
x and the equilibrium xe.

The flow and jump set are given as:

C :={(x, u) : x̃TP (Au(t)x+B) ≤ −ηx̃TQx̃}, (15)

D :={(x, u) : x̃TP (Au(t)x+B) ≥ −ηx̃TQx̃}, (16)

where η ∈ (0, 1) is a design parameter.
The basic idea used in model (13)-(16) is as follows:

assume there exists a common Lyapunov function, V =
xTPx, for all modes of the system, then

• if the Lyapunov function is sufficiently decreasing
for a given control input, then this value of control
is maintained.

• If the derivative of the Lyapunov function is not
sufficiently negative, the control input is changed in
order to improve the decreasing of V .

Remark 2: Note that, parameter η can adjust the
switching frequency. Indeed, by decreasing η, we reduce
the switching frequency and on the contrary, by increas-
ing η, we raise the switching frequency. For practical

reasons, the switching frequency must be low enough.
Nevertheless, according to [15], this tuned parameter can
manage some LQ performance.

Proposition 1: The hybrid system (13)− (16) satisfies
the following basic hybrid conditions given in [19, As-
sumption 6.5]:

• sets C and D given in (15) and (16) respectively, are
closed.

• f is a continuous function, thus is therefore outer
semicontinuous and it is also locally bounded. More-
over, f is convex for all (x, u) ∈ C.

• G is outer semicontinuous [19, Definition 5.9] and
locally bounded relative to D.

Then, we can conclude that the hybrid system (13)−(16)
is well-posed.

The next Lemma guarantees the control mechanism
described before, ensuring that the Lyapunov function is
decreasing enough after each jump.

Lemma 1: Consider matrices P,Q ∈ S4 satisfying
Property 1, a point xe ∈ R4 satisfying Assumption 2,
then, for each x ∈ R4,

min
i∈K

x̃TP (Au(i)(t)x+B) ≤ −x̃TQx̃, (17)

with x̃ = x− xe.
Proof: Considering the left hand side of (17), we

get:

min
i∈K

x̃TP (Au(i)(t)x+B)

≤ min
i∈K

x̃TPAu(i)(t)x̃+ min
i∈K

x̃TP (Au(i)(t)xe +B).

Using Property 1, we obtain that

min
i∈K

x̃TPAu(i)(t)x̃ ≤ −x̃TQx̃.

Following [23], min
i∈K

x̃TP (Au(i)(t)xe + B) can also be

expressed as:

min
i∈K

x̃TP (Au(i)(t)xe +B)

= x̃TP min
λn∈[0,1]

(
25∑
n=1

λn(t)(Aun(t)xe +B)

)

≤ x̃TP
(

25∑
n=1

λneq(t)(Aun(t)xe +B)

)
.

Then, from Assumption 2, we obtain

min
i∈K

x̃TP (Au(i)(t)xe +B) ≤ 0, (18)

which concludes the proof.

Remark 3: We note here that, if x̃ 6= 0

−x̃TQx̃ < −ηx̃TQx̃.

because η < 1.



Following the hybrid system theory, we will establish
stability properties of the given compact set

A := {(x, u) : x = xe, u ∈ U}. (19)

Theorem 1: Consider Assumption 2 and matrices
P,Q ∈ S4 satisfying Property 1. Then, the set (19) is
UGAS for hybrid system (13)–(16) for each xe satisfying
Assumption 2.

Proof: Let consider the Lyapunov function candi-
date V (x̃) = x̃TPx̃, with x̃ = x−xe which is continuously
differentiable. Along the trajectories of the system (13)–
(16)

• in the flow set, C (15), the derivative of V (x̃) is:

〈∇V (x̃), f(x̃, u)〉 = x̃TP (Au(t)x+B) ≤ −ηx̃TQx̃.
(20)

• Moreover, in the jump set, D (16), the evolution of
V (x̃) is :

V (x̃+)− V (x̃) = x̃TPx̃− x̃TPx̃ = 0. (21)

We can remark that along the jumps, the strictly
decreasing of the Lyapunov function is not guaranteed.
Nevertheless, this property can be ensured applying [24,
Theorem 1]. For this goal, we need to prove that system
(13)–(16) presents semiglobal persistent flow.

Let us firstly build a restricted hybrid system Hδ,∆,
corresponding to the intersection of the flow set C and
the jump set D with the closed and bounded set:

Sδ,∆ = {x̃ :| x̃ |≥ δ and | x̃ |≤ ∆}, (22)

for each pair 0 < δ < ∆ of positive scalars, and with
the distance of x to the attractor (19) defined by |x|A =
|x − xe| = |x̃|. Notice that from the definition of (22),
the solution x̃ is bounded. The restricted hybrid system
Hδ,∆ is then defined as [24, eq.(3)]:

Hδ,∆ := (C ∩ Sδ,∆, f,D ∩ Sδ,∆, G).

We can remark that, any solution to Hδ,∆ jumps to
the interior of the flow bounded set C ∩ Sδ,∆, Moreover,
from Lemma 1, we get:

x̃+(Au(t)x+ +B) ≤ −x̃+TQx̃+ < −ηx̃+TQx̃+ (23)

with x̃+ = x+− xe, and from G in (14), after each jump
x+ = x, leading to x̃+ = x− xe = x̃. In (23), we get:

x̃(Au(t)x+B) ≤ −x̃TQx̃ < −ηx̃TQx̃ (24)

with x̃ 6= 0, because x̃ ∈ Sδ,∆. This implies that the
solutions must flow for some time after each jump. It also
means that there is a strictly positive uniform dwell-time
ρ(δ,∆) between each pair of consecutive jumps. Then, all
assumptions of [24, Theorem 1] are satisfied, and UGAS
of A is proven.

IV. Simulations

In this section, some simulations are performed
on the proposed closed loop system by using MAT-
LAB/Simulink and by exploiting the HyEQ Toolbox [25]
to verify the properties of the closed loop (13)–(16).
The parameters of the NPC are given in Table I. The
simulations are made for different values of sampling
time Ts (where the switching frequency is fs = 1

Ts
).

Moreover, we choose η = 0.1 following up the trade-off
between switching frequency and performance mentioned
in Remark 2.

TABLE I

Simulation parameters

Parameter Convention Value/Units
Estimated series resistance RLS 0.4 Ω

load resistance R 30 Ω
Estimated parasitic resistance Rp 20 KΩ

Inductor L 15 mH
Output capacitor C 1500 µF

Total dc-link voltage reference V ∗
dc 150 V

Amplitude of the grid voltages Vsα 62
√

2 V
Grid frequency f 50 Hz

The chosen matrix Q can achieve some LQ perfor-
mance level, for example, reduce the levels of dissipated
energy, following [15, Theorem 2]:

Q =


1 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0.1

 .
Further, a common matrix P can be obtained such that
Property 1 is satisfied:

P =


7.91 0 0 0

0 7.91 0 0
0 0 2773.78 0
0 0 0 3040.37

 · 10−2.

The desired equilibrium point is given as follows:

xe =
[
x1e 0 V ∗dc 0

]T
,

where x1e is obtained from the equilibrium of model (6)

x1e =

2V 2
s − V 2

s

√
4− 8RLS

V 2
s

(
2Rp+R
R∗Rp

)
V ∗

2

dc

4RLS
,

which is, xe = [782.4 0 150 0]T .
Figure 3 shows the evolution of states for different

values of sampling time Ts = {10−4, 10−5, 10−6}s. Note
that, for these different values of Ts, the instantaneous
active and reactive power, p and q, and the voltages vdc
and vd converge, respectively, towards their desired refer-
ences with a response time of to 0.02s. Furthermore, the
instantaneous active and reactive powers signals admit
a high-frequency ripple phenomenon due to switching
control. Note that, when the switching frequency is



increased, then the ripple amplitude is reduced. Similar
arguments are found for the phase currents, as shown
in Figure 4, showing the trade-off between switching
frequency and performance (if Ts increases, then the
ripple signal increases). These simulations valid Theorem
1 statement.

Furthermore, the evolution of the Lyapunov function
is depicted in Fig. 5, we can remark that when Ts is
small then the steady state error of V is reduced. Like-
wise, when Ts is large, the Lyapunov function increases
because we forbid the switches along period Ts.

Consequently, we can notice from the simulations that:

• the desired equilibrium point is reached in the gen-
eralized sense of Filippov as expected in Assump-
tion. 2. It means that the desired equilibrium is gen-
erally obtained for a not constant control, meaning
that the control switches between several values at
an infinite switching frequency.

• In practical applications, as well as in simulation
purposes, it is necessary to include a maximal
switching frequency which has a significant impact
on the quality of the convergence towards the desired
equilibrium as shown in Fig. 3 and Fig. 4.

• If the switching frequency is reduced, then the dif-
ference between the balance and the state increases,
and the ripple also increases. This phenomenon has
not only been studied in the context of hybrid
framework [26], but also in the problem of the
discretization of the sliding mode control [27].

V. Conclusions and Future work

In this article, we have considered a nonlinear time
varying model of a three-phase three-level NPC con-
verter. Furthermore, to ease the design of an efficient
control law, a polytopic model is developed. Then a hy-
brid control scheme is proposed, ensuring that a desired
attractor is UGAS for this hybrid closed loop system.
Finally, the main result is validated in simulation.

Future works will be dedicated to ensure a practical
global asymptotic stability including a minimum dwell-
time in our hybrid scheme. Moreover, we expect to
implement the control algorithm on a real system. The
proposed control law needs also knowledge of the circuit
parameters including the load resistance. Future work
will include adaptive approaches to deal with this draw-
back.
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