Hybrid Control Law for a Three-Level NPC Rectifier
Sabrina Hadjeras, Carolina Albea Sanchez, Fabio Gomez-Estern, Francisco Gordillo Alvarez, Germain Garcia

To cite this version:
Sabrina Hadjeras, Carolina Albea Sanchez, Fabio Gomez-Estern, Francisco Gordillo Alvarez, Germain Garcia. Hybrid Control Law for a Three-Level NPC Rectifier. 18th European Control Conference (ECC) 2019, Jun 2019, Naples, Italy. pp.281-286. hal-02045470v2

HAL Id: hal-02045470
https://hal.science/hal-02045470v2
Submitted on 4 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Hybrid Control Law for a Three-Level NPC Rectifier

S. Hadjeras, C. Albea Sanchez, F. Gomez-Estern Aguilar, F. Gordillo and G. Garcia

Abstract—In this article, a hybrid control law is proposed for the three-phase three-level Neutral Point Clamped (NPC) converter working as a rectifier in order to regulate the output DC voltage. The control problem deals with the unbalance capacitor voltages as well as the phase currents. The proposed algorithm is based on the Hybrid Dynamical System theory, which takes into account the hybrid nature of the NPC converter, i.e., the continuous and discrete dynamics, ensuring uniform global asymptotic stability of the operating point. Finally, the effectiveness of the proposed control algorithm is validated in simulation.

Index Terms—Three-phase three-level neutral point clamped converter, rectifier, hybrid dynamical system, nonlinear time-varying system.

I. INTRODUCTION

During the last decades, the control of multilevel power converters has been widely studied in the literature, since they can achieve high power using mature medium-power semiconductor technology and present more advantages compared with conventional ones. These advantages are the output signal quality and a nominal power increase in the converter [1]. Particularly, the control of three-phase, three-level Neutral Point Clamped (NPC) converter, well-known as AC/DC rectifier proposed by [2], has attracted a lot of attention. From the electronic community, it is one of the most used multilevel power converter for AC/DC conversion (DC motor drives, battery charging systems, appliances [1][3]) due to its high power rating and its lower total harmonic distortion. From the control community, the control design of such system is recognized to be a challenging task, since the dynamical behavior can be modeled as a nonlinear time-varying and hybrid system. Indeed, voltages and currents are continuous-time signals, whereas the control signals are generated by switches devices, which are consequently of a discrete nature. This fact makes the control design a complex task.

The main control objectives of this class of system are twofold. Firstly, we aim to obtain desired sinusoidal input currents. Secondly, we desire to generate a dc link voltage keeping it constant at the desired reference value, while maintaining the neutral point voltage close to zero. In order to achieve these control objectives, some control strategies have been developed in the literature. A first classical approach widely studied relies on the control design of averaged models [4][5]. The most employed averaged controller for the NPC rectifier is called Direct Power Control (DPC) method. This approach uses generally several PI controllers, one for the instantaneous powers, the second one to keep the neutral point voltage close to zero and the third one to regulate the dc-link voltage to a desired value [6][7].

Recently, some control strategies have been proposed to directly control the switches without considering an averaged model, which led to discontinuous control laws. Among them, we can cite predictive control algorithms (for inverters in [8] and converters in [9]), sliding mode controllers (for inverters in [10][11] and converters in [12][13]) and hybrid controllers (for inverters in [14] and converters in [15]). For the case of the NPC, to the best of our knowledge, only a few papers have considered explicitly the discrete nature of the switches. In [16][17], a predictive control algorithm is used to predict the capacitor voltages for the next sampling time. In [18], a sliding mode control design is considered and the sliding surfaces use directly the error between the state variables and their references.

In this work, we propose to model the NPC as a hybrid model by considering, the voltage and current signals as continuous dynamics, as well as, the switching signals as discrete dynamics. However, the challenge in this article is to consider the nonlinear time-varying nature of the system. Following the Hybrid Dynamical System (HDS) theory [19], we propose a control guaranteeing Uniform Global Asymptotic Stability (UGAS) of the operating point.

This paper is organized as follows: In section II, a first model for the NPC is proposed in abc coordinates, afterward, this model is transformed into αβγ coordinates, and a coordinate change is introduced in order to consider the active and reactive powers instead of phase currents. Important assumptions, properties and control problems are also stated in this section. Section III proposes the model using the hybrid framework, and describes the hybrid control law ensuring stability properties using the HDS theory. Some simulations are performed in section IV. Finally, the conclusion of the proposed work is addressed in Section V.

Notation: Throughout the paper, \(\mathbb{R} \) denotes the set of real numbers, \(\mathbb{R}^n \) the n-dimensional Euclidean space.
and $\mathbb{R}^{n \times m}$ the set of all real $m \times n$ matrices. We denote with I_4 the identity matrix $\mathbb{R}^{4 \times 4}$. The set S^n denotes the set of symmetric positive definite matrices in $\mathbb{R}^{n \times n}$. The symbol (\cdot, \cdot) denotes the standard Euclidean inner product and \otimes define the Kronecker product.

II. DYNAMICAL MODEL OF THE NPC RECTIFIER

A. The NPC architecture and dynamical modeling

The considered system is a three-phase three-level NPC converter working as a rectifier [2], which structure is depicted in Figure 1. This converter is connected to the grid through inductors, L_i, and parasitic resistances, R_{L_i}. These parasitic resistances model not only the resistive components of the inductance, but also the dissipated switching energy. The phase voltages and the phase currents are denoted by v_{sa}, v_{sb}, v_{sc} and i_a, i_b, i_c, respectively. The dc link contains 2 capacitors C_1 and C_2, which are assumed to have the same value, $C_1 = C_2 = C$ and which respective voltages are denoted by v_{c1} and v_{c2}. The parasitic resistances R_{p1} and R_{p2} for capacitors C_1 and C_2, respectively, are considered and assumed to have the same value, $R_{p1} = R_{p2} = R_p$. This dc link is also connected to a pure resistive load, R, and the voltage across this load is denoted v_{dc}. This voltage is the sum of the capacitor voltages ($v_{dc} = v_{c1} + v_{c2}$). The circuit contains 6 complementary switches (S_i^0, S_i^1), with $i = \{a, b, c\}$ and $l = \{1, 2\}$. The control inputs $d_{ij} \in \{0, 1\}$, with $i = \{a, b, c\}$ and $j = \{p, o, n\}$, control the switches and they are assumed to be discrete variables:

$$d_{ij} = \begin{cases} 1, & \text{if phase } i \text{ is connected to level } j \\ 0, & \text{else.} \end{cases}$$

Moreover, this control variables present the following constraint [20]:

$$d_{ip} + d_{io} + d_{in} = 1, \quad \text{for } i = \{a, b, c\}.$$

Assumption 1: We assume in the following that the phase voltages and currents are balanced, that is:

$$v_{sa} + v_{sb} + v_{sc} = 0, \quad i_a + i_b + i_c = 0.$$

Then, considering Assumption 1 and Fig. 1, a model of the NPC converter in abc coordinates can be expressed as:

$$L \frac{di_a}{dt} = v_{sa} - R_{LS}i_a + \frac{2d_{an} - 2d_{ap} - d_{bn} + d_{bp} - d_{cn} + d_{cp}}{6} v_{dc}$$
$$+ \frac{-2d_{an} - 2d_{ap} - d_{bn} + d_{bp} + d_{cn} + d_{cp} v_d}{6}$$

$$L \frac{di_b}{dt} = v_{sb} - R_{LS}i_b - \frac{d_{ap} - d_{an} - 2d_{bn} + 2d_{bp} + d_{cn} - d_{cp}}{6} v_{dc}$$
$$+ \frac{d_{an} + d_{ap} - 2d_{bn} - 2d_{bp} + d_{cn} + d_{cp} v_d}{6}$$

$$L \frac{di_c}{dt} = v_{sc} - R_{LS}i_c - \frac{d_{ap} - d_{an} + d_{bn} - d_{bp} - 2d_{cn} + 2d_{cp}}{6} v_{dc}$$
$$+ \frac{d_{an} + d_{ap} + d_{bn} + 2d_{cn} - 2d_{cp} v_d}{6}$$

$$C \frac{dv_{dc}}{dt} = (d_{ap} - d_{an})i_a + (d_{bp} - d_{bn})i_b + (d_{cp} - d_{cn})i_c$$
$$- \left(\frac{2}{R} + \frac{1}{R_p} \right) v_{dc}$$

$$C \frac{dv_d}{dt} = (d_{ap} + d_{an})i_a + (d_{bp} + d_{bn})i_b + (d_{cp} + d_{cn})i_c - \frac{1}{R_p} v_d,$$

where v_d represents the dc-link capacitor voltage difference ($v_d = v_{c1} - v_{c2}$). Notice that, v_{sa}, v_{sb}, v_{sc} are the grid voltage in the so-called abc coordinates. In order to take into account the balanced phase voltages and currents, the Clarke Transformation [6] is used to obtain the model in $\alpha \beta \gamma$ coordinates:

$$L \frac{d\alpha_i}{dt} = v_{sa} - R_{LS}i_a - (d_{ap} - d_{an}) \frac{v_{dc}}{2} - (d_{cp} + d_{cn}) \frac{v_{dc}}{2}$$

$$L \frac{d\beta_i}{dt} = v_{sb} - R_{LS}i_b - (d_{bp} - d_{bn}) \frac{v_{dc}}{2} - (d_{cp} + d_{cn}) \frac{v_{dc}}{2}$$

$$C \frac{dv_{dc}}{dt} = (d_{ap} - d_{an})i_a + (d_{bp} - d_{bn})i_b - \left(\frac{2}{R} + \frac{1}{R_p} \right) v_{dc}$$

$$C \frac{dv_d}{dt} = (d_{ap} + d_{an})i_a + (d_{bp} + d_{bn})i_b - \frac{1}{R_p} v_d,$$

where the control inputs d_{ap}, d_{an}, d_{bp} and d_{bn} are the transformed of the control inputs $d_{ij} \in \{0, 1\}$, with $i = \{a, b, c\}$ and $j = \{p, o, n\}$, given before. Notice that the control inputs d_{ij} and d_{io} do not appear in this model.

The voltage variables, v_{sa} and v_{sb}, and the current variables, i_a and i_b, are the transformations in $\alpha \beta \gamma$ of the phase voltages and phase currents, respectively. Notice that, according to Assumption 1, as the phase voltages and phase currents are assumed to be balanced, then the last transformation leads to:

$$v_{\gamma} = 0$$

$$i_{\gamma} = 0.$$

B. Modeling of the input voltage v_{sa} and v_{sb}

The grid voltages in $\alpha \beta \gamma$ coordinates are expressed as follows:

$$\begin{cases} v_{sa}(t) = V_{sa} \sin(ut) \\
v_{sb}(t) = V_{sb} \cos(ut), \end{cases}$$

where V_{sa}, V_{sb} and w are, respectively, the amplitude and the frequency of the grid voltage. We assume in the following that $V_{sa} = V_{sb} = V_s$.

Remark 1: Note that from (2), it is simple to deduce that
\[v_{sα}^2(t) + v_{sβ}^2(t) = V_s^2. \]
We can therefore define the following set
\[\Phi = \{(v_{sα}(t), v_{sβ}(t)) \in \mathbb{R}^2, \ v_{sα}^2(t) + v_{sβ}^2(t) = V_s^2\}. \quad (3) \]
As depicted in Fig. 2, the set (3) can be embedded into a polytope described as:
\[\Omega := \sum_{j=1}^{4} \nu_j \Omega_j \quad \text{for} \quad 0 \leq \nu_j \leq 1 \quad \text{and} \quad \sum_{j=1}^{4} \nu_j(t) = 1, \]
where \(\Omega_j \) \((j = 1, 2, 3, 4) \) represents the vertices of the polytope in the \((v_{sα}, v_{sβ})\)-plane:
\[\Omega_1 = \begin{bmatrix} V_{sα} \\ V_{sβ} \end{bmatrix}, \quad \Omega_2 = \begin{bmatrix} -V_{sα} \\ V_{sβ} \end{bmatrix}, \quad \Omega_3 = \begin{bmatrix} V_{sα} \\ -V_{sβ} \end{bmatrix}, \quad \Omega_4 = \begin{bmatrix} -V_{sα} \\ -V_{sβ} \end{bmatrix}. \]

C. The NPC dynamical model based on instantaneous powers

The control algorithm is easier to express using instantaneous powers instead of current variables [21]. Furthermore, phase currents \(i_α \) and \(i_β \) can be also expressed in terms of instantaneous active and reactive powers [22]:
\[i_α = \frac{1}{V_s} (v_{sα} p - v_{sβ} q) \quad (4) \]
\[i_β = \frac{1}{V_s} (v_{sβ} p + v_{sα} q) \quad (5) \]
where \(p \) and \(q \) represent the instantaneous active and reactive powers of the system, respectively.

Then, model (1) can be rewritten according to the new state variable \(x = [p \ q \ v_{dc} \ v_d]^T \):
\[\dot{x} = A_x(t) x + B u, \]
where, \(f \) is the frequency of the phase voltages, and
\[\xi_1 = u_1 v_{sα}(t) + u_2 v_{sβ}(t), \quad \xi_2 = u_1 v_{sβ}(t) - u_2 v_{sα}(t), \]
\[\xi_3 = u_3 v_{sα}(t) + u_4 v_{sβ}(t), \quad \xi_4 = u_3 v_{sβ}(t) - u_4 v_{sα}(t). \]
These equations can be rewritten as follows:
\[\xi = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \end{bmatrix}, \quad u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} v_{sα}(t) & v_{sβ}(t) \\ v_{sβ}(t) & -v_{sα}(t) \end{bmatrix}, \]
with \(\xi = [\xi_1 \ \xi_2 \ \xi_3 \ \xi_4]^T \) and \(\Gamma = \begin{bmatrix} v_{sα}(t) & v_{sβ}(t) \\ v_{sβ}(t) & -v_{sα}(t) \end{bmatrix} \).

Fig. 1. Three-phase three-level neutral point clamped (NPC) rectifier.

Fig. 2. Representation of a set (3) and the proposed polytope.
variables
\[
\begin{align*}
 u_1 &= d_{\alpha p} - d_{\alpha n}, & u_2 &= d_{\beta p} - d_{\beta n}, \\
 u_3 &= d_{\alpha p} + d_{\alpha n}, & u_4 &= d_{\beta p} + d_{\beta n}.
\end{align*}
\]

At this stage, let consider vector \(u = [u_1, u_2, u_3, u_4]^T \) with \(u \in U \), where \(U \) is a set of all possible combinations for the control inputs. For the considered synchronous rectifier, there are 27 possible combinations of the switches [6], but as there are redundant switching states, we only need to consider 25 combinations, meaning that \(u \in \{u^{(1)}, \ldots, u^{(25)}\} \) with \(u \in \mathbb{R}^4 \). Note that, the model (6) is a nonlinear time-variant system.

To ease the stability analysis, a new formulation of this nonlinear time-varying system is proposed, based on a polytopic presentation. First of all, notice that the matrix \(\Gamma \) defined in (7) can be written as a polytope:
\[
\Gamma = \sum_{j=1}^{4} \mu_j(t) \Gamma_j,
\]
where \(\mu_j(t) \in [0, 1] \) is a function satisfying \(\sum_{j=1}^{4} \mu_j(t) = 1 \) and \(\Gamma_j \) are defined as
\[
\begin{align*}
 \Gamma_1 &= \begin{bmatrix} V_{s\alpha} & V_{s\beta} \\ V_{s\beta} & -V_{s\alpha} \end{bmatrix}, & \Gamma_2 &= \begin{bmatrix} -V_{s\alpha} & V_{s\beta} \\ V_{s\beta} & V_{s\alpha} \end{bmatrix}, \\
 \Gamma_3 &= \begin{bmatrix} V_{s\beta} & -V_{s\alpha} \\ -V_{s\alpha} & -V_{s\beta} \end{bmatrix}, & \Gamma_4 &= \begin{bmatrix} -V_{s\alpha} & -V_{s\beta} \\ -V_{s\beta} & V_{s\alpha} \end{bmatrix}.
\end{align*}
\]

Then, equation (7) can be written as:
\[
\xi = \sum_{j=1}^{4} \mu_j(t) \begin{bmatrix} \Gamma_j & 0 \\ 0 & \Gamma_j \end{bmatrix} u.
\]

Matrix \(A_u(t) \) defined in system (6), can also be written as follows:
\[
A_u(t) = \sum_{j=1}^{4} \mu_j(t) A_u(j), \quad (8)
\]
where
\[
A_u(j) = \begin{bmatrix} M_1 & M_2 & M_3 & M_4 \end{bmatrix} \left(\begin{bmatrix} \Gamma_j & 0 \\ 0 & \Gamma_j \end{bmatrix} u \right) \otimes 1_4 + M_0
\]
and
\[
M_0 = \begin{bmatrix}
 -\frac{R_{LS}}{L} & 2\pi f & 0 & 0 \\
 -\frac{R_{LS}}{L} & -2\pi f & 0 & 0 \\
 0 & 0 & -\left(\frac{2}{RC} + \frac{1}{L_{eq}}\right) & 0 \\
 0 & 0 & 0 & -\frac{1}{L_{eq}}
\end{bmatrix}
\]
\[
M_1 = \begin{bmatrix}
 0 & 0 & -\frac{1}{L} \\
 0 & 0 & 0 \\
 \frac{1}{CV^2} & 0 & 0 \\
 \frac{1}{CV^2} & 0 & 0
\end{bmatrix}, \quad M_2 = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & -\frac{1}{L} & 0 \\
 0 & 0 & \frac{1}{CV^2} & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}, \quad M_3 = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & \frac{1}{CV^2} \\
 0 & 0 & 0 & 0 \\
 \frac{1}{CV^2} & 0 & 0 & 0
\end{bmatrix}, \quad M_4 = \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & \frac{1}{CV^2} \\
 0 & 0 & 0 & 0
\end{bmatrix}.
\]

Consequently, the original nonlinear model (6) can be rewritten as a polytopic system as follows:
\[
\dot{x} = \sum_{j=1}^{4} \mu_j(t) A_u(j)x + B. \quad (10)
\]

The next assumption is necessary to guarantee the existence of a switching signal that ensures forward invariance of the equilibrium point, \(x_e \), in the generalized sense of Filippov, considering \(u \in \{u^{(1)}, \ldots, u^{(25)}\} \) and equation (8).

Assumption 2: There exist 25 functions of time \(\lambda_{1eq}(t), \lambda_{2eq}(t), \ldots, \lambda_{25eq}(t) \) satisfying \(\sum_{i=1}^{25} \lambda_{ieq}(t) = 1 \) for all \(t > 0 \), such that the following convex combination holds for every \(t \):
\[
\sum_{i=1}^{25} \lambda_{ieq}(t) (A_{u(i)}(t)x_e + B) = 0, \quad (11)
\]
with
\[
A_{u(i)}(t) = [M_1, M_2, M_3, M_4] \left(\begin{bmatrix} \Gamma & 0 \\ 0 & \Gamma \end{bmatrix} u^{(i)} \right) \otimes 1_4 + M_0
\]
where \(u^{(i)} \in U \) and \(x_e \) is the desired value of the regulation, meaning that the equilibrium point is reached in sense of Filippov.

In order to establish the stability properties of the equilibrium point \(x_e \), we introduce the following property.

Property 1: For matrices \(A_u(j) \) defined in (9), there exist common matrices \(P, Q \in \mathbb{S}^4 \) satisfying
\[
A_{u(i)}(j)^TP + PA_{u(i)}(j) + 2Q < 0, \quad (12)
\]
for all \(j \in \{1, \ldots, 4\} \) and \(u^{(i)} \in U \) with \(i \in \{1, \ldots, 25\} \). Therefore, matrices \(A_{u(i)}(j) \) are Hurwitz.

Proof: The statement can be easily proved choosing
\[
P = \begin{bmatrix} L & 0 & 0 & 0 \\
0 & L & 0 & 0 \\
0 & 0 & CV^2 & 0 \\
0 & 0 & 0 & CV^2 \end{bmatrix},
\]
\[
Q = \begin{bmatrix} -R_{LS} & 0 & 0 & 0 \\
0 & -R_{LS} & 0 & 0 \\
0 & 0 & -\left(\frac{1}{R} + \frac{1}{L_{eq}}\right)V^2 & 0 \\
0 & 0 & 0 & -\frac{2}{2\pi f} \end{bmatrix},
\]
which are found from the system structure and energy-like arguments.

D. The control objectives

The objectives of the control problem are summarized as follows:

1) The instantaneous active power \(p \) and the instantaneous reactive power \(q \) should track their references denoted \(p^* \) and \(q^* \), respectively,
\[
p \to p^*, \quad q \to q^*.
\]
2) The sum of the converter capacitors voltages \(v_{dc} \) should be regulated towards its reference denoted \(v_{dc}' \),
\[v_{dc} \rightarrow v_{dc}' . \]
3) The difference of the converter capacitors voltages \(v_d \) should be as small as possible,
\[v_d \rightarrow 0 . \]

Then, the desired equilibrium point can be represented as \(x_e = [x_{e1} \ x_{e2} \ x_{e3} \ x_{e4}]^T = [p^* \ q^* \ v_{dc}^* \ 0]^T . \)

In order to achieve these objectives, while taking into account the real nature of the system, we propose a control algorithm described in the next section.

III. HYBRID MODEL AND PROPOSED CONTROL LAW

Continuous-time and discrete-time dynamics are present in the considered system and the HDS theory developed in [19] is a natural way to take both dynamics into consideration. The continuous evolution (or flows) represents the evolution of the instantaneous active and reactive power states and the voltages \(v_{dc} \) and \(v_d \). Likewise, the discrete evolution (or jumps) represents switching control inputs \(u \in \{ u^{(1)} , ..., u^{(25)} \} \).

Then, the closed loop system can be modeled easily as a hybrid system of the form \(\mathcal{H} = (C, f, D, G) \):

\[
\mathcal{H} : \begin{cases}
\dot{x} = f(x, u), & (x, u) \in C, \\
\eta x = G(x, u), & (x, u) \in D,
\end{cases}
\]

\[
f(x, u) := \begin{bmatrix} A_u(t)x + B \\ 0 \end{bmatrix},
\]
\[
G(x, u) := \arg\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x + B)
\]
with \(i \in \{1, 2, ..., 25\} \) and \(\dot{x} = x - x_e \) the error between \(x \) and the equilibrium \(x_e \).

The flow and jump set are given as:
\[
C := \{(x, u) : \dot{x}^T P(A_u(t)x + B) \leq -\eta \dot{x}^T Q \dot{x}\},
\]
\[
D := \{(x, u) : \dot{x}^T P(A_u(t)x + B) \geq -\eta \dot{x}^T Q \dot{x}\},
\]
where \(\eta \in (0, 1) \) is a design parameter.

The basic idea used in model (13)-(16) is as follows: assume there exists a common Lyapunov function, \(V = x^T P x \), for all modes of the system, then
- if the Lyapunov function is sufficiently decreasing for a given control input, then this value of control is maintained.
- If the derivative of the Lyapunov function is not sufficiently negative, the control input is changed in order to improve the decreasing of \(V \).

Remark 2: Note that, parameter \(\eta \) can adjust the switching frequency. Indeed, by decreasing \(\eta \), we reduce the switching frequency and on the contrary, by increasing \(\eta \), we raise the switching frequency. For practical reasons, the switching frequency must be low enough. Nevertheless, according to [15], this tuned parameter can manage some LQ performances.

Proposition 1: The hybrid system (13) – (16) satisfies the following basic hybrid conditions given in [19, Assumption 6.5]:
- sets \(C \) and \(D \) given in (15) and (16) respectively, are closed.
- \(f \) is a continuous function, thus is therefore outer semicontinuous and it is also locally bounded. Moreover, \(f \) is convex for all \((x, u) \in C \).
- \(G \) is outer semicontinuous [19, Definition 5.9] and locally bounded relative to \(D \).

Then, we can conclude that the hybrid system (13) – (16) is well-posed.

The next Lemma guarantees the control mechanism described before, ensuring that the Lyapunov function is decreasing enough after each jump.

Lemma 1: Consider matrices \(P, Q \in \mathcal{S}^4 \) satisfying Property 1, a point \(x_e \in \mathbb{R}^4 \) satisfying Assumption 2, then, for each \(x \in \mathbb{R}^4 \),
\[
\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x + B) \leq -\dot{x}^T Q \dot{x},
\]
with \(\dot{x} = x - x_e \).

Proof: Considering the left hand side of (17), we get:
\[
\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x + B) \\
\leq \min_{i \in K} \dot{x}^T PA_{u(i)}(t)\dot{x} + \min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x_e + B).
\]

Using Property 1, we obtain that
\[
\min_{i \in K} \dot{x}^T PA_{u(i)}(t)\dot{x} \leq -\dot{x}^T Q \dot{x}.
\]

Following [23], \(\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x_e + B) \) can also be expressed as:
\[
\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x_e + B) \\
= \dot{x}^T P \min_{\lambda_n \in [0, 1]} \left(\sum_{n=1}^{25} \lambda_n(t)(A_{u_n}(t)x_e + B) \right) \\
\leq \dot{x}^T P \left(\sum_{n=1}^{25} \lambda_{neq}(t)(A_{u_n}(t)x_e + B) \right).
\]

Then, from Assumption 2, we obtain
\[
\min_{i \in K} \dot{x}^T P(A_{u(i)}(t)x_e + B) \leq 0,
\]
which concludes the proof.

Remark 3: We note here that, if \(\dot{x} \neq 0 \)
\[
-\dot{x}^T Q \dot{x} < -\eta \dot{x}^T Q \dot{x}.
\]
because \(\eta < 1 \).
Following the hybrid system theory, we will establish stability properties of the given compact set

\[A := \{(x,u) : x = x_e, u \in U \}. \tag{19} \]

Theorem 1: Consider Assumption 2 and matrices $P, Q \in S^4$ satisfying Property 1. Then, the set (19) is UGAS for hybrid system (13)–(16) for each x_e satisfying Assumption 2.

Proof: Let consider the Lyapunov function candidate $V(\hat{x}) = \hat{x}^TP\hat{x}$, with $\hat{x} = x - x_e$ which is continuously differentiable. Along the trajectories of the system (13)–(16)

- in the flow set, C (15), the derivative of $V(\hat{x})$ is:
 \[\langle \nabla V(\hat{x}), f(\hat{x}, u) \rangle = 3^T P(3x + B) \leq -\eta \hat{x}^T Q\hat{x}. \tag{20} \]

- Moreover, in the jump set, \mathcal{D} (16), the evolution of $V(\hat{x})$ is:
 \[V(\hat{x}^+) - V(\hat{x}) = \hat{x}^T P\hat{x} - \hat{x}^T P\hat{x} = 0. \tag{21} \]

We can remark that along the jumps, the strictly decreasing of the Lyapunov function is not guaranteed. Nevertheless, this property can be ensured applying [24, Theorem 1]. For this goal, we need to prove that system (13)–(16) presents semiglobal persistent flow.

Let us firstly build a restricted hybrid system $\mathcal{H}_{\delta, \Delta}$, corresponding to the intersection of the flow set C and the jump set \mathcal{D} with the closed and bounded set:

\[S_{\delta, \Delta} = \{ \hat{x} : |\hat{x}| \geq \delta \text{ and } |\hat{x}| \leq \Delta \}, \tag{22} \]

for each pair $0 < \delta < \Delta$ of positive scalars, and with the distance of x to the attractor (19) defined by $|x|_A = |x - x_e| = |\hat{x}|$. Notice that from the definition of (22), the solution \hat{x} is bounded. The restricted hybrid system $\mathcal{H}_{\delta, \Delta}$ is then defined as [24, eq.(3)]:

\[\mathcal{H}_{\delta, \Delta} := (C \cap S_{\delta, \Delta}, f, \mathcal{D} \cap S_{\delta, \Delta}, G). \]

We can remark that, any solution to $\mathcal{H}_{\delta, \Delta}$ jumps to the interior of the flow bounded set $C \cap S_{\delta, \Delta}$. Moreover, from Lemma 1, we get:

\[\hat{x}^+(A_u(t)x^+ + B) \leq -\hat{x}^T Q\hat{x}^+ < -\eta \hat{x}^T Q\hat{x} \tag{23} \]

with $\hat{x}^+ = x^+ - x_e$, and from G in (14), after each jump $x^+ = x$, leading to $\hat{x}^+ = x - x_e = \hat{x}$. In (23), we get:

\[\hat{x}(A_u(t)x + B) \leq -\hat{x}^T Q\hat{x} < -\eta \hat{x}^T Q\hat{x} \tag{24} \]

with $\hat{x} \neq 0$, because $\hat{x} \in S_{\delta, \Delta}$. This implies that the solutions must flow for some time after each jump. It also means that there is a strictly positive uniform dwell-time $\rho(\delta, \Delta)$ between each pair of consecutive jumps. Then, all assumptions of [24, Theorem 1] are satisfied, and UGAS of A is proven.

\[\text{IV. Simulations} \]

In this section, some simulations are performed on the proposed closed loop system by using MATLAB/Simulink and by exploiting the HyEQ Toolbox [25] to verify the properties of the closed loop (13)–(16).

The parameters of the NPC are given in Table I. The simulations are made for different values of sampling time T_s (where the switching frequency is $f_s = \frac{1}{T_s}$). Moreover, we choose $\eta = 0.1$ following up the trade-off between switching frequency and performance mentioned in Remark 2.

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Convention</th>
<th>Value/(Units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated series resistance</td>
<td>R_{ls}</td>
<td>0.4 (Ω)</td>
</tr>
<tr>
<td>load resistance</td>
<td>R</td>
<td>30 (Ω)</td>
</tr>
<tr>
<td>Estimated parasitic resistance</td>
<td>R_p</td>
<td>20 (mΩ)</td>
</tr>
<tr>
<td>Inductor</td>
<td>L</td>
<td>15 (mH)</td>
</tr>
<tr>
<td>Output capacitor</td>
<td>C_f</td>
<td>1500 (μF)</td>
</tr>
<tr>
<td>Total dc-link voltage reference</td>
<td>V_{dc}^*</td>
<td>62.5 (V)</td>
</tr>
<tr>
<td>Amplitude of the grid voltages</td>
<td>V_{ac}</td>
<td>0.05 (V)</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>f</td>
<td>50 (Hz)</td>
</tr>
</tbody>
</table>

The chosen matrix Q can achieve some LQ performance level, for example, reduce the levels of dissipated energy, following [15, Theorem 2]:

\[Q = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0.5 & 0 & 0 \\
0 & 0 & 0 & 0.1
\end{bmatrix}. \]

Further, a common matrix P can be obtained such that Property 1 is satisfied:

\[P = \begin{bmatrix}
7.91 & 0 & 0 & 0 \\
0 & 7.91 & 0 & 0 \\
0 & 0 & 2773.78 & 0 \\
0 & 0 & 0 & 3040.37
\end{bmatrix} \cdot 10^{-2}. \]

The desired equilibrium point is given as follows:

\[x_e = [x_{1e} \ 0 \ \sqrt{V_{dc}^*}]^T, \]

where x_{1e} is obtained from the equilibrium of model (6)

\[x_{1e} = \frac{2V_s^2 - V_s^2 \sqrt{4 - \frac{8R_{ls}R_p}{V_s^2} \left(\frac{2R_p + R}{R_s} \right) V_{dc}^2}}{4R_{ls}}, \]

which is, $x_{e} = [782.4 \ 0 \ 150 \ 0]^T$.

Figure 3 shows the evolution of states for different values of sampling time $T_s = \{10^{-4}, 10^{-5}, 10^{-6}\}$s. Note that, for these different values of T_s, the instantaneous active and reactive power, p and q, and the voltages v_{dc} and v_d converge, respectively, towards their desired references with a response time of to 0.02s. Furthermore, we can notice that the instantaneous active and reactive powers signals admit a high-frequency ripple phenomenon due to switching control. Note also that,
when the switching frequency is increased, then the ripple amplitude is reduced. Similar arguments are found for the phase currents, as shown in Figure 4, showing the trade-off between switching frequency and performance (if T_s increases, then the ripple signal increases). These simulations illustrate Theorem 1 statement.

Furthermore, the evolution of the Lyapunov function is depicted in Fig. 5, we can remark that when T_s is small then the steady state error of V is reduced. Likewise, when T_s is large, the Lyapunov function increases because we forbid the switches along period T_s.

Consequently, we can conclude from the simulations that:

- the desired equilibrium point is reached in the generalized sense of Filippov as expected in Assumption 2. It means that the desired equilibrium is generally obtained for a not constant control, meaning that the control switches between several values at an infinite switching frequency. As expected, a Zeno behavior appears.
- In practical applications, as well as in simulation purposes, it is necessary to include a maximal switching frequency to avoid a Zeno behavior at the steady-state. However, a significant impact on the quality of the convergence towards the desired equilibrium is expected as shown in Fig. 3 and Fig. 4.
- If the switching frequency is reduced, then the difference between the balance and the state increases, and the ripple also increases. Hence, it appears that a right trade off between the number of switches and error should be found. This phenomenon has not only been studied in the context of hybrid framework (see report [26]), but also in the problem of the discretization of the sliding mode control [27].

V. CONCLUSIONS AND FUTURE WORK

In this article, we have considered a nonlinear time varying model of a three-phase three-level NPC converter. Furthermore, to ease the design of an efficient control law, a polytopic model is developed. Then a hybrid control scheme is proposed, ensuring that a desired attractor is UGAS for this hybrid closed loop system. Finally, the main result is validated in simulation.

Future works will be dedicated to ensure a practical global asymptotic stability including a minimum dwell-time in our hybrid scheme. Moreover, we expect to implement the control algorithm on a real system. The proposed control law needs also knowledge of the circuit parameters including the load resistance. Future work will also include adaptive approaches to deal with this drawback.

VI. ACKNOWLEDGMENT

This work has been partially funded under grant “HIS-PALIS” ANR-18-CE40-0022-01.
Fig. 5. Evolution of the Lyapunov function.

REFERENCES

