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On Singularities of Flat Affine Systems
With n States and n − 1 Controls

Yirmeyahu J. Kaminski∗ Jean Lévine† François Ollivier‡

We study the set of intrinsic singularities of flat affine systems with n− 1
controls and n states using the notion of Lie-Bäcklund atlas, previously
introduced by the authors. For this purpose, we prove two easily computable
sufficient conditions to construct flat outputs as a set of independent first
integrals of distributions of vector fields, the first one in a generic case,
namely in a neighborhood of a point where the n− 1 control vector fields are
independent, and the second one at a degenerate point where p− 1 control
vector fields are dependent of the n − p others, with p > 1. We show that
the set of intrinsic singularities includes the set of points where the system
does not satisfy the strong accessibility rank condition and is included in the
set where the distribution of vector fields, introduced in the generic case, is
singular. We conclude this analysis by three examples of apparent singularites
of flat systems in generic and non generic degenerate cases.

1 Introduction

Differential flatness [4, 5, 15] is known to be a powerful notion in control theory. Roughly
speaking, a system with m independent controls u = (u1, . . . , um) ∈ Rm and state x =
(x1, . . . , xn) defined on a n-dimensional smooth manifold X, is said to be (differentially)
flat at a given point (x, u, u̇, ü, . . .) of the infinite dimensional jet manifold

X × Rm
∞ , X × Rm × Rm × · · ·
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if, and only if, its trajectories may be completely parameterized, in a neighborhood of
this point, by m functionally independent smooth functions, called flat outputs, and a
finite number of their time derivatives.
Although non generic from a mathematical standpoint, flatness is a property shared

by many popular models in various branches of engineering and has been shown to be
particularly useful to solve motion planning problems (see e.g. [15]).
In many cases, the flat outputs can only be defined in a dense open set, and one

may need to use different parametrizations to cover the largest possible subset of the
system configuration space, thus defining an atlas (see [2, 3, 12]). Therefore, obtaining
local flatness criteria allowing to build atlases covering the widest possible domain is
an important issue, in paticular since the complementary of this domain, by definition,
is equal to the set of intrinsic singularities. It is remarkable that intrinsic flatness
singularities may be interpreted as points in a neighbourhood of which the flatness-based
control design is non robust since flat outputs stop existing there. On the contrary, an
apparent singularity may allow a locally robust design by a suitable change of flat output.
In this paper, we continue our study of flatness singularities, initiated in [12], by

considering control affine systems with n states and n− 1 controls, of the form

ẋ = f0(x) +
n−1∑
j=1

ujfj(x) , g(x, u).

After a brief recall, in this context, of concepts and notations related to flat systems
and their singularities [12], we focus attention on the strong accessibility rank condition
at a point, the restriction at a point of the criterion studied, e.g. , in [6, 10, 8], and
the first order controllability around an integral curve generated by a constant control
passing through this point, in the spirit of e.g. [19, 11], which are proven to be necessary
conditions for flatness1. Therefore the points that do not satisfy them are naturally
excluded from the above mentioned atlases and are thus contained in the so-called
intrinsic singularity set. Then, we show in theorem 3 that the sufficient condition for
strong accessibility

dim(Span{f1, . . . , fn−1, [g, fk]}) = n

for some k, is also a sufficient condition for flatness. Moreover, we prove that flat outputs
can be obtained as independent first integrals of the above field fk in each neighborhood
where the condition holds. Since such points are defined by the independence of n vectors,
they are naturally qualified generic. This construction sheds a new light on a comparable
result by P. Martin [18], obtained by input-output and structure at infinity considerations.
We then show that this result can also be interpreted in terms of (extended state) feedback
linearization [9, 7] and draw some consequences on the set of intrinsic singularities.
We proceed in our singularity study with the following question: Are there points of

the state space where the dimension of the vector space generated by the control vector
fields f1, . . . , fn−1 drops down that are nevertheless apparent singularities? Note that

1Note that, to the authors knowledge, and in spite of a long standing study of nonlinear controllability
by many authors, these particular results are not available in the literature.

2



such points, if they exist, may be called non generic for obvious reasons. We prove
a theorem giving a new construction of flat outputs at such points, thus providing a
positive answer to the previous question.
The above mentioned theorems and their consequences on flatness singularities con-

stitute the main results of this paper. Though the first theorem, that gives a sufficient
condition for flatness at generic points, was already known in a different perspective, our
approach is here completely renewed compared to our previous paper [12] since it deals
with distributions of vector fields for systems represented by explicit differential equations
and provides direct and computable flat output constructions by first integrals, as can
be seen in the three examples at the end of this paper. It is also interesting to remark
that the result at non generic points (theorem 5) is still valid, as is, with m ≤ n − 1
inputs, as illustrated by the third example. We may also stress that, in these results, the
singularities are not given in terms of singularities of the parameterization as in [2, 3, 12]
but rather as singularities of distributions of vector fields.
The paper is organized as follows: the basics of control affine systems with n states

and n − 1 controls as well as those on flatness singularities are recalled in sections 2
and 3. Section 4 is then devoted to the singularity study at generic and non generic
points. Three academic examples are then presented in section 5, finally followed by
concluding remarks in section 6.

2 Control Affine Systems with n States and n − 1 Inputs

We consider a control affine system with drift given, in a local chart, by:

ẋ = f0(x) +
n−1∑
j=1

ujfj(x) (2.1)

where the state x evolves in a manifold X of dimension n ≥ 2, with drift f0, and with
m = n− 1 independent controls.
We also make the following classical assumption:
The vector fields2 f1, · · · , fn−1 are assumed to be C∞ and linearly independent in a

dense open set of X.
In other words, there is a dense open set where the matrix

G(x) ,
(
f1 · · · fn−1

)
, (2.2)

of size n× (n− 1), has full rank.
In the sequel, for simplicity’s sake, we denote by g the vector field in (2.1), pointwise

defined by

g(x, u) , f0(x) +
n−1∑
i=1

uifi(x). (2.3)

2The notations fi, or g, etc. may be indifferently understood as usual vectors in prescribed local
coordinates (x1, . . . , xn), i.e. (fi,1, . . . , fi,n)T , or (g1, . . . , gn)T , etc., the superscript T standing
for transpose, or as the associated first order partial differential operators, i.e.

∑n
j=1 fi,j

∂
∂xj

, or∑n
j=1 gj

∂
∂xj

, etc.
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3 Recalls on the Infinite Order Jets Approach to Flat
Systems with n − 1 Inputs and Their Singularities

In this section, we briefly recall and adapt the main background and tools, introduced
and defined in [12], to the present context of systems with n− 1 inputs.

3.1 The Formalism of Infinite Order Jets

The definition of flatness introduced in [5] requires the use of infinite order jets. More
precisely, we embed the manifold X and the associated system (2.1) in the manifold

X , X × Rn−1
∞ = X × Rn−1 × Rn−1 × · · ·

with coordinates
(x, u) , (x, u(0), u(1), u(2), . . . , u(k), . . .),

endowed with the product topology.
In this topology, a continuous (resp. differentiable) function from X × Rn−1

∞ to R, by
construction, only depends on a finite number of coordinates and is continuous (resp.
differentiable) with respect to these coordinates in the usual (finite dimensional) sense.
X = X × Rn−1

∞ is also endowed with the Cartan vector field

Cg =
n∑
i=1

gi(x, u) ∂

∂xi
+

n−1∑
i=1

∑
j≥0

u
(j+1)
i

∂

∂u
(j)
i

with g defined by (2.3).
Considering Cg as a first order differential operator and h : X 7→ R an arbitrary differen-

tiable function, interpreting the expression Cgh = ∑n
i=1 gi(x, u) ∂h

∂xi
+∑n−1

i=1
∑
j≥0 u

(j+1)
i

∂h

∂u
(j)
i

,
as the Lie derivative of h along the vector field g of TX, the tangent bundle of X, this
amounts to identify Cg with the vector (g, u̇, ü . . .) and equation (2.1) with the infinite
number of equations

ẋ = g(x, u), u̇(0) = u(1), . . . , u̇(k) = u(k+1), . . .

3.2 Lie-Bäcklund Equivalence

Consider two systems:

ẋ = g(x, u) and ẏ = γ(y, v) (3.1)

and their prolongations on X×Rn−1
∞ and Y ×Rµ

∞ respectively with the associated Cartan
fields:

Cg = g(x, u) ∂
∂x

+
∑
j≥0

u(j+1) ∂

∂u(j) , Cγ = γ(y, v) ∂
∂y

+
∑
j≥0

v(j+1) ∂

∂v(j) (3.2)

4



We say that they are Lie-Bäcklund equivalent at a pair of points (x0, u0) and (y0, v0)
if there exist neighborhoods of these points where every integral curve of one is mapped
into an integral curve of the other and conversely.

In other words, the two systems are Lie-Bäcklund equivalent at the points (x0, u0) and
(y0, v0) if there exists neighborhoods Nx0,u0 ⊂ X × Rn−1

∞ and Ny0,v0 ⊂ Y × Rµ
∞ and a

C∞ isomorphism Φ : Ny0,v0 → Nx0,u0 satisfying Φ(y0, v0) = (x0, u0), with C∞ inverse Ψ,
such that the respective Cartan fields are Φ and Ψ related, i.e. Φ∗Cγ = Cg in Nx0,u0 and
Ψ∗Cg = Cγ in Ny0,v0 .

We recall, without proof, a most important result from [17] (see also [4, 5, 15])
giving an interpretation of the Lie-Bäcklund equivalence in terms of diffeomorphism and
endogeneous dynamic feedback, that will be useful in the next sections. We state it in
the present context of systems with n− 1 inputs for convenience, though the result is
much more general.

Theorem 1 (Martin [17]). If the systems (3.1) are Lie-Bäcklund equivalent at a given
pair of points, then (i) and (ii) must be satisfied:

(i) n− 1 = µ, i.e. they must have the same number of independent inputs;

(ii) there exist
– an endogeneous dynamic feedback3

u = α(x, z, w), ż = β(x, z, w), (3.3)

– a multi-integer4 r , (r1, . . . , rn−1),
– and a local diffeomorphism χ,

all defined in a neighborhood of the considered points, such that the closed-loop
system

ẋ = g(x, α(x, z, w)), ż = β(x, z, w) (3.4)

is locally diffeomorphic to the extended one

ẏ = γ(y, v), v(r) = w (3.5)

for all w ∈ Rn−1, i.e.

(x, z) = χ(y, v, v̇, . . . , v(r−1)), (y, v, v̇, . . . , v(r−1)) = χ−1(x, z) (3.6)

and
ĝ = χ∗γ̂, γ̂ = χ−1

∗ ĝ (3.7)

3A dynamic feedback is said endogeneous if, and only if, the closed-loop system and the original one
are Lie-Bäcklund equivalent, i.e. if, and only if, the extended state z can be locally expressed as a
smooth function of x, u and a finite number of time derivatives of u (see [17, 4, 5, 15]).

4Recall that we denote by v(r) ,
(

v
(r1)
1 , . . . , v

(rn−1)
n−1

)
=
(

dr1 v1
dtr1 , . . . , drn−1 vn−1

dtrn−1

)
.
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where we have denoted

ĝ(x, z, w) , g(x, α(x, z, w)) ∂
∂x

+ β(x, z, w) ∂
∂z

γ̂(y, v, v̇, . . . , v(r−1), w) , γ(y, v) ∂
∂y

+
r−2∑
j=0

v(j+1) ∂

∂v(j) + w
∂

∂v(r) .

3.3 Flatness

We say that system (2.1) is differentially flat (or, more shortly, flat) at the pair of points
(x0, u0) and y0 if and only if, it is Lie-Bäcklund equivalent to the trivial system Rn−1

∞
endowed with the trivial Cartan field

τ =
∑
j≥0

n−1∑
i=1

u
(j+1)
i

∂

∂u
(j)
i

at the considered points.
Otherwise stated, the locally defined flat output y = Ψ(x, u) is such that (x, u) =

Φ(y) = (Φ0(y),Φ1(y),Φ2(y), . . .) with d
dtΦ0(y) = g(Φ0(y),Φ1(y)) for all sufficiently differ-

entiable y.
This definition immediately implies that a system is flat if there exists a generalized

output y = Ψ(x, u) of dimension n− 1, thus depending at most on a finite number of
derivatives of u, with independent derivatives of all orders, such that x and ū can be
expressed in terms of y and a finite number of successive derivatives, i.e. (x, ū) = Φ(y),
and such that the system Φ̇(y) = g(Φ(y)) is identically satisfied for all sufficiently
differentiable y.
For a flat system, with the notations of subsection 3.2, the vector field γ, or γ̂

indifferently, corresponds to the linear system in Brunovský canonical form

y
(ri+1)
i = wi, i = 1, . . . , n− 1, (3.8)

Cγ = τ (with global coordinates y , (y, ẏ, . . .) in place of u) and theorem 1 reads:

Corollary 1. If system (2.1), with notation (2.3), is flat at a given point, it is dynamic
feedback linearizable in a neighborhood of this point, i.e. there exists an endogeneous
dynamic feedback of the form (3.3) and a local diffeomorphism χ such that the closed-loop
system (3.4) is transformed by χ into (3.8) for all w ∈ Rn−1.

3.4 Lie-Bäcklund Atlas

The notion of a Lie-Bäcklund atlas for flat systems was initially introduced in [12] in
the context of implicit systems. Our presentation here adapts this definition to the
case of systems in explicit form. It consists of a collection of charts on X, that we call
Lie-Bäcklund charts and atlas, and that will allow us to define the notions of apparent
and intrinsic singularities.
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Definition 1. (i) A Lie-Bäcklund chart on X is the data of a pair (U, ψ) where U is
an open set of X and ψ : U→ Rn−1

∞ a local flat output, with local inverse ϕ : V→ U,
V , ψ(U) being an open set of Rn−1

∞ .

(ii) Two charts (U1, ψ1) and (U2, ψ2) are said to be compatible if, and only if, the
mapping

ψ1 ◦ ϕ2 : ψ2(ϕ1(V1) ∩ ϕ2(V2)) ⊂ Rn−1
∞ → ψ1(ϕ1(V1) ∩ ϕ2(V2)) ⊂ Rn−1

∞

with Vi = ψi(Ui), i = 1, 2, is a local Lie-Bäcklund isomorphism (with the same
trivial Cartan field τ associated to both the source and the target) with local inverse
ψ2 ◦ ϕ1, as long as ϕ1(V1) ∩ ϕ2(V2) 6= ∅.

(iii) An atlas A is a collection of compatible charts.

For a given atlas A = (Ui, ψi)i∈I , let UA be the union UA = ⋃
i∈I Ui.

Remark 1. In definition 1, we stress that Lie-Bäcklund isomorphisms play a similar role
as the smooth diffeomorphisms appearing in the definition of a usual smooth manifold, at
the exception that we do not require that UA = X.

Remark 2. The charts are made of open sets that are homeomorphic to open sets
of (Rn−1)N for some finite N , according to (i), and thus topologically trivial ( i.e. con-
tractible).

Remark 3. Note that the compatibility condition (ii) is always satisfied for Lie-Bäcklund
isomorphisms in reason of the transitivity of the Lie-Bäcklund equivalence relation.

3.5 Apparent and Intrinsic Flatness Singularities

It is clear from what precedes that if we are given two Lie-Bäcklund atlases, their union
is again a Lie-Bäcklund atlas. Therefore the union of all charts that form every atlas
is well-defined as well as its complementary, which we call the set of intrinsic flatness
singularities, as stated in the next definition.

Definition 2. We say that a point in X is an intrinsic flatness singularity if it is excluded
from all charts of every Lie-Bäcklund atlas. Every other singular point, namely every
point x̄ 6∈ Ui for some chart (Ui, ψi) but for which there exists another chart (Uj, ψj),
j 6= i, such that x̄ ∈ Uj, is called apparent.

Clearly, this notion does not depend on the choice of atlas and charts. The concrete
meaning of this notion is that at points that are intrinsic singularities there is no flat
output, i.e. the system is not flat at these points.
On the other hand, points that are apparent singularities are singular for a given set

of flat outputs, but well defined points for another set of flat outputs defined in another
chart containing these points.
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4 Intrinsic Flatness Singularity Study of Control Affine
Systems with n − 1 Inputs

4.1 On Flat Output Computation and Lie-Bäcklund Atlas
Construction at Generic Points

We start this section with the singularity study (and thus the flat output computation)
at points x ∈ X such that the vector space generated by the control vector fields
f1(x), . . . , fn−1(x) has dimension equal to n− 1 and remains constant in a suitable open
neighborhood of x. We qualify these points of generic for obvious reasons. We first
prove that these points are such that the strong accessibility rank condition (see [6, 10])
is satisfied, or equivalently that the first approximation of the system around germs of
integral curves passing through these points is controllable (see [19, 11]), and give a first
sufficient condition for the existence of flat outputs at these points. We then construct
the associated Lie-Bäcklund charts and atlas.

4.1.1 Strong Accessibility Rank Condition of Affine Systems with n − 1 Inputs

Let us recall the classical Lie bracket notations: [η, γ] , ∂γ
∂x
η − ∂η

∂x
γ denotes the Lie

bracket of the vector fields η and γ, and, iteratively, adηγ , [η, γ], adkηγ = [η, adk−1
η γ],

with ad0
ηγ = γ, for all k ≥ 0. We also denote the n× (n− 1) matrix adkgG by

adkgG ,
(

adkgf1 · · · adkgfn−1
)
, (4.1)

with G defined by (2.2), and the n× (k + 1)(n− 1) matrix Gk, for all k ≥ 1, by

Gk ,
(
G −adgG · · · (−1)kadkgG

)
, (4.2)

that may be interpreted as the Wronskian matrix of G (see [19]), where the successive
time derivative operators dk

dtk are replaced by the iterated Lie bracket operators (−1)kadkg .
Note that, for linear systems, Gn is often called the Kalman controllability matrix (see
(4.6) in the proof of Lemma 1).
Definition 3. Given the following sequence of distributions:

Γ0 , Span{f1, · · · , fn−1}, Γk+1 , Γk + adgΓk, k ≥ 0, (4.3)
we denote by Γk(x, u) = {γ(x, u) : γ ∈ Γk}. We say that the strong accessibility rank
condition is satisfied at the point (x0, u0) if, and only if, there exists k? ∈ N such that
Γk?(x0, u0) = Tx0,u0X, i.e. if dim Γk?(x0, u0) = n.
Remark 4. Γk? is thus the Lie ideal generated by f1, · · · , fn−1 in the Lie algebra generated
by g, f1, · · · , fn−1.

Note, moreover, that, since g = f0 +∑n−1
i=1 uifi, the distributions Γk defined by (4.3)

are equal to the distributions Dk given by

Dk+1 = Dk + adf0Dk, k ≥ 0, D0 = Γ0

where Dk is the involutive closure of Dk (see e.g. [8]).
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Theorem 2. Every flat system at a point satisfies the strong accessibility rank condition
at this point.

Proof. Given a flat system at a point, we consider the associated equivalent linear
system (3.8) which is indeed controllable. The Kalman controllability matrix of this
system has rank n′ , n−1+∑n−1

i=1 ri. As already noted, to this matrix, there corresponds
the increasing sequence of distributions generated by the control vector fields Γ̂0 ,

Span{χ∗
(

∂

∂y
(ri+1)
i

)
, i = 1, . . . , n− 1} and their iterated Lie brackets with the vector field

ĝ, defined by (3.7), i.e. Γ̂k+1 , Γ̂k + adĝΓ̂k, for k ≥ 0, analogously to the construction
(4.3). According to the properties of the image of the Lie bracket by diffeomorphism, it
results that the distributions Γ̂k must have locally a constant dimension and that the
largest one, say Γ̂∞, must have constant dimension equal to n′. We also note that since χ
is a local diffeomorphism satisfying (x, z) = χ(y, ẏ, . . . , y(r)), we indeed have n′ ≥ n. We
thus assume that the strong accessibility rank condition is not satisfied or, equivalently,
that dim Γk?(x0, u0) < n. Since, by construction, the projection on TX of Γ̂∞ is contained
in Γk? , there must exist at least a non 0 combination of the xj’s, j ∈ {1, . . . , n − 1},
denoted by ξ, such that dξ ∈

(
Γ̂∞

)⊥
. But then an immediate computation shows

that dχ−1(ξ) must be independent of the inputs y(ri+1)
i for all i = 1, . . . , n − 1, which

contradicts the controllability of system (3.8), hence the result.

A simple interpretation of the strong accessibility rank condition may be given in terms
of controllability of the first order time-varying linear approximation of the system:

Definition 4. System (2.1) is said controllable at the first order with constant input at
(x0, u0) ∈ X × Rn−1, or first order controllable with constant input u0 ∈ Rn−1, at a point
x0 ∈ X if, and only if, its tangent linear approximation along the integral curve (x(t), u0)
passing through (x0, u0) at time t = 0, and with constant input u(t) = u0 for all t in a
small interval of time containing 0, namely δẋ = ∂g

∂x
(x(t), u0)δx + ∑n−1

i=1 fi(x(t))δui, is
controllable in the sense of linear time-varying systems (see e.g. [19, 11]).

Lemma 1. The system is controllable at the first order with constant input at (x0, u0)
if, and only if, in an open neighborhood of (x0, u0), there exists k? ∈ N such that:

rank Gk?(x0, u0) = n (4.4)

or, equivalently, if, and only if, the strong accessibility rank condition is satisfied at
(x0, u0).

Moreover, if in an open neighborhood of (x0, u0) there exists k ∈ {0, . . . , n− 1} such
that

dim(Span{f1, . . . , fn−1, [g, fk]}) = n (4.5)
then condition (4.4) is satisfied.

Proof. The tangent linear system along the integral curve t 7→ (x(t), u0), with constant
u0 , (u1,0, . . . , un−1,0) for t in a given open interval I containing 0, is given by: δẋ =

9



A(t)δx+B(t)δu, where

A(t) , ∂f0

∂x
(x(t)) +

n−1∑
i=1

ui,0
∂fi
∂x

(x(t)), B(t) , G(x(t)).

According to [19, 11], this linear time-varying system is controllable at (x0, u0) if, and
only if, for all t sufficiently small, the controllability matrix

C(0) ,
(
B(t), (A(t)− d

dt)B(t), · · · , (A(t)− d
dt)

k?

B(t)
)
|t=0

has rank n for some k? ≥ n.
On the other hand, we have, using (2.3), in matrix notation:

adgfk = ∂fk
∂x

(
f0 +

n−1∑
i=1

ui,0fi

)
−
(
∂f0

∂x
+

n−1∑
i=1

ui,0
∂fi
∂x

)
fk

Therefore, an easy direct computation yields:

adgG =
(

dB(t)
dt − A(t)B(t)

)
|t=0

= −
(
A(t)− d

dt

)
B(t)|t=0. (4.6)

Thus, by induction, we get

adkgG = −
( d

dt − A(t)
)(−1)k−1

(
d
dt − A(t)

)k−1

B(t)


|t=0

= (−1)k
(A(t)− d

dt

)k
B(t)


|t=0

,

since u0 is constant, and the controllability matrix C(0) is proven to be equal to Gk?(x0, u0).
Moreover, assuming that, at (x0, u0), adgfk 6∈ Span{f1, · · · , fn−1} = im G for some

k ∈ {1, . . . , n − 1}, then the matrix
(
G −adgG

)
has rank n, which immediately

implies that the controllability matrix G1(x0, u0) = C(0) has full rank, hence the first
order controllability at (x0, u0).

4.1.2 Flat Outputs for Affine Systems with n − 1 Inputs at Generic Points

Theorem 3. Let (x0, u0) ∈ X × Rn−1 and k be such that assumption (4.5) holds in an
open neighborhood of (x0, u0). Then, every (n−1)-tuple of first integrals of fk, independent
at (x0, u0), forms a vector of flat outputs in an open neighborhood of (x0, u0).

Proof. We consider fk satisfying assumption (4.5). Note that fk(x0) 6= 0 since otherwise,
the rank of the distribution Span{f1, . . . , fn−1, [g, fk]} would be smaller than or equal
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to n− 1. Thus, x0 is a transient point of fk, and, according to e.g. [1, 13], there exist
(n− 1) differentially independent first integrals of fk, noted z1, . . . , zn−1, i.e. satisfying:

Lfk
zi(x) = 0, i = 1, · · · , n− 1, (4.7)

where we have denoted by Lγh the Lie derivative of an arbitrary differentiable function
h along the vector field γ. These first integrals satisfy, thanks to (4.7):

żi =
n∑
j=1

∂zi
∂x

ẋ = Lf0zi(x) +
n−1∑
j=1

ujLfj
zi(x) = Lf0zi(x) +

∑
j 6=k

ujLfj
zi(x).

Thus, ∂żi

∂uj
= Lfj

zi for j 6= k and ∂żi

∂uk
= 0 for all i ∈ {1, · · · , n − 1}, and the following

determinant vanishes ∣∣∣∣∣ ∂(ż1, · · · , żn−1)
∂(u1, · · · , un−1)

∣∣∣∣∣ = 0, (4.8)

since its k−th column is identically equal to zero. Hence rank
(
∂(ż1,··· ,żn−1)
∂(u1,··· ,un−1)

)
≤ n− 2.

We next prove that the rank of the following matrix:

M ,

 ∂(ż1,··· ,żn−1)
∂(u1,··· ,un−1)

∂(ż1,··· ,żn−1)
∂(x1,··· ,xn)

0 ∂(z1,··· ,zn−1)
∂(x1,··· ,xn)


is exactly 2n− 2 in an open neighborhood of (x0, u0).
Since z1, · · · , zn−1 are functionally independent, the right lower block of M has rank

n− 1. The right kernel of this block is the real vector space generated by the components
of fk since, according to (4.7), ∂z

∂x
fk = Lfk

z = 0 where we have noted z = (z1, · · · , zn−1).
On the other hand, fk cannot be in the right kernel of the right upper block. Indeed,
again using (2.3) and (4.7), we have

∂ż

∂x
fk = Lfk

ż = Lfk
(Lgz) = LgLfk

z − L[g,fk]z = −L[g,fk]z 6= 0 (4.9)

by lemma 1. Hence, the rank of the right submatrix of M is equal to n, i.e.

rank
(

∂ż
∂x
∂z
∂x

)
= n.

Now let us prove that that the rank of the left upper block
(
∂(ż1,··· ,żn−1)
∂(u1,··· ,un−1)

)
, of size

(n− 1)× (n− 1), is equal to n− 2, wherever the vector fields are independent (recall
that its kth column is identically equal to 0).
Assume, by contradiction that there exists a linear combination of its columns that

vanishes: ∑n−1
j=1,j 6=k λj(x)Lfj

z(x) = L(
∑n−1

j=1,j 6=k
λjfj)z(x) = 0. Using the independence of

the components of z, this would imply that ∑n−1
j=1,j 6=k λjfj is parallel to fk, which is

impossible since the fields f1, · · · , fn−1 are assumed to be independent. Thus, we must
have λj = 0 for all j. Hence we conclude that rank

(
∂(ż1,··· ,żn−1)
∂(u1,··· ,un−1)

)
= n− 2.
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The left submatrix of M , of rank n− 2, is independent from the right submatrix, that
has been proven to be of rank n, because of the zero left lower block. Consequently,
rank (M) = 2n−2. Let M̂ be the square matrix of full rank, therefore invertible, obtained
from M by discarding the kth column, which is identically null, as proven before.
Let us denote by û , (u1, . . . , uk−1, uk+1, . . . , un−1). The matrix

N ,


∂z

∂x
0

∂ż

∂x

∂ż

∂û

 (4.10)

is obtained from M̂ by permuting the right and left blocks and then the upper and
lower blocks and is therefore also invertible. Moreover, N is the Jacobian matrix of
the mapping ψ , (ψ0, ψ1) : (x, û) 7→ (ψ0(x) = z, ψ1(x, û) = ż). Therefore ψ is a local
diffeomorphism and x and û can be obtained from z and ż in a unique way

x = ϕ0(z, ż), û = ϕ1(z, ż)

where (ϕ0, ϕ1) is the inverse mapping of ψ = (ψ0, ψ1).
Note that we have, by construction:

ż = ψ1 = Lf0ψ0 +
∑
i 6=k

ûiLfi
ψ0.

In order to obtain the last input uk, we compute z̈ = dż
dt :

z̈ = ψ̇1 = L2
f0ψ0 +

∑
i 6=k

ûiLf0Lfi
ψ0 +

∑
i 6=k

ûiLfi
Lf0ψ0 + ukLfk

Lf0ψ0

+
∑
i 6=k

ukûiLfk
Lfi

ψ0 +
∑
i,j 6=k

ûiûjLfi
Lfj

ψ0 +
∑
i 6=k

˙̂uiLfi
ψ0

This immediately yields
∂z̈

∂ ˙̂ui
= Lfi

ψ0 = ∂ż

∂ûi
(4.11)

and
∂z̈

∂uk
= Lfk

Lf0ψ0 +
∑
i 6=k

ûiLfk
Lfi

ψ0 = Lfk
Lgψ0 = −Ladgfk

ψ0 6= 0 (4.12)

according to (4.9).
Therefore, we may complete the matrix N, defined by (4.10), by the following

3(n− 1)× 3(n− 1) square matrix

N1 ,



∂z

∂x
0 0 0

∂ż

∂x

∂ż

∂û
0 0

∂z̈

∂x

∂z̈

∂û

∂z̈

∂uk

∂z̈

∂ ˙̂u

 (4.13)
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which, according to (4.11) and (4.12), is clearly invertible. We indeed recognize that N1
is the Jacobian matrix of the transformation ψ , (ψ0, ψ1, ψ2) with ψ2(x, û, uk, ˙̂u) , z̈,
which proves that ψ is a local diffeomorphism and thus that x and u = (û, uk) may be
expressed as functions of (z, ż, z̈).
Putting these results together, we have proven that z is a vector of flat outputs

Remark 5. A comparable result has been proven by P. Martin in [18] using different
ideas, related to system structure at infinity. More precisely, in [18], condition (4.5) is
proven to be a flatness sufficient condition, but the role played by first integrals of one of
the control vector fields in the construction of flat outputs has not been brought to light.

Remark 6. In the case of systems with n− 1 inputs, thanks to Theorem 3, the general
approach to the computation of flat outputs presented in [15, 16], based on an implicit
representation of system (2.1), is not needed. Moreover, the present direct approach does
not require an unbounded recursion as in the above mentioned references. These facts
will yield important simplifications in the analysis of flatness singularities in the next
sections.

Remark 7. The last part of the proof of Theorem 3 could be slightly shortened by
remarking that, since x has been proven to be a function of (z, ż), the last input uk may
be obtained by differentiating x with respect to time, but we have preferred a more explicit
argument by constructing the Jacobian matrix of the diffeomorphism expressing x, û, uk
in function of (z, ż, z̈).

4.1.3 Interpretation in terms of Feedback Linearization

Consider the (2n− 2)-dimensional extended system (see also [18]):

ẋ =
f0(x) +

∑
i 6=k

uifi(x)
+ ukfk(x)

u̇i = vi, i 6= k

(4.14)

with drift
f , f0 +

∑
i 6=k

uifi (4.15)

and control vector fields defined by:

f̃i ,


∂

∂ui
, i ∈ {1, . . . , n− 1}, i 6= k

fk, i = k.

Then we consider the distributions

G0 = Span{f̃1, . . . , f̃n−1}, G1 = G0 + adfG0
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in a neighborhood of a generic point, where we have denoted adfG0 , {adfγ | γ ∈ G0}.
A direct computation immediately shows that [f̃i, f̃j] = 0 for all i, j, that adf f̃i = −fi
if i 6= k, and adf f̃k = adffk = [f, fk] = [g, fk] (where g is defined by (2.3)). Thus,
according to assumption (4.5), G0 is clearly involutive and

G1 = Span
{
∂

∂u1
, . . . ,

∂

∂uk−1
,

∂

∂uk+1
, . . . ,

∂

∂un−1
, f1, . . . , fn−1, [g, fk]

}

is involutive and has rank 2n − 2 in the neighborhood under consideration. Hence,
according to [7, 9], system (4.14) is static feedback linearizable in a suitable neighborhood
of the extended state manifold of dimension (2n − 2) and local coordinates (x, û) =
(x1, . . . , xn, u1, . . . , uk−1, uk+1, . . . , un−1), where û , (u1, . . . , uk−1, uk+1, . . . , un−1) is the
state extension of dimension n− 2. In other words, there exists a regular extended-state
feedback vi = ai(x, û, w), for i = 1, · · · , n − 1, i 6= k, and uk = ak(x, û, w), where
w , (w1, . . . , wn−1) is the new input, and a local diffeomorphism (z, ż) = ψ(x, û), such
that the closed-loop system of dimension 2n− 2, namely

ẋ = f0(x) +
∑
i 6=k

ûifi(x) + ak(x, û, w)fk(x)

˙̂ui = ai(x, û, w), i 6= k

where we have renamed ui , ûi, i 6= k, can be transformed by ψ into the (2n − 2)-
dimensional linear controllable one

z̈i = wi, i = 1, . . . , n− 1.

4.2 A First Atlas Construction

Let Ω0 ⊂ X × Rn−1 be the set of points (x, u) that satisfy assumption (4.5)5, i.e.

Ω0 , {(x, u) ∈X × Rn−1 | ∃k : Span{f1, . . . , fn−1, [f, fk]} = TxX} (4.16)

where TxX denotes the tangent space of X at the point x and f = f0 +∑
i 6=k uifi (see

(4.15)). We denote by Ω̃0 ⊂ X, the set of points (x, u) whose projection (x, u) in X×Rn−1

belongs to Ω0
We also consider the set

Ω , {(x, u) ∈ X × Rn−1 | ∃k? ∈ N : rank Gk?(x, u) = n} (4.17)

with Gk defined by (4.2). Recall indeed that Ω0 ⊂ Ω (see lemma 1). We also denote by
Ω̃ ⊂ X, the set of points (x, u) whose projection (x, u) in X × Rn−1 belongs to Ω. We
indeed also have Ω̃0 ⊂ Ω̃.
Then the following assertion holds:

5Note that condition (4.5) depends on u by f = f0 +
∑

i 6=k uifi. Note furthermore that, according to
(2.3) and (4.15), [g, fk] = [f, fk].
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Theorem 4. Under assumption (4.5), for each point (x0, u0) ∈ Ω̃0, there exists an open
neighborhood U(x0,u0) ⊂ Ω̃0 of (x0, u0)6, and a well-defined flat output z = Φ(x0,u0)(x, u, u̇)
in U(x0,u0), constructed according to theorem 3. Moreover, (U(x0,u0),Φ(x0,u0)) constitutes a
Lie-Bäcklund chart, the collection of which defines a Lie-Bäcklund atlas.

Moreover, the set of intrinsic singularities is contained in Ω̃C
0 and contains Ω̃C, where

the superscript C stands for the complementary of the corresponding set.

Proof. For each point (x0, u0) ∈ Ω̃0, there exists some k and an open neighborhood
U(x0,u0) of (x0, u0) such that condition (4.5) holds and such that there exists a flat output
z = Φ(x0,u0)(x, u, u̇) made of n− 1 independent first integrals of fk in U(x0,u0) according
to theorem 3. The charts, therefore made of the pairs (U(x,u),Φ(x0,u0)) are indeed Lie-
Bäcklund charts and naturally compatible (property (ii) of definition 1) thanks to the
transitivity of the Lie-Bäcklund equivalence relation. Therefore they form a Lie-Bäcklund
atlas.
Since Ω̃0 contains only regular points, and since, in Ω̃, the strong accessibility rank

condition rank Gk?(x, u) = n is satisfied (see lemma 1) and is a necessary flatness condition
(theorem 2), the last assertion of this theorem is proven.

Remark 8. When the fields are analytic, the complementary of Ω0, made of the points
where dim(Span{f1, . . . , fn−1, [f, fk]}) < n for all k ∈ {0, . . . , n − 1} is at least of codi-
mension 1, hence the set of intrinsic singularities has zero Lebesgue measure. When the
fields are C∞ but not analytic, the Lebesgue measure of ΩC

0 may be non-zero.

4.3 More on the Set of Intrinsic Singularities, Non Generic Points

In the previous section, we have proven that the set of intrinsic singularities is contained
in Ω̃C

0 and contains Ω̃C. In this section, we investigate more in depth the structure of Ω̃C
0

and show that there might exist points of Ω̃C
0 where the system is still flat, or otherwise

stated, Ω̃C
0 might contain some apparent singularities.

The next result studies degenerated situations, compared to (4.5), namely when some
of the control vector fields become linearly dependent of the others. Therefore, it is
intended to be applied to points (x, u) 6∈ Ω0.

We thus consider a point x0 and the distribution Γ0 , Span{f1, · · · , fn−1} and denote
by Γ0(x0) the vector space generated by the vectors {f1(x0), · · · , fn−1(x0)}. We assume
that dim Γ0(x0) = n−p, with p > 17. Without loss of generality and up to a renumbering
of the fi’s, i = 1, . . . , n− 1, we note

Γa0 , Span{f1, . . . , fn−p}, Γb0 , Span{fn−p+1, . . . , fn−1}, (4.18)

and assume that Γ0(x0) = Γa0(x0), thus meaning that the dimension of Γ0 drops down
from n− 1 to n− p at x0 and that Γb0(x0) ⊂ Γa0(x0).

6The neighborhood U(x0,u0) can always be chosen of the form U0
(x0,u0) × Rn−1

∞ where U0
(x0,u0) is a

neighborhood of (x0, u0) in Ω0 and thus only depends on (x0, u0).
7Recall that Γ0 is assumed to have dimension n− 1 in an open dense subset O ⊂ X. Thus, we indeed
have x0 6∈ O
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For simplicity’s sake, we note

ua , (u1, . . . , un−p) , fa , (f1, . . . , fn−p) , uafa ,
n−p∑
i=1

uifi,

ub , (un−p+1, . . . , un−1) , fb , (fn−p+1, . . . , fn−1) , ubfb ,
n−1∑

i=n−p+1
uifi.

(4.19)

Thus, the system equation (2.1) reads

ẋ = f0(x) + uafa(x) + ubfb(x)

and ubfb may now be considered as part of the drift, the independent controls being
restricted to ua. Therefore, we embed the drift vector field f0 + ubfb in a vector field of
X × Rp−1

∞ , given by
F b

0 (x, ub) , f0(x) + ubfb(x) + τb, (4.20)
where τb is the trivial Cartan field of Rp−1

∞ with global coordinates ub , (ub, u̇b, . . .):

τb ,
∑
k≥0

n−1∑
j=n−p+1

u
(k+1)
j

∂

∂u
(k)
j

,
∑
k≥0

u
(k+1)
b

∂

∂u
(k)
b

. (4.21)

We also introduce the following sequence of distributions of the tangent bundle
TX × TRn−1

∞ :
Γak+1 , Γak + adF b

0
Γak, ∀k ≥ 0. (4.22)

The following lemma shows that, in fact, the Γak’s are all contained in TX.

Lemma 2. We have Γak(x, ub) ⊂ TxX for every k, every x ∈ X and every ub ∈ Rp−1
∞ .

Moreover, there exists k? ≤ p such that dim Γak(x, ub) ≤ dim Γak?(x, ub) ≤ n for every
k ∈ N and (x, ub) ∈ X × Rp−1

∞ .

Proof. Consider the sequence of distributions of TX:

∆a
k+1 , ∆a

k + adf0∆a
k + [Γb0,∆a

k], ∀k ≥ 0, ∆a
0 = Γa0. (4.23)

Every ∆a
k is a subdistribution of TX, hence dim ∆a

k(x) ≤ n for all k ∈ N and all
x ∈ X, with ∆a

k ⊂ ∆a
k+1. Thus, there exists an integer k?∆, possibly depending on x,

this dependence being omitted for simplicity’s sake, such that dim ∆a
k(x) ≤ dim ∆a

k?
∆

(x)
for all k ≤ k?∆ and x ∈ X, and dim ∆a

k(x) = dim ∆a
k?

∆
(x) for all k ≥ k?∆ and x ∈ X.

Indeed, the fact that dim ∆a
k+1(x) − dim ∆a

k(x) ≥ 1 for all k < k?∆ and x ∈ X, with
dim ∆a

0(x) = dim Γa0(x) = n− p, clearly implies that k?∆ ≤ p for all x ∈ X.
Next, considering the vector field F b

0 given by (4.20), we show by induction that the
distributions (4.22) satisfy Γak(x, ub) ⊂ ∆a

k(x) for all k ≥ 0, all x ∈ X and all ub in Rp−1
∞ .

This relation is indeed valid for k = 0.
Assuming that it holds up to j, a vector field γ ∈ Γaj has the form

γ(x, ub) ,
rj∑
r=1

αr(x, ub)γr(x),
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where {γr, r = 1, . . . , rj} are chosen in a basis of ∆a
j , hence independent of ub and

commuting with τb, i.e. [τb, γr] = 0, and where rj stands for the dimension of Γaj (x, ub).
Let us compute adF b

0
γ. We have

adF b
0
γ = [f0 + ubfb + τb, γ] = adf0γ + ub[fb, γ] +

rj∑
r=1

(Lτb
αr) γr

∈ adf0∆j + [Γb0,∆j] + ∆j = ∆j+1

which proves that Γaj+1(x, ub) ⊂ ∆a
j+1(x) ⊂ TxX for all x ∈ X and all ub in Rp−1

∞ .
Since Γaj (x, ub) ⊂ Γaj+1(x, ub) ⊂ TxX for all (x, ub) ∈ X × Rp−1

∞ , we immediately
conclude that dim Γaj (x, ub) is bounded above by n for all (x, ub) ∈ X ×Rp−1

∞ . As for the
∆a
k’s, this bound is reached at some integer k? ≤ p since dim Γak+1 − dim Γk ≥ 1 for all

k < k?, with dim Γa0 = n− p, hence the lemma.

Theorem 5. Assume that, in a given neighborhood V (x0) of x0 and for all ub in an open
dense subset of Rp−1

∞ :

(i) Γak has constant dimension and is involutive for every k ≥ 0,

(ii) Γap = TRn.

Then, system (2.1) is flat with flat output (z1, . . . , zn−p, un−p+1, . . . , un−1), where zi ,
ϕi,0(x, uk1−3

b ), i = 1, . . . , n − p, is defined in a neighborhood of every point of a dense
open set of V (x0) × R(p−1)(2(k1−2)) by proposition 1 (see below), and x0 is an apparent
singularity.

Before stating the proof, let us sketch the ideas, that display strong similarities with
the construction of the diffeomorphism that transforms the nonlinear dynamics into the
Brunovský controllability canonical form of the static feedback linearization problem (see
[9, Corollary 1], [8, Chap.1, Sec. 3 and Chap. 5, Sec. 6] or [14, Sec. 4.1.3]), the main
difference being that the distributions (4.22) may depend on ub and a finite number of
its derivatives. More precisely, transforming x and ub and successive derivatives into
a flat output z implies that the Brunovský controllability indices of the corresponding
linear system are obtained from (4.22). Moreover, the successive derivatives of z with
respect to the drift (4.20), up to a certain order, cannot depend on ua (see (4.35) and
(4.36) below). The corresponding conditions are expressed as conditions on the iterated
Lie brackets (4.34) that generate the distributions (4.22) and, thanks to properties (i)
and (ii) of theorem 5, they imply the existence of n− p local first integrals of the Γak’s,
by Frobenius theorem (see proposition 1 below), first integrals that constitute the n− p
first components of a flat output, the p− 1 remaining ones being the components of ub.
We start with the following proposition:
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Proposition 1. Assume that the assumptions (i)-(ii) of Theorem 5 are valid. Then

there exist integers k1, . . . , kn−p, with p ≥ k1 ≥ . . . ,≥ kn−p ≥ 0 and
n−p∑
i=1

ki = n, (the so-

called Brunovský controllability indices of the Γak’s) and n smooth independent functions
(ϕ1,0, . . . , ϕ1,k1−1, . . . , ϕn−p,0, . . . , ϕn−p,kn−p−1) defined in a neighborhood W (ξ, νb) of every
(ξ, νb) in a dense subset W of V (x0)× R(p−1)

∞ , with

ϕi,j : (x, u(k1+j−3)
b ) ∈ W (ξ, νb)→ R, j = 0, . . . , ki − 1,

ϕi,j+1(x, u(k1+j−2)
b ) = LF b

0
ϕi,j(x, u(k1+j−2)

b ), j = 0, . . . , ki − 2,
(4.24)

where we have denoted u(α)
b ,

(
ub, u̇b, . . . , u

(α)
b

)
, for α ∈ N, satisfying, in W (ξ, νb), and

for every (ξ, νb) ∈ W :

< dϕi,j,Γak >= 0, k = 0, . . . , ki − j − 2, j = 0, . . . , ki − 2, i = 1, . . . , n− p, (4.25)

the (n− p)× (n− p) matrix ∆ whose entries are

∆i,j , L
ad

kj−1

F b
0

fi
ϕj,0, i, j = 1, . . . , n− p (4.26)

being invertible in W (ξ, νb).
Moreover, the mapping x ∈ prXW (ξ, νb) 7→ Φ(x, u(2(k1−2))

b ) ∈ Rn, with Φ defined by

Φ(x, u(2(k1−2))
b ) ,

(
ϕ1,0(x, u(k1−3)

b ), . . . , ϕ1,k1−1(x, u(2(k1−2))
b ), . . .

. . . , ϕn−p,0(x, u(k1−3)
b ), . . . , ϕn−p,kn−p−1(x, u(k1+kn−p−4)

b )
)

=
(
ϕ1,0(x, u(k1−3)

b ), . . . , Lk1−1
F b

0
ϕ1,0(x, u(2(k1−2))

b ), . . .

. . . , ϕn−p,0(x, u(k1−3)
b ), . . . , Lkn−p−1

F b
0

ϕn−p,0(x, u(k1+kn−p−4)
b )

)
(4.27)

is a local diffeomorphism from prXW (ξ, νb) to an open subset of Rn, for all νb in an open
dense subset of Rp−1

∞ .

Proof. As already announced, the Proposition results from [9, Corollary 1]. See also [8,
Chapter1, Section 3 and Chapter 5, Section 6] or [14, Section 4.1.3].
We define the Brunovský controllability indices k1, . . . , kn−p associated to the Γak’s by

first introducing the numbers rj by

rj , dim Γaj − dim Γaj−1 ∀j ≥ 1, r0 , dim Γa0 = n− p.

Let us prove that rj+1 ≤ rj for all j ≥ 0 by induction.
By (4.22), we have Γa1 = Γa0 + adF b

0
Γa0 = Γa0 +∑n−p

j=1 adF b
0
fj. Thus noting {γ1, . . . , γr1}

a basis of the vector space generated by the elements of ∑n−p
j=1 adF b

0
fj that are inde-

pendent of f1, . . . , fn−p, its number of elements r1 cannot exceed the number n − p =
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#{adF b
0
f1, . . . , adF b

0
fn−p}, where #A denotes the number of elements of an arbitrary

subset A. Hence, r1 ≤ n− p = r0.
The proof of the assertion at step j + 1 follows exactly the same lines and is left to the

reader.
The sequence rj, j ≥ 0 being non increasing with rj ≥ 0 for all j ≥ 0, there exists

an ultimate j? such that rj? > 0 and rj = 0 for all j > j?. We indeed have j? ≤ p and∑j?

j=0 rj = dim Γaj? = Γap = n by assumption (ii) of Theorem 5.
Then, the Brunovský controllability indices k1, . . . , kn−p are given by

ki , #{j | rj ≥ i}, i ≥ 1.

Again following the same lines as in [9, 8, 14], we immediately get that p ≥ k? = k1 ≥
. . . ,≥ kn−p ≥ 0. Moreover, for all i ≥ 1, the number rj of dimension jumps that are
equal to i being i(ki − ki+1), we get dim Γap = ∑n−p

i=1 i(ki − ki+1) = k1 + . . . + kn−p and,
since Γap = Γak1 = TRn by assumption (ii), that k1 + . . .+ kn−p = n.

Moreover, possibly up to a new renumbering of the fi’s and for all ub in a dense subset
of Rp−1

∞ , they satisfy:

• if 0 ≤ i ≤ kn−p − 1:

Γai = Span{f1, . . . , adiF b
0
f1, . . . , fn−p, . . . , adiF b

0
fn−p} (4.28)

• if kj+1 ≤ i ≤ kj − 1, 1 ≤ j ≤ n− p− 1:

Γai = Span{f1, . . . , adiF b
0
f1, . . . , fj, . . . , adiF b

0
fj, . . .

. . . , fj+1, . . . , adkj+1−1
F b

0
fj+1, . . . , fn−p, . . . , adkn−p−1

F b
0

fn−p}
(4.29)

• and for i ≥ k1:

Γai = Γak1 = Span{f1, . . . , adk1−1
F b

0
f1, . . . , fn−p, . . . , adkn−p−1

F b
0

fn−p}. (4.30)

Note, moreover, that Γak1 so defined depends at most on the

max{(kn−p − 2), (kn−p−1 − 2), . . . , (k1 − 2)} = k1 − 2

first successive derivatives of ub (starting at u(0)
b = ub), i.e. on u(k1−3).

Hence, since all the Γai ’s are involutive by assumption (i), by Frobenius theorem, there
exist n− p independent first integrals ϕ1,0(x, u(k1−3)) = z1, . . . , ϕn−p,0(x, u(k1−3)) = zn−p
defined in a neighborhood W (ξ, νb) of every (ξ, νb) in a dense subset W of V (x0)×R(p−1)

∞
satisfying

Ladj

F b
0
fk
ϕi,0 = 0, j = 0, . . . , ki − 2, i, k = 1, . . . , n− p, (4.31)

or equivalently (4.25) and for which the matrix ∆ given by (4.26), is invertible for all ub
in a dense subset of Rp−1

∞ . Since
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Next, considering the functions defined by (4.24):

ϕi,j(x) , Lj
F b

0
ϕi,0(x), j = 1, . . . , ki − 1, i = 1, . . . , n− p,

by (4.28)-(4.29)-(4.30), they are such that

Ladj−l

F b
0
fk
ϕi,l = 0, j, l = 0, . . . , ki − 2, i, k = 1, . . . , n− p. (4.32)

We can prove, again as in [9, 8, 14]), that the mapping

x 7→
(
ϕ1,0, . . . , ϕ1,k1−1, . . . , ϕn−p,0, . . . , ϕn−p,kn−p−1

)
= (z1, . . . , z

(k1−1)
1 , . . . , zn−p, . . . , z

(kn−p−1)
n−p )

(4.33)

where z(j)
i = ϕi,j(x, u(k1+j−3)

b ) = Lj
f̃0
ϕi,0(x, u(k1+j−3)

b ), is a local diffeomorphism of X for
every ub in a dense open subset of Rp−1

∞ . Moreover, as a consequence of (4.31), it is easy
to prove by induction that, for all j = 0, . . . , ki − 2, i, k = 1, . . . , n− p and r = 0, . . . , j,

Ladj

F b
0
fk
ϕi,0 = 0 = (−1)jLfk

Lj
F b

0
ϕi,0 = (−1)jLfk

Lj−r
F b

0
ϕi,r. (4.34)

Proof of Theorem 5. Assume that (i) and (ii) hold true in a neighborhood V (x0) of
x0. Then, according to Propositon 1, there exist n smooth independent functions
(ϕ1,0, . . . , ϕ1,k1−1, . . . , ϕn−p,0, . . . , ϕn−p,kn−p−1) that satisfy (4.25) with (4.26) and such
that the mapping Φ defined by (4.27) is a local diffeomorphism.
Differentiating k times zi(t) , ϕi,0(x(t)), for i = 1, . . . , n − p, with respect to time,

where x(t) is an integral curve of system (2.1), we prove by induction, thanks to (4.31)-
(4.34), that, for all k = 0, . . . , ki − 2,

z
(k)
i (t) = LkF b

0
ϕi,0 + uaLfaL

k−1
F b

0
ϕi,0 = LkF b

0
ϕi,0 (4.35)

and, for i = 1, . . . , n− p,

z
(ki−1)
i (t) = Lki−1

F b
0
ϕi,0 + uaLfaL

ki−2
F b

0
ϕi,0. (4.36)

Thanks to (4.26), the latter relation allows to obtain ua as a function of z = (z1, . . . , zn−p)
and ub and derivatives up to k1 − 1. Moreover, according to (4.33), this proves that x
and ua can be expressed as functions of the pair (z, ub) and successive derivatives in finite
number, hence the flatness property.

Remark 9. As for theorem 3, the reader may easily check a posteriori that theo-
rem 5] may be interpreted in terms of feedback linearization by extending the state
as (x, ub, . . . , u(2(k1−2))

b ) and inputs (ua, u(2k1−3)
b ).

Remark 10. It must be noted that Theorem 5 remains valid in the case of m ≤ n− 1
control inputs, with n−m ≤ p. This trivial verification is left to the reader.
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Remark 11. To the authors knowledge, Theorem 5 is the first one giving a practical
condition for which the degenerating directions at a given point, producing a rank drop
at this point, are replaced by those generated by another tower of constant rank and
involutive subdistributions, namely the Γak’s. In contrast, the apparent singularities dealt
with in [2, 3, 12] only concern singularities of the parameterization and are not related
to a singularity of the distribution of control vector fields.

Remark 12. The application to the global or semi-global motion planning, as presented
in [12] for the non-holonomic car, may be indeed easily adapted to the present context.
However, though important in applications, we do not shed new light on this topic.
Therefore, this aspect is not developed again here.

5 Examples

5.1 Example 1

Consider the following system: 
ẋ1 = x1u1 + x2
ẋ2 = x3
ẋ3 = u2.

We have: f0 = x2
∂
∂x1

+ x3
∂
∂x2

, f1 = x1
∂
∂x1

and f2 = ∂
∂x3

. When x1 6= 0, the fields f1

and f2 are linearly independent and condition (4.5) holds since [g, f2] = [f0, f2] = − ∂
∂x2

.
Therefore by theorem 3, the system is flat in the dense open set R3 \ {x1 = 0}. A flat
output is given by two independent first integrals of f2, e.g. y1 , x1, y2 , x2), which
is easily confirmed by the formulas x1 = y1, x2 = y2, x3 = ẏ2, u1 = ẏ1−y2

y1
and u2 = ÿ2.

One can also easily verify that, after extending the system by adding an integrator to u1,
i.e. u̇1 = v1, the extended system is feedback linearizable.

At a point (x1, x2, u1), where x1 = 0, the system is degenerated but still flat. Since
f1 = 0 at this point, we have Γ0 = Span{f2}, with dim Γ0 = 1. We thus apply
theorem 5 with p = 2, Γa0 = Span{f2} and Γb0 = Span{f1}. Here ub = u1 and F b

0 (x, ub) =
f0+u1f1+τ1 = (x2+u1x1) ∂

∂x1
+x3

∂
∂x2

+∑k≥0 u
(k+1)
1

∂

∂u
(k)
1

. The reader may easily check that
Γa0 = Span{ ∂

∂x3
} = Γa0, Γa1 = Span{ ∂

∂x3
, ∂
∂x2
} = Γa1 and Γa2 = Span{ ∂

∂x3
, ∂
∂x2
, , ∂

∂x1
} = TR3.

Hence we conclude that the system is flat with ỹ1 , x1 and ỹ2 , u1 as flat output, which
indeed implies that x1 = 0 is an apparent singularity.

5.2 Example 2

We now consider the following 4-dimensional driftless system with 3 control inputs:
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
ẋ1 = u1
ẋ2 = x3u1
ẋ3 = x4u1 + x1u3
ẋ4 = u2.

(5.1)

The drift is thus f0 = 0 and the control fields are respectively given by

f1 = ∂

∂x1
+ x3

∂

∂x2
+ x4

∂

∂x3
, f2 = ∂

∂x4
, f3 = x1

∂

∂x3
.

At points where x1 6= 0 and u1 6= 0, these three vector fields are linearly independent
and [g, f3] = u1[f1, f3] = −u1

(
x1

∂
∂x2

+ ∂
∂x3

)
6∈ Span(f1, f2, f3). Therefore assumption

(4.5) is satisfied and, by theorem 3, the system is flat with flat outputs given by three
independent first integrals of f1. An easy computation yields the following flat output:

z1 = 2x2x4 − x2
3, z2 = x1x4 − x3, z3 = x4.

One could instead take three independent first integrals of f3 as well to get
z′1 = x1, z′2 = x2, z′3 = x4.

Note that at points x1 = 0, the distribution Span{f1, f2, f3} has dimension 2. The
reader can verify that Γa0 = Span{f1, f2} is not involutive, and therefore that theorem 5
does not apply. Nevertheless, x1, x2, and u3, is a flat output whenever u1 6= 0.

5.3 Example 3

We now consider an extension of system (5.1) by adding two integrators to u1, which
makes the system a 6 dimensional one with 3 inputs:

ẋ1 = x5
ẋ2 = x3x5
ẋ3 = x4x5 + x1u3
ẋ4 = u2
ẋ5 = x6
ẋ6 = u1.

(5.2)

System (5.2) is indeed Lie-Bäcklund equivalent to (5.1) and therefore flat at points where
x1 6= 0 and u1 6= 0.

We now show that theorem 5, for m = 3 and n = 6 (see remark 10), applies at points
x1 = 0, where Span{f1, f2, f3} = Span{ ∂

∂x6
, ∂
∂x4
, x1

∂
∂x3
} degenerates.

We have f0 = x5
∂
∂x1

+ x3x5
∂
∂x2

+ x4x5
∂
∂x3

+ x6
∂
∂x5

, f1 = ∂
∂x6

, f2 = ∂
∂x4

and f3 = x1
∂
∂x3

.
Thus, Γa0 = Span{f1, f2}, Γb0 = Span{f3}, p = 4 ≥ n−m = 3, and

F b
0 = f0 + u3f3 + τ3 = x5

∂

∂x1
+ (x4x5 + u3x1) ∂

∂x3
+ x6

∂

∂x5
+
∑
k≥0

u
(k+1)
3

∂

∂u
(k)
3
.

We have Γa0 = Span{ ∂
∂x6
, ∂
∂x4
}, Γa1 = Span{ ∂

∂x6
, ∂
∂x5
, ∂
∂x4
, ∂
∂x3
}, and Γa2 = TR6, which proves

that the assumptions of theorem 5 are satisfied. We immediately get the flat output
z1 = x1, z2 = x2 and z3 = u3.
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6 Conclusion

In this paper, we have studied the set of intrinsic singularities of control affine flat
systems with one input less than the number of states. We have proven two theorems
in this context, showing how to construct flat outputs and their Lie-Bäcklund atlases,
thus allowing to deduce some inclusions of their associated set of intrinsic singularities.
We also give three examples which may be interpreted in a potentially interesting way
for applications: if the system degenerates at a point but is still flat there, and if the
degeneracy point corresponds to some damaged state, e.g. loss of a motor or of a wing
of an aircraft, then the present analysis may be helpful for input reconfiguration of the
damaged system and emergency motion planning. This idea will be more thoroughly
studied in a forthcoming work of the authors.
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