
HAL Id: hal-02044896
https://hal.science/hal-02044896

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DVFS as a Security Failure of TrustZone-enabled
Heterogeneous SoC

El Mehdi Benhani, Lilian Bossuet

To cite this version:
El Mehdi Benhani, Lilian Bossuet. DVFS as a Security Failure of TrustZone-enabled Heterogeneous
SoC. 25th IEEE International Conference on Electronics Circuits and Systems, Dec 2018, Bordeaux,
France. �hal-02044896�

https://hal.science/hal-02044896
https://hal.archives-ouvertes.fr

DVFS as a Security Failure
of TrustZone-enabled Heterogeneous SoC

El Mehdi BENHANI, Lilian BOSSUET

Hubert Curien Laboratory
University of Lyon, Saint-Etienne, France

Emails: elmehdi.benhani@univ-st-etienne.fr,
lilian.bossuet@univ-st-etienne.fr

Abstract—Today, most embedded systems use Dynamic
Voltage and Frequency Scaling (DVFS) to minimize energy
consumption and maximize performance. The DVFS technique
works by regulating the important parameters that govern the
amount of energy consumed in a system, voltage and
frequency. For the implementation of this technique, the
operating system (OS) includes software applications that
dynamically control a voltage regulator or a frequency
regulator or both. In this paper, we demonstrate for the first
time a malicious use of the frequency regulator against a
TrustZone-enabled System-on-Chip (SoC). We use frequency
scaling to create a covert channel in a TrustZone-enabled
heterogeneous SoC. We present three different attacks, the
first is discreet transmission of sensitive data from the SoC to
outside, using electromagnetic emission. The second attack is
the inside-SoC transfer of valuable data from a secure ARM
core to a non-secure one. The last attack is the inside-SoC
transfer of data between a non-trusted third party IP
embedded in the programmable logic part of the SoC and a
processor core.

Index Terms— ARM TrustZone, Embedded system
security, AXI bus, Hardware Trojan, DVFS.

I. INTRODUCTION
Systems-on-Chip (SoC) are becoming increasingly

complex as they integrate many functionalities including
third party IPs, which raises awareness of the need to protect
the SoC from security failure. Today, one of the significant
threats facing SoC is the covert channel transmission of
valuable data. This security attack allows the attacker to
transfer data between processes that are not authorized by the
security policy to communicate. In general, a covert channel
transmission uses an intruder process that transfers valuable
information to a receiver process that decodes it, and uses it
for malicious purposes. Many methods to create covert
channels can be found in the literature, but most use shared
resources such as cache memory [1].

Most modern SoC are equipped with Dynamic Voltage
and Frequency Scaling (DVFS) capability to reduce power
consumption and maximize performance. DVFS is a
framework that makes it possible to change the frequency
and/or operating voltage of a processor based on system
performance requirements at a given point in time. The
framework uses kernel drivers to control the hardware
frequency and/or voltage regulator.

In this paper, we demonstrate for the first time a
malicious use of the frequency regulator against TrustZone-
enabled SoC.

We present three attacks implemented in the TrustZone-
enabled SoC Xilinx Zynq-7010. All these attacks use
frequency scaling to enable covert channel transmission.

We first present the related work in Section 2, followed
by a description of the threat model in Section 3, the targeted
platform, the prototype system, and the used protocol in
Section 4, the three attacks in Section 5. Finally, we conclude
the paper in Section 6.

II. RELATED WORK
Covert channel attack is a well-known type of security

attack in SoC. It is generally based on shared resources. Lipp
et al. [1] presented a covert timing channel using a cache
shared between two unprivileged processes. The covert
communication is based on the famous cache attacks
Evict+Reload, Flush+Reload, and Flush+Flush. The intruder
process and receiver process use the time access to some
addresses of a shared library to detect a cache hit or miss.
This hit and miss is translated into a logical 0 and 1.

Masti et al. [2] demonstrated a thermal covert channel
using the thermal sensor included in each processor in a
multiprocessing platform. In their attack, the intruder process
uses a core workload to heat the platform, thereby allowing a
receiver process (core in the same platform) to decode the
temperature variation as a logical 0 and 1.

Alagappan et al. [3] demonstrated a covert channel using
frequency modulation. They used DVFS to transfer sensitive
data between two cores that share the same clock. In their
attack, the intruder process uses a core workload to affect the
CPU frequency, which changes according to the CPU
frequency governor mode used (performance, powersave,
userspace, ondemand, conservative). The receiver process
reads the frequency and translates it into a logical 0 or 1.

Like in [3], the attacks presented in this paper also use
frequency modulation to send sensitive data between an
intruder process and a receiver process. But unlike [3], the
two processes have different security statuses in a
TrustZone-enabled SoC. What is more, our attacks use direct
modification of the register related to the frequency
regulator. We also present for the first time a new covert
communication in heterogeneous SoC, which is the
communication between a hardware IP embedded in a
programmable logic (FPGA fabric for example) and an
ARM core.

This work was carried out in the framework of the FUIAAP20-Project
TEEVA supported by Bpifrance.

mailto:elmehdi.benhani@univ-st-etienne.fr

III. THREAT MODEL
In this paper, the general threat is that two processes

prohibited from communicating with each other by the
security policies, want to share information illegitimately.
The two processes have a different security status in the
TrustZone-enabled heterogeneous SoC. One secure process
(intruder process) with access to some critical assets, and one
non-secure process (receiver process) that is not allowed
direct access to secure elements because of the memory
management unit (MMU) rules and TrustZone protection [4].
We assume that the intruder process has write permission
over the shared resource and that the receiver process has
read permission.

IV. PROTOTYPE SYSTEM
For our experiment, we used the Xilinx Zynq-7010 SoC,

a TrustZone-enabled heterogeneous SoC. The Xilinx Zynq-
7010 is compliant with TrustZone technology but the
software and hardware implementation of the TrustZone
security services involves a complex process. Interested
readers can follow the cost free on-line tutorial [5] on
designing a TrustZone-enable system with the Xilinx Vivado
CAD tool.

Figure 1 shows the prototype system used for the
experiment. In this prototype, SoC is partitioned into a
Processing System (in blue in Figure 1), and a
Programmable Logic (in yellow in Figure 1). The
Processing System integrates a dual ARM core (Cortex-A9)
that shares the same clock source (brown dashed line in
Figure 1). The two cores also share an external memory (in
white in Figure 1) with the Programmable Logic.

Fig. 1. Prototype system with Xilinx Zynq-7010 SoC

The TrustZone technology helps partition the external
memory, the Programmable Logic, and the Processing
System into secure (in green in Figure 1) and non-secure (in
red in Figure 1) memory. The secure ARM core of the
Processing System runs a custom trusted operating system
that is stored in the secure region of the external memory.
The second ARM core (non-secure) runs a general operating
system that is stored in the non-secure region of the external
memory. Both ARM cores share the same clock source from
the SoC clock controller. The Programmable Logic includes
a secure IP and non-secure IP. Both IPs have direct access to
the entire external memory with no control by the ARM
processor (Purple AXI line in Figure 1).

In the following Section, we describe the four attacks. To
exchange data between the intruder process and the receiver,

the attacks use a simple protocol that starts by sending a
specific word like 0xAAAAAAAA, followed by the size of
the data to be transferred, and the data. The transfer finishes
by sending the same word as at the beginning. Like in the
related work on covert channels, during the experiment, we
did not focus on reaching the highest bandwidth.

V. ATTACKS
This Section presents four attacks that make use of the

DVFS covert channel. Figure 2 shows the attack paths of the
four attacks.

Fig. 2. Attack paths

A. Attack #1
The first attack is the transfer of sensitive data from the

secure ARM core to outside SoC using electromagnetic
emission (purple attack path #1 in Figure 2). In 2015,
Bossuet et al. [6] demonstrated that the electromagnetic
channel is a powerful covert channel for discrete
transmission from a SoC to outside. Nevertheless, in [6] an
intruder circuit (spy circuit) was added to the design. Unlike
[6], in the present paper, the attacker does not use an
additional block for electromagnetic emission because the
frequency modulation is done by the DVFS system directly.
The attacker uses an electromagnetic probe and a real-time
spectrum analyzer to decode the received data, as shown in
Figure 3.

Fig. 3 Real-time spectral analysis of the electromagnetic leakage of

secret (or sensitive) data

The attacker does not need to make an electromagnetic
map of the studied SoC in order to detect the location of the
targeted signal, a simple hand sweep is sufficient to reveal
the position of a strong signal. This is due to the large
number of wires connected to the manipulated clock source
in this attack.

For this attack, the trusted operating system includes a
malicious code in the driver that controls the frequency
regulator. The malicious code uses frequency modulation to
transfer the data, as presented in algorithm 1. This algorithm
uses the same frequency freq_1 to send a logical 1 and 0, and
keeps this frequency for a long period of time to send a
logical 1 Tempo_1, and for a short period to send a logical 0
Tempo_2. Between sending the two bits, the algorithm
changes the CPU frequency actuel_CPU_freq to another
frequency freq_2, and keeps it for a short period, Tempo_3 in
order to help the attacker distinguish between a logical 1 or
0.

Algorithm 1: Frequency modulation

Input: data_to_transfer
for i = data_to_transfer_size to 0 do

if (data_to_transfer[i] = 1) then
actuel_CPU_freq = freq_1;
loop for Tempo_1;

else
actuel_CPU_freq = freq_1;
loop for Tempo_2;

end if;
actuel_CPU_freq = freq_2;
loop for Tempo_3;

end for;

This algorithm has many parameters that affect the size
of the bandwidth: freq_1, freq_2, Tempo_1, Tempo_2,
Tempo_3. Figure 4 presents two received data decoding for
two different set of parameters.

a: freq 1 = 325MHz, freq 2 = 433MHz,

Tempo 1 = 400, Tempo 2 = 200, Tempo 3 = 200

b: freq 1 = 325 MHz, freq 2 = 433 MHz,

Tempo 1 = 200, Tempo 2 = 100, Tempo 3 = 25

Fig. 4. Decoding received data, a - bandwidth = 1,42.105 bps, b -
bandwidth = 3,33.105 bps

Figure 4 shows the relation between the temporal
parameters (Tempo_1, Tempo_2, Tempo_3) and the
bandwidth. Indeed, for high tempo values (Figure 4a), it is

simple to decode the received data directly on the screen, but
the bandwidth is smaller.

B. Attack #2
The second attack is a transfer of sensitive data from the

secure ARM core to the non-secure one (black attack path #2
in Figure 2). In the Xilinx Zynq-7010 SoC, the two ARM
cores are not well isolated because they are connected to the
same clock. This attack uses this isolation issue to create a
covert channel. It uses an intruder process included in the
frequency regulator driver of the trusted operating system,
and a receiver process included in the general operating
system to decode the stolen data. The two processes use a
direct read and/or write to the register related to the
manipulated clock.

The intruder process uses algorithm 2 to transfer data. To
send a logical 1, the algorithm uses the switch from freq_1 to
freq_2. To send a logical 0, the algorithm uses the switch
from freq_2 to freq_1. The algorithm holds the two
frequencies for a short period of time. The method presented
in the previous section also works, but if the transferred data
are too long, th method has a high error ratio, and it is hard to
synchronize the two cores using it. The method using
algorithm 2 (rising and falling edge method, if we interpret
the freq_1 as low level and freq_2 as high level) make it
possible to reach 6.104 bps in bandwidth and 0% in error
ratio.

Algorithm 2: Frequency modulation

Input: data_to_transfer
for i = data_to_transfer_size to 0 do

if (data_to_transfer[i] = 1) then
actuel_CPU_freq = freq_1;
loop for Tempo_1;
actuel_CPU_freq = freq_2;
loop for Tempo_1;

else
actuel_CPU_freq = freq_2;
loop for Tempo_1;
actuel_CPU_freq = freq_1;
loop for Tempo_1;

end if;
 end for;

The receiver process uses algorithm 3 to decode the
received data. At each Tempo_sampling, the code takes a
sample by directly reading the clock register. If the algorithm
detects a rising edge, it stores a logical 1 in the stolen data
array, and if it detects a falling edge, it stores a logical 0 in
the array. The choice of the sampling time Tempo_sampling
is crucial to not miss any information. It should be smaller
than the tempo Tempo_1 used in the intruder process.

C. Attack #3 and #4
This section presents two attacks, one is a covert

communication from the secure ARM core to the non-secure
block IP (blue attack path #3 Figure 2), and one is a covert
communication from the secure IP to the non-secure ARM
core (brown attack path #4 Figure 2).

a) From the secure ARM core to the non-secure IP
This attack is a transfer of valuable data from the secure

ARM core to the non-secure block IP. It uses a malicious
code inserted in the driver of the DVFS frequency regulator
as the intruder process, and the non-secure IP block as the
receiver process.

The intruder process controls two of the four clocks that
feed the Programmable Logic logical gates. All four clocks
are limited to 250 MHz, and, to save energy, can only be
activated for some clock cycles. The malicious code uses this
activation characteristic to transfer data. To send a logical 1,
it activates the first controlled clock for 10 cycles, and for a
logical 0, it activates the clock for 5 cycles. Between two
successive bits, the clock is off for a period that is
proportional to the size of the code between the activation of
two clock cycles. There is no constraint on choosing the
number of clock cycles to activate. For example, the attacker
can choose 3 clock cycles to send a logical 1, and 2 clock
cycles to send a logical 0. The malicious code controls the
second clock by changing it to the same frequency as the first
source in order to help the block IP decode the received data.

The malicious non-secure block IP is connected to the
two clock sources, and uses them to decode the received
data. It uses a counter that starts once the first clock is active,
and resets once the clock stops. The counter is incremented
with each rising edge of the first clock. Figure 5 shows an
example of a modulated signal at the top and decoded data at
the bottom.

Fig. 5. Decoding received data

Table I lists four configurations of the benchmark used
and the related bandwidth. The table shows that the size of
the bandwidth is linked to the frequency and the activation
cycles used. For this attack, the highest bandwidth reached is
125.106bps.

TABLE I. BANDWIDTH ACCORDING TO THE FREQUENCY AND
ACTIVATION CYCLES USED

Frequency
(MHz)

N° of cycles
for a logical 1

N° of cycles
for a logical 0

Bandwidth
(106bps)

250 10 5 50

250 3 2 125

100 10 5 20

100 3 2 50

a) From secure IP to non-secure ARM core
The last attack uses a malicious modification of the

secure IP as the intruder process, and a code inserted in the
general operating system as the receiver process. In [7],
Benhani et al. present an example of this type of malicious
block IP.

In this attack, the receiver process uses algorithm 3. The
intruder process uses the direct memory access capability to
modify the register related to the ARM core clocks. The

malicious block IP does not know how the general operating
system is mapped but by manipulating the clock connected
to the ARM core, it can nevertheless transfer sensitive
information. The intruder process uses the same method as
the intruder process described in the second attack to send
the data.

Algorithm 3: Decoding data

Input: received_data_size
Output: stolen_data

for i = received_data_size to 0 do
 loop for Tempo_sampling;
 last_freq = new_freq;
 new_freq = read(actuel_CPU_freq);

if (last_freq = freq_1 and new_freq = freq_2) then
stolen_data[i]= ‘1’;

end if;
if (last_freq = freq_2 and new_freq = freq_1) then

stolen_data[i]= ‘0’;
end if;

end for;
return stolen_data;

VI. CONCLUSION
In this paper, despite the security isolation provided by

the TrustZone technology, we demonstrate the feasibility of
using the frequency scaling used in modern SoC to enable
covert channel transmission. The four attacks presented here
successfully transferred sensitive data in a TrustZone-
enabled SoC between an intruder process (secure) and a
receiver process (non-secure) through malicious control of
the frequency regulator. The paper also highlights the
importance of the clock isolation in a SoC.

REFERENCES
[1] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,

“Armageddon: Cache attacks on mobile devices.”
[2] R. J. Masti, D. Rai, A. Ranganathan, C. Muller,¨ L. Thiele, and S.

Capkun, “Thermal covert channels on multi-core platforms.” in
USENIX Security Symposium, 2015, pp. 865–880.

[3] M. Alagappan, J. Rajendran, M. Doroslovacki,ˇ and G.
Venkataramani, “DFS covert channels on multi-core platforms,” in
Very Large Scale Integration (VLSI-SoC), 2017 IFIP/IEEE
International Conference on. IEEE, 2017, pp. 1 – 6.

[4] T. Alves, D. Felton, “TrustZone: Integrated Hardware and Soft-ware
Security – Enabling Trusted Computing in Embedded Sys-tems,”
ARM white paper, 2004.

[5] E. M. Benhani, L. Bossuet, “Design a TrustZone-Enalble SoC usign
Xilinx VIVADO CAD Tool,” Technical Report, University of Lyon,
2017.
https://perso.univ-st-
etienne.fr/bl16388h/VIVADO_TrustZone_tutorial.pdf

[6] L. Bossuet, P. Bayon, and V. Fischer, “An ultra-lightweight
transmitter for contactless rapid identification of embedded ip in
fpga,” IEEE Embedded Systems Letters, vol. 7, no. 4, pp. 97–100,
2015.

[7] B. El Mehdi, C. Marchand, L. Bossuet, and A. Aubert, “On the
security evaluation of the arm trustzone extension in a heterogeneous
soc,” in 30 th IEEE International System-on-Chip Conference, SOCC
2017. IEEE, 2017.

https://perso.univ-st-etienne.fr/bl16388h/VIVADO_TrustZone_tutorial.pdf
https://perso.univ-st-etienne.fr/bl16388h/VIVADO_TrustZone_tutorial.pdf

	I. Introduction
	II. Related work
	III. Threat model
	IV. Prototype system
	V. Attacks
	A. Attack #1
	B. Attack #2
	C. Attack #3 and #4
	a) From the secure ARM core to the non-secure IP
	a) From secure IP to non-secure ARM core

	VI. Conclusion
	REFERENCES

