
HAL Id: hal-02044832
https://hal.science/hal-02044832v1

Preprint submitted on 21 Feb 2019 (v1), last revised 24 Jun 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic programming approaches for the temporal
knapsack problem

François Clautiaux, Boris Detienne, Gaël Guillot

To cite this version:
François Clautiaux, Boris Detienne, Gaël Guillot. Dynamic programming approaches for the temporal
knapsack problem. 2019. �hal-02044832v1�

https://hal.science/hal-02044832v1
https://hal.archives-ouvertes.fr

Dynamic programming approaches for the temporal knapsack

problem

François Clautiaux, Boris Detienne, Gaël Guillot
Université de Bordeaux, UMR CNRS 5251, Inria Bordeaux Sud-Ouest

Submitted for publication on February 8th, 2019

Abstract

In this paper, we address a problem called temporal knapsack problem. In this generalization
of the classical knapsack problem, selected items enter and leave the knapsack at fixed dates. We
model this problem as an exponential size dynamic program, which is solved using a method called
Successive Sublimation Dynamic Programming (SSDP), proposed by Ibaraki. This method starts by
relaxing a set of constraints from the initial problem, and iteratively reintroduces them when needed.

We show that a direct application of SSDP to the temporal knapsack problem does not lead to
an efficient method. Several techniques are developed to solve difficult instances from the literature:
detecting unnecessary states at early stages, choosing the right dimensions to use, partial enumeration
in the dynamic program, among others. Using these different refinements, our method is able to
improve the best results from the literature on classical benchmarks.

1 Introduction

In this paper, we solve the Temporal Knapsack Problem (TKP) using an iterative approach based on
dynamic programming. TKP is a generalization of the well-known knapsack problem, where the knapsack
is considered along a time period, and items are added to the knapsack only during a given time interval,
which is different for each item, and defined in the data. Formally, the problem can be stated as follows.

Problem 1 (Temporal Knapsack Problem). Let I = {1, . . . , n} be a set of items. Each item has a profit
pi ∈ R+, a size wi ∈ Z+, and time interval [t−i , t

+
i), where t−i , t

+
i ∈ Z+ and t−i < t+i . Let also W ∈ Z+

be the size of the knapsack.
A feasible selection of items is a subset J of I such that for any value of t ∈ Z+, the sum of the sizes

of the items in J whose time interval contains t is less than W .
The Temporal Knapsack Problem consists in selecting a feasible selection of I whose sum of profits

is maximum.

In its general version, this problem is NP-hard in the strong sense ([BSW14]). The first results
proposed for this problem were mostly theoretical: a polynomially solvable version of the problem was
studied in [AS87], and approximation results were proposed in [CCKR02]. Subsequent works focus
on exact methods. The most recent are based on branch-and-price algorithms: the method originally
proposed in [CFM13] and improved in [CFMT16] exploits the fact that at a given time period, only a
subset of items may belong to the knapsack. This calls for a decomposition method by time periods,
where the column generation subproblem is a simple knapsack problem, whereas the master handles
consistency between the contents of the bin during consecutive time periods. The authors study the
trade-off between the size of the master and subproblem programs size. They show that it is more
efficient to consider longer time periods, and solve the larger subproblem with a general purpose MIP
solver. These results were improved in [GI14] by adding stabilization techniques to improve the branch-
and-price method. To our knowledge, altough a sketch of dynamic program was proposed in [CHT02],
no practical method based on dynamic programming have been proposed so far.

In this manuscript, we propose a new exact method for solving the problem. Our method is based on
a pseudo-polynomial and exponential size dynamic program, which is solved using so-called Successive
Sublimation Dynamic Programming (SSDP) method, originally proposed in [Iba87].

SSDP consists in solving a relaxation of the original dynamic program, fixing some variables, and
reintroducing incrementally the relaxed constraints, until an optimality proof is reached. The effective-
ness of the method is highly dependent on the capability to reuse information from the previous steps

1

in the current one (primal and dual bounds, variable fixing). This technique has been shown to be
efficient for solving hard combinatorial optimization problem, mostly in the scheduling field (see e.g.
[TFA09]). Recently this technique has also been generalized to hypergraphs by [CSVV18] for solving a
two-dimensional knapsack problem.

Obtaining an efficient specialization of SSDP for solving TKP is not straightforward. We show
numerically that a basic application of this technique to TKP is not competitive compared to state-of-
the-art solvers. However several advanced algorithmic techniques allow a significant improvement on
the computational results. The most important features of our algorithm are: a good choice of the
constraints to reintroduce at each step of the algorithm, partial enumeration, constraint propagation
rules, and feasibility tests in relaxations based on some pre-computed partial solutions.

We implemented our algorithms and compared them empirically against the state-of-the-art TKP
solver developped by [GI14], using classical instances for this problem. We show that our method is able
to solve significantly more instances than the literature.

In section 2, we introduce the problem formally, and state some basic MIP and recursive formulations.
In section 3, we describe an application of SSDP to TKP. Section 4 describes the various refinements of the
method that were necessary to obtain competitive results. We report our computational experiments
in Section 5 before offering some brief concluding remarks and suggestions for future research in the
conclusion.

2 Integer programming and dynamic programming models

In this section, we recall a basic yet effective MIP formulation for the problem. We also propose a new
recursive formulation, which is used to introduce the exponentially large dynamic program on which all
methods proposed in this manuscript are based.

2.1 Integer programming formulation

We now recall the classical integer programming formulation (see e.g. [CFM13, CFMT16]) for TKP. In
this model, each binary variable xi is equal to one if item i is selected, zero otherwise, similarly to the
classical knapsack problem.

max
∑
i∈I

pixi (1)

s.t.
∑

i∈I:t−i ≤t<t
+
i

wixi ≤W, t = 1, . . . ,max
i∈I

t+i (2)

xi ∈ {0, 1}, i ∈ I (3)

Constraints (2) state that for any time period t, items that belong to the knapsack during t satisfy the
capacity constraint. This model can be reduced to a polynomial-size integer linear program by observing
that some of constraints (2) are not necessary for the validity of the model. Indeed, consider consecutive
time slots t, t+ 1, . . . , t′ during which no item time window ends. Then Constraint (2) at rank t′ implies
those at ranks t, t+ 1, . . . , t′ − 1, which are linearly dominated. The non-dominated constraints actually
correspond with all the maximal subsets of items with overlapping time windows, that can be computed
using basic graph concepts. Consider graph Gint = (I, Eint) where (i, j) ∈ Eint if [t−i , t

+
i) ∩ [t−j , t

+
j) 6= ∅.

The maximal subsets of items sought are the maximal cliques in Gint. By construction, Gint is an interval
graph, thus the number of maximal cliques in Gint is not larger than n, and can be computed in a time
that is linear in |Eint| (see [Fra76]). Let Q be the set of maximal cliques Q1, . . . , Qm of Gint. The
simplified model can be written as follows.

max
∑
i∈I

pixi (4)

s.t.
∑
i∈Q

wixi ≤W, Q ∈ Q (5)

xi ∈ {0, 1}, i ∈ I (6)

2

This does not change the combinatorial difficulty of the instance, but makes some dominances appear
more clearly. Note that modern MIP solvers would turn automatically model (1)–(3) into (4)–(6) based
on straightforward linear dominance.

2.2 A dynamic programming formulation

Before describing our dynamic program, let us propose an alternative MIP formulation for TKP. It will
be useful to assess the quality of some relaxations for the dynamic program, and is also used to warm-
start our optimization methods. In this model, we see the problem as a succession of events (an item
may enter the knapsack, or an item may leave the knapsack) where a decision has to be taken (actually
adding the item, or actually removing the item).

Let E = (e1, . . . , e2n) be an ordered list of indices of so-called events. Each event e is related to an
item i(e) ∈ I and a type r(e) ∈ {in, out}. Let E in = {e ∈ E : r(e) = in} and Eout = {e ∈ E : r(e) = out}
be respectively the events related to entering and exiting items. Let also t̂(e) be the time slot related
to event e, i.e. respectively t+i(e) if e ∈ Eout and t−i(e) if e ∈ E in. Indices e in E are ordered as follows:

e ≺ e′ if t̂(e) < t̂(e′) or (t̂(e) = t̂(e′)∧ e ∈ Eout ∧ e′ ∈ E in) (ties are broken arbitrarily). Let also 2n+ 1 be
the index of an additional dummy event whose time slot is greater than that of any event. Finally let
I(e) = {i ∈ I : t−i ≤ t̂(e) < t+i } be the set of items that may belong to the knapsack when e occurs.

The new MIP model has one binary, and one real variable per event. For each event e, we define a
binary variable ye that indicates whether the action related to event e is performed or not. If e ∈ E in,
this decision corresponds with adding e to the current solution. If e ∈ Eout, the decision corresponds with
removing e from the knapsack. In a valid solution, an item leaves the knapsack if and only if it enters
the knapsack in a previous event. Each variable φe (e = 1, . . . , 2n) is equal to the resource consumption
at the end of event e.

max
∑
e∈E

1

2
pi(e)ye (7)

φ1 = wi(1)y1 (8)

φe = φe−1 + wi(e)ye e ∈ E in \ {1} (9)

φe = φe−1 − wi(e)ye e ∈ Eout (10)

φe ≤W e = 1, . . . , 2n (11)

φ2n = 0 (12)

ye − ye′ = 0 e ∈ E in, e′ ∈ Eout, i(e) = i(e′) (13)

ye ∈ {0, 1}, e = 1, . . . , 2n (14)

φe ∈ R+, e = 1, . . . , 2n (15)

The objective function is similar to that of model (4)–(6). The only difference is that the profit is
split between the two events related to each item. Note that the repartition of profit in two equal parts
is arbitrary, and any pair of real values whose sum is pi(e) would be valid. Constraints (8)–(10) ensure
that the capacity consumption at the end of each event is consistent with the contents of the knapsack.
Constraints (11) and (12) guarantee that the capacity constraints are satisfied. Constraints (13) state
that if an item enters the knapsack, it has to leave it. We call constraints (13) consistency constraints.
Note that constraint (12) is redundant when no other constraint is relaxed.

We now present our dynamic program, which is also based on the concept of event. The model
works similarly to model (7)–(15) in the sense that the current capacity is updated event by event
recursively, one has to ensure that the capacity constraint remains satisfied, and decisions related to
items are consistent. Let d ∈ {0, 1}n be a binary vector indicating which items are in the knapsack. Let
also εk ∈ {0, 1}n be the vector whose components are all zero except component k, which is equal to 1.
When two vectors are considered, the addition and substraction symbols + and − respectively stand for
the component-wise addition and substraction.

Each state of the dynamic program is a triple (e, w,d), where e is the current event, w the current
resource consumption, and d defined as above. The Bellman function for each state is computed as

3

follows.

α(e, w,d) =

max
{
α(e+ 1, w,d), 1

2pi(e) + α
(
e+ 1, w + wi,d + εi(e)

)}
if e ∈ E in ∧ w + wi ≤W

α(e+ 1, w,d) if e ∈ E in ∧ w + wi > W
1
2pi(e) + α

(
e+ 1, w − wi,d− εi(e)

)
if e ∈ Eout ∧ di(e) = 1

α(e+ 1, w,d) if e ∈ Eout ∧ di(e) = 0

0 if e = 2n+ 1

(16)

When an in event is considered, two choices are possible: selecting the item or not (the former can
be made only if the remaining capacity is large enough). When an out event is considered, only one
choice is possible, depending on value di(e). The optimal value of the TKP is α(1, 0,0), where 0 is the
null vector of dimension n. Note that value w is redundant in this formulation, since it can be deduced
from vector d.

3 Applying Successive Sublimation Dynamic Programming to
TKP

Clearly solving directly dynamic program (16) cannot lead to any practical method. To obtain an
efficient algorithm, we use a technique called Successive Sublimation Dynamic Programming (SSDP in
the remainder), introduced in [Iba87]. In this section, we explain how SSDP can be adapted to solve
TKP. We first describe the generic algorithm, emphasizing the main points to be studied, namely choosing
a relaxation, solving the relaxation, and updating the relaxation to obtain a refined model. We then
address each point specifically.

3.1 Presentation of the generic algorithm

SSDP is a dual method that iteratively solves relaxations of a dynamic program. The dual bound is
improved by refining the relaxation, until the duality gap to a known primal bound is closed. This ap-
proach defines the relaxations by projecting the state space onto smaller subspaces. The bound obtained
is possibly reinforced using a Lagrangian relaxation of the constraints discarded by the projection of the
state-space. To contain the combinatorial explosion and try to avoid the curse of dimensionality, some
unnecessary states and transitions are identified and removed from subsequently built relaxations.

Algorithm 1: SSDP

1 Initialization. Construct an initial relaxation ;
2 Solving the relaxation. Solve optimally the relaxation using dynamic programming. If the

optimal solution of the relaxation is feasible and has a cost equal to some primal bound, STOP ;
3 Filtering. Remove non-optimal states and transitions ;
4 Sublimation. Construct a new relaxation and go back to step 2.

SSDP is a generic method which applies to many combinatorial problems. When it is applied to a
new problem, several ad-hoc key ingredients have to be designed. The most important are the set of
relaxed constraints, and the type of relaxation used. Another major ingredient is the algorithm used
to solve each relaxed problem, and its capability to eliminate unfeasible/non-optimal partial solutions.
Finally, an effective method to update the relaxation at each step is mandatory.

3.2 Relaxation used for TKP

The size of the state space in (16) is exponential according to the size of d: the size of the binary vector
d is n, so the state space size is in O(n×W × 2n). Our relaxation consists in not keeping track of some
items, and thus considering a smaller vector d. In this case, it may happen that an item enters the
knapsack and does not leave it, or the opposite. This is stated in the following observation.

Observation 1. Projecting out vector d in (16) is equivalent to relaxing consistency constraints (13) in
(7)– (15).

A combinatorial relaxation of Constraints (13) would lead to upper bounds of poor quality. We use
Lagrangian relaxation instead, which offers stronger bounds, and is in our case still computationally

4

attractive. At a given iteration of the algorithm, the relaxation is based on the set J of items that
have to satisfy (13) (i.e. whose presence will be accounted in vector d). Let π ∈ Rn be the vector of
Lagrangian multipliers associated with Constraints (13) at ranks I \ J . To simplify the notation, we
assume that π and d are always of size n. Within this setting, for a given set J , and a given vector of
multipliers π, the Lagrangian dual function can be cast as:

LJ (π) = max
∑
e∈Ein

(
1

2
pi(e) + πi(e)

)
ye +

∑
e∈Eout

(
1

2
pi(e) − πi(e)

)
ye (17)

(9)− (12), (14), (15) (18)

ye − ye′ = 0 e ∈ E in, e′ ∈ Eout, i(e) = i(e′), i(e) ∈ J (19)

For a set J and π ∈ Rn, the value of LJ (π) is an upper bound on the optimum of (7)-(15) and can
be computed with the help of the following dynamic program. The decisions are the same as before,
only the cost changes to account for Lagrangian multipliers, and two choices are possible for out events
related to untracked items. To get rid of many subcases, we consider that απ

J (e, w,d) = −∞ if w > W
or w < 0. The new recursion is as follows.

απ
J (e, w,d) =

max
{
απ
J (e+ 1, w,d), 1

2
pi(e) + απ

J (e+ 1, w + wi(e),d + εi(e))
}

if e ∈ E in, i(e) ∈ J
max

{
απ
J (e+ 1, w,d), 1

2
pi(e) + πi(e) + απ

J (e+ 1, w + wi(e),d)
}

if e ∈ E in, i(e) /∈ J
1
2
pi(e) + απ

J (e+ 1, w − wi(e),d− εi(e)) if e ∈ Eout ∧ i(e) ∈ J ∧ di(e) = 1

απ
J (e+ 1, w,d) if e ∈ Eout ∧ i(e) ∈ J ∧ di(e) = 0

max
{
απ
J (e+ 1, w,d), 1

2
pi(e) − πi(e) + απ

J (e+ 1, w − wi(e),d)
}

if e ∈ Eout ∧ i(e) /∈ J
0 if e = 2n+ 1

(20)

The first two cases are related to the same decision (selecting item i or not). The only difference is
that we keep track of the presence of the item only if i(e) ∈ J (first case), whereas only the knapsack
resource consumption is impacted in the second case. The next two cases are the same as in the original
recursion. The next case applies when i(e) /∈ J : one does not know whether i(e) is in the knapsack or
not, so there is a choice between removing item i(e) or not. For a set J and a given vector π ∈ Rn, the
value of the dual function is LJ (π) = απ

J (1, 0,0).
In the remainder of the paper, we use a more compact expression of the dynamic program (notation-

wise). For this purpose, we introduce so-called actions corresponding to possible decisions made at each
state of the dynamic program. There are 3n different actions, 3 per item i: add item i (denoted a+

i),
remove item i (denoted a−i), and do not select item i (denoted a=

i). Let A(e) be the set of possible
actions for event e ∈ E . If e ∈ E in, A(e) = {a+

i(e), a
=
i(e)}. If e ∈ Eout, A(e) = {a−i(e), a

=
i(e)}.

Each action a has a weight ŵ(a) corresponding with the consumption/production of resource w of
this action, an item resource consumption d(a) and a profit p̂(a) collected when this action is chosen.
The value of ŵ(a+

i) is wi, its profit p̂(a+
i) is 1

2pi and d(a+
i) = εi. The value of ŵ(a=

i) is 0, p̂(a=
i) = 0,

and d(a=
i) = 0. The value ŵ(a−i) is −wi, the profit p̂(a−i) is 1

2pi and d(a−i) = −εi. The modified profit
of action a is p̃π(a) = p̂(a) + π>d(a). When a specific state (e, w,d) is considered, the set of possible
actions A(e) can be refined by taking into account the value of d, yielding the set AJ (e, w,d) ⊆ A(e):

AJ (e, w,d) = {a ∈ A(e) : 0 ≤ w + ŵ(a) ≤W and ∀i ∈ J , 0 ≤ di + d(a)i ≤ 1}

We also use notation dJ (a) = d(a) if {e : a ∈ A(e)} is such that i(e) ∈ J , 0 otherwise. We are now
ready to rewrite (20) in a more compact way.

απ
J (e, w,d) =

0 if e = 2n+ 1

max
a∈AJ (e,w,d)

{
απ
J (e+ 1, w + ŵ(a),d + dJ (a)) + p̃π(a)

}
otherwise (21)

For i ∈ J , the contribution of πi cancels out in the cost of all solutions of the relaxation. So either the
presence of an item is recorded in the state space, or its Lagrangian cost is accounted. This formulation
is equivalent to (20) and allows to explain some refinements to this DP in a simpler way.

5

3.3 Solving the relaxation and filtering

In step 2 of the SSDP algorithm, the relaxation we need to solve optimally is defined by a set J and a
vector of Lagrangian multipliers π∗J , which is a near-optimal vector of Lagrangian multipliers obtained
by solving approximately the so-called Lagrangian dual problem minπ∈Rn{LJ (π)}. In the case of a
maximization problem, the Lagrangian function is known to be convex, which implies that minimizing
this function can be done using a subgradient algorithm, or one of its refinements (see e.g. [BA00]).
Similarly to several other works ([IN94, TFA09]), the iterative method to find near-optimal multipliers
will also be used to eliminate some dynamic programming states and transitions that cannot belong to
optimal solutions of (16).

Practically speaking, LJ (π) is computed using the graph representation of (21), modified to save
the filtering information from previous iterations (more details are given in Section 3.4). In the Directed
Acyclic (Multi-)Graph (DAG) Gπ

J = (VJ , HJ , p̃
π), the set of nodes VJ represents the reachable states,

and the set of arcs HJ represents the feasible actions that can be applied from each state. We uniquely
identify each element of VJ using the label of the corresponding DP state. For an arc u ∈ HJ , we
denote by a(u) the action related to u. An arc u related to action a = a(u) performed from state
(e, w,d) connects its tail τ(u) = (e, w,d) to its head h(u) = (e+ 1, w+ ŵ(a),d+dJ (a)). The cost of arc
u is p̃π(a). We denote by s0 = (1, 0,0) the initial state (and source of Gπ

J), and by sΩ = (2n + 1, 0,0)
the unique terminal state (and sink node of Gπ

J). The value of LJ (π) is the maximum cost of a path
from s0 to sΩ. We solve the Lagrangian dual problem using Volume algorithm proposed in [BA00].

This approximate method builds a sequence of solutions (π
(t)
J)t that converges to the optimum. This

means that one has to solve repeatedly the maximum cost path problem in Gπ
J , which can be done in

O(|VJ |+ |HJ |) using Bellman’s algorithm.

Observation 2. A solution to a relaxation based on Gπ
J is basically defined as a path, which corresponds

to a sequence of actions. Conversely, any sequence of actions corresponds to exactly one or zero path in
Gπ
J . In the remainder of this section, a solution will indifferently refer to one or the other representation.

Observation 3. Problem (7)-(15) is equivalent to the problem defined by graph Gπ
I , for all π ∈ Rn.

Indeed, any path in Gπ
I defines a feasible solution of (7)-(15) with the same cost since the contributions

of Lagrangian multipliers cancel out.

Now, we recall a result used in [Iba87, IN94] and used to remove unnecessary states and actions in
Gπ
J . For this purpose, let us remark that for any node (e, w,d) ∈ VJ , Bellman function value απ

J (e, w,d)
is equal to the maximum cost of a path in Gπ

J from (e, w,d) to sΩ. Likewise, we define γπJ (e, w,d) as
the maximum cost of a path from s0 to (e, w,d), which can be computed in a similar way.

Proposition 1 ([Iba87]). For J ⊆ I, let u ∈ HJ such that τ(u) = (e1, w1,d1) and h(u) = (e2, w2,d2),
and π ∈ Rn. The following value is an upper bound on the cost of any path in Gπ

J going through u:

γπJ (e1, w1,d1) + p̃π(u) + απ
J (e2, w2,d2)

The above proposition is useful to remove arcs from the graph of the current relaxation, as well as arcs
corresponding with the same action from subsequently built relaxations. However, to our knowledge, the
validity of this permanent removal is only implicitly assumed. We now give a formal proof in our specific
context. Note that, by construction, the set of states VJ yielded by (21) is composed of elements (e, w,d)
such that di = 0 for all i /∈ J . For the sake of readability, we denote by projJ (d) the projection of d onto
the relevant space for relaxations defined by J : (projJ (d))i = di if i ∈ J , and (projJ (d))i = 0 if i /∈ J .

Conversely, proj−1
J (d) denotes the set of binary vectors that project onto d when only components in

J are considered: proj−1
J (d) = {d′ ∈ {0, 1}n : d′i = di, i ∈ J }.

The following lemma shows that the set of actions from each state of a refined relaxation related to
J ’ is a subset of the actions from its projected state in the looser relaxation related to J .

Lemma 1. Let us consider e ∈ E, w ∈ {0, . . . ,W}, J and J ’ such that J ⊆ J ′ ⊆ I, d ∈ {0, 1}n and
d′ ∈ proj−1

J (d). Then AJ (e, w,d) ⊇ AJ ′(e, w,d′).

Proof. Proof. Assume a ∈ AJ ′(e, w,d′). Then 0 ≤ w+ŵ(a) ≤W , since this relation does not depend on
set J . Moreover, for all i ∈ J ′ we have that 0 ≤ d′i+dJ

′
(a)i ≤ 1, so for all i ∈ J , 0 ≤ d′i+dJ

′
(a)i ≤ 1.

For all i ∈ J , d′i = di, and dJ
′
(a)i = d(a)i = dJ (a)i. It follows that 0 ≤ di + dJ (a)i ≤ 1, which

completes the proof.

6

J

AJ (e, w,d)

(e, w,d)

(e+ 1, w + w(a),d + dJ (a))a

J ’

AJ ′(e, w,d′)

(e, w,d′)

(e+ 1, w + w(a),d′ + dJ
′
(a))a

×

(e, w,d′′)

Figure 1: Illustration of Lemmas 1 and 2: (e, w,d′) and (e, w,d′′) correspond to the same label (e, w,d)
in the looser relaxation related to J , i.e. they belong to the set {(e, w, d̄) : d̄ ∈ proj−1

J (d)}. Some of
the actions out of (e, w,d) are not consistent with both (e, w,d′) and (e, w,d′′). That is why the value
of Bellman function at (e, w,d′) and (e, w,d′′) cannot be larger than that at (e, w,d).

The next lemma shows formally that for a given vector of multipliers π the lagrangian cost of
performing an action from a specific state cannot increase when the relaxation is refined.

Lemma 2. Let us consider e ∈ E, w ∈ {0, . . . ,W}, and d ∈ {0, 1}n. Let also J and J ’ be two sets
such that J ⊆ J ′ ⊆ I, π a vector of Lagrangian multipliers, and d′ ∈ proj−1

J (d). Then απ
J (e, w,d) ≥

απ
J ′(e, w,d

′) and γπJ (e, w,d) ≥ γπJ ′(e, w,d′).

Proof. Proof. We proceed by induction on e to prove the part of the proposition involving α. A
straightforward adaptation of the proof yields the result for γ. At rank e = 2n+1, we have απ

J (e, 0,d) =
απ
J ′(e, 0,d

′) = 0 and απ
J (e, w,d) = απ

J ′(e, w,d
′) =∞, w > 0.

At rank e ∈ {1, . . . , 2n}, assume that απ
J (e + 1, w, d̄) ≥ απ

J ′(e + 1, w, d̄′) for all w ∈ {0, . . . ,W},
d̄ ∈ {0, 1}n and d̄′ ∈ proj−1

J (d̄). We first show that for a given action a ∈ AJ ′(e, w,d′), the profit
resulting from applying a from state (e, w,d′) cannot be larger than the profit resulting from applying
a from its projected state (e, w,d). For all i ∈ J , since d′i = di and (dJ

′
(a))i = (dJ (a))i, we have

απ
J (e+ 1, w+ ŵ(a),d+dJ (a)) ≥ απ

J ′(e+ 1, w+ ŵ(a),d′+dJ
′
(a)), which is equivalent to απ

J (e+ 1, w+

ŵ(a),d + dJ (a)) + p̃π(a) ≥ απ
J ′(e + 1, w + ŵ(a),d′ + dJ

′
(a)) + p̃π(a). Besides, from Proposition 1,

AJ (e, w,d) ⊇ AJ ′(e, w,d′). Hence, the result holds.

The proposition below is crucial for the efficiency of SSDP algorithm: it shows that once an arc is
eliminated from a graph at a given iteration, all corresponding arcs can be removed from the graphs
built during subsequent iterations.

Proposition 2. Let LB be a valid lower bound for the problem, J ⊆ I, u ∈ HJ related to action a such
that τ(u) = (e1, w1,d1) and h(u) = (e2, w2,d2), and π ∈ Rn. If γπJ (e, w,d1) + p̃π(u) + απ

J (e′, w′,d2) <
LB, then the shortest path problem in Gπ

J without arc u is a relaxation of (7)-(15). Moreover, for any

J ′ ⊇ J and π′ ∈ Rn, the shortest path problem Gπ′

J ′ without any arc related to action a from states

(e, w,d′) such that d′ ∈ proj−1
J (d) is a relaxation of (7)-(15) as well.

7

Proof. Proof. First, we prove the validity of the proposition for the same vector π and a relaxation
refined by enforcing a larger set of consistency constraints J ′. Let us consider arc v ∈ HJ ′ , related to
action a such that τ(v) = (e1, w1,d3) with d3 ∈ proj−1

J (d1). Then h(v) = (e2, w2,d3 + dJ
′
(a)). Since

d3 ∈ proj−1
J (d1) and J ′ ⊇ J , for all i ∈ J , (d3 +dJ

′
(a))i = (d1 +dJ (a))i = d2

i . Hence, d3 +dJ
′
(a) ∈

proj−1
J (d2) and Proposition 2 implies that γπJ ′(e

1, w1,d3)+ p̃π(v)+απ
J ′(e

2, w2,d3 +dJ
′
(a)) < LB. Arc

v being part of a feasible solution of the relaxation defined by Gπ
J ′ that is optimal for the problem would

contradict LB being a lower bound. It follows that v can be removed from Gπ
J ′ that shall still define a

relaxation of (7)-(15).
Second, we prove the validity of the proposition for a fixed set of consistency constraints J and a

different vector of multipliers π′. Proposition 1 shows that arc u cannot be part of a feasible solution
of the relaxation associated with Gπ

J that would be optimal (and feasible) for the problem, since that

would imply that LB is not a lower bound. Hence, no solution using u in Gπ′

J , π′ ∈ Rn can be
optimal for the problem, and removing u does not remove optimal solutions of the problem from those
relaxations.

An interesting feature of Bellman’s algorithm is that it is able to compute the shortest path from the
source s0 to all vertices in one pass. Values απ

J (e, w,d) and γπJ (e, w,d) can be computed for all nodes
s ∈ VJ in two passes using respectively a forward and a backward dynamic programming algorithm.

3.4 Sublimation and convergence

In SSDP, the sublimation phase consists in strenghtening the current relaxation by enforcing some
constraints that are violated in the current solution. At a given iteration of SSDP, the set of items in the
state space K is constructed by adding items to the set J of items that were considered in the previous
iteration.

We denote by A`J (e, w,d) the set of actions that have not been filtered for state (e, w,d) at the end
of the step related to set J . Proposition 2 allows us to design the following truncated dynamic program.

απ
K(e, w,d) =

0 if e = 2n+ 1

max
a∈AK(e,w,d)∩A`J (e,w,projJ (d))

{
απ
K(e+ 1, w + ŵ(a),d + dK(a)) + p̃π(a)

}
otherwise

(22)

From an algorithmic point of view, it means that the DAG of the previous iteration is kept, and when
it comes to generate the possible actions from state s, the vertex corresponding with the projection of s
in the previous state space has to be retrieved, and only the actions belonging to the filtered graph (i.e.
the graph obtained by iteratively removing arcs of too large Lagrangian cost) are considered.

The maximum number of iterations of the algorithm is n: indeed, at least one item index is added to
J at step 4. When J = I, the relaxation solved at step 2 is actually equivalent to (7)-(15) (Observation
3). However a feasible solution may be found at step 2 when J 6= I. In the latter case, the cost of this
solution in model (17)-(19) is equal to its cost in (7)-(15), so that it provides both a dual and a primal
bound with the same value and the algorithm terminates with this optimal solution.

4 Refinements of SSDP to solve efficiently TKP

Preliminary computational experiments showed that a direct implementation of SSDP for TKP is not
able to produce results that can compete with state-of-the-art TKP solvers. This can be explained by
several issues: the method takes a large computing time to compute the first relaxation, many states that
are not useful are generated when the first relaxation is computed, and the gap is not reduced enough
when only one dimension is reintroduced in the sublimation phase.

We now propose several techniques that we use to deal with these issues, and improve the performance
of SSDP for solving TKP.

4.1 Attaching additional information to the states

Let J be the set of dimensions that are currently taken into account in the dynamic program. For a
given state s = (e, w,d) such that e ∈ Eout, if i(e) 6∈ J , two choices are possible: removing i(e) from

8

the knapsack, or not. However, it may happen that s cannot be reached by any sequence of unfiltered
actions that have added i(e) to the knapsack. Similarly, it may happen that all of them have added i(e)
to the knapsack. In such cases, we know for sure whether item i(e) is in the knapsack or not.

Instead of disregarding completely all items that do not belong to J , we attach to each state s an
additional vector dη(s) ∈ {0, 1, ∅}n. If dη(s)i = ∅, we do not know if i is in the knapsack, if dη(s)i = 0,
we know that i is not in the knapsack, and if dη(s)i = 1, we know that i is in the knapsack. Clearly, if
i ∈ J , dη(s)i cannot be ∅, since the presence of i is recorded into the state space.

When i 6∈ J , we set dη(s0)i = 0, and we compute dη(s)i recursively for each other state s as follows:

dη(s)i =

1 if ∀u ∈ HJ : h(u) = s,

(
dη(τ(u))i = 1 and d(a(u))i = 0

)
or d(a(u))i = 1

0 if ∀u ∈ HJ : h(u) = s,
(
dη(τ(u))i = 0 and d(a(u))i = 0

)
or d(a(u))i = −1

∅ otherwise

Practically speaking, vector dη(s) is computed on the fly while the DAG is created. Note that dη(s) is
not part of the label definition: this is an additional information that is attached to s. We attach another
information to each state s, which corresponds with redundant constraints. For each state s = (e, w,d),
we define qηmin(s) (resp. qηmax(s)) as a lower (resp. upper) bound on the number of items that can be into
the knapsack in partial solutions that correspond to this state. These values can be computed recursively,
similarly to vector dη(s). Here, 1 stands for the unit vector of size n.

qηmin(s0) = 0

qηmin(s) = min
u∈HJ :h(u)=s

{qηmin(τ(u)) + 1>d(a(u))}

qηmax(s0) = 0

qηmax(s) = max
u∈HJ :h(u)=s

{qηmax(τ(u)) + 1>d(a(u))}

For each event e, let Qmax(e) = {max |S| : |S| ⊆ I(e),
∑
i∈S wi ≤ W} be the maximum number of

items that can belong to the knapsack when this event occurs (this value can be computed in linear
time of |I(e)| for each e when the elements of this set are sorted by non-decreasing order of their size).
Obviously, for state (e, w,d), the number of items should be in [0, Qmax(e)]. From an ILP perspective,
this redundant constraint can be added as the following system of variables/constraints to (7)–(15) in
order to strengthen relaxations.

qe = qe−1 + ye e ∈ E in (23)

qe = qe−1 − ye e ∈ Eout (24)

q0 = 0 (25)

qe ≤ Qmax(e) e = 1, . . . , 2n (26)

q2n+1 = 0 (27)

qe ∈ R+, e = 0, . . . , 2n+ 1 (28)

From a DP perspective, we use the information attached to the states to reduce the size of the relaxed
problems using the feasibility tests exposed in Section 4.3.

4.2 Dominance property

In the classical knapsack problem, an item i is dominated by item j if pi ≤ pj , wi ≥ wj and one of
the two inequalities is strict. In this case, from any feasible solution S where item i is chosen but not
item j, we can build another solution where j is chosen and whose profit is not smaller than that of S.
Thus, among solutions that include i, only those including j as well need to be considered. For TKP,
dominance relations must take into account the temporal aspect.

Proposition 3. Item i is dominated by item j if pi ≤ pj, wi ≥ wj, t
−
i ≤ t−j , t+i ≥ t+j and one of the

four inequalities is strict.

Proof. Proof. Since j is not less profitable and not larger than i, and its time window is included in that
of i, one can replace i with j in any solution and obtain another feasible solution with a not smaller
profit.

9

This dominance property is useful when one knows exactly the contents of the knapsack. However
this is not the case when solving a relaxation. Then, for a given state s, vector dη(s) containing the
mandatory and forbidden items is useful, since it may assure the presence of some item whose related
consistency constraint is relaxed. The dominance relation is used as follows: if i is dominated by j and
dη(s)i = 1 then action a=

j is not allowed from s.
This dominance relation can be exploited more effectively by modifying the recurrence equations

as follows. Let us consider e ∈ E in, state (e, w,d) ∈ VJ and action a=
i(e) ∈ A(e). Then, in equations

(21) and (22), the index e + 1 related to a=
i(e) can be replaced with e′ = min{f ∈ E : f > e, f ∈

Eout or i(f) is not dominated by i(e)}.

4.3 Feasibility tests

In the sequel, a feasible state is defined as a state that can be generated from s0 by applying a feasible
sequence of actions following recurrence equations (16). We denote by V the set of feasible states.
Moreover, we recall that VJ is the set of DP states considered while solving the relaxation related to J .
A sufficient condition for the global solving process to be valid is that for all J ⊆ I, VJ contains the
set of states generated by applying from s0 at least one optimal sequence of actions. Thus, any state in
VJ that is not the projection of a feasible state in V can be removed without impairing the validity of
the algorithm. We now describe several techniques used to detect infeasibilities of states at early stages
of the method. The following results are stated without proof. The first feasibility test checks that the
number of items in the knapsack is consistent.

Proposition 4. Let J ⊆ I and s = (e, w,d) ∈ VJ . If |i ∈ I : dη(s)i 6= 0| < qηmin(s) or |i ∈ I : dη(s)i =
1| > qηmax(s) then proj−1

J (s) ∩ V = ∅ and s can be removed from VJ .

Another feasibility test is based on the set of possible weights of subsets of items that can belong
to a knapsack at a given event. For this purpose, we precompute for each event e the following set:
F(e) = {

∑
i∈S wi : S ⊆ I(e),

∑
i∈S wi ≤ W}, which corresponds with all reachable weights of a subset

of items. Each of these sets can be computed in O(nW) using a straightforward dynamic programming
algorithm. Proposition (5) follows from the definition of F .

Proposition 5. Let J ⊆ I and s = (e, w,d) ∈ VJ . If w /∈ F(e) then proj−1
J (s) ∩ V = ∅ and s can be

removed from VJ .

This rule can be improved by considering additional information gathered from dη(s). We pre-
compute, for each event e and each item i, F+(e, i) and F−(e, i) which are respectively the possible
weights that can be reached using item i, and the weights reachable without item i. We have F+(e, i) =
{
∑
j∈S∪{i} wj : S ⊆ I(e),

∑
j∈S wj ≤W−wi} and F−(e, i) = {

∑
j∈S wj : S ⊆ I(e)\{i},

∑
j∈S wj ≤W}.

Proposition 6. Let J ⊆ I, s = (e, w,d) ∈ VJ and i ∈ I(e). If dη(s)i = 1 and w /∈ F+(e, i) then
proj−1

J (s) ∩ V = ∅ and s can be removed from VJ . Likewise, if dη(s)i = 0 and w /∈ F−(e, i) then s can
be removed from VJ .

The following result allows detecting states that can be generated only be removing an item from the
knapsack without adding it first. In such cases, the weight recorded in the state might become less than
the weight of the items whose presence in the knapsack is known for sure.

Proposition 7. Let J ⊆ I and s = (e, w,d) ∈ VJ . If
∑
i∈I:dη(s)i=1 wi > w then proj−1

J (s) ∩ V = ∅
and s can be removed from VJ .

The following feasibility test also integrates the bounds on the number of items in the knapsack to
ensure the consistency of the labels with respect to the weight. It compares lower and upper bounds on
the weight of the knapsack with the weight defining the label.

Proposition 8. Let J ⊆ I and s = (e, w,d) ∈ VJ . Let S1 = {i ∈ I(e) : dη(s)i 6= 0} be the set of items
potentially in the knapsack. If max

{∑
i∈S wi : S ⊆ S1, |S| ≤ qηmax(s)

}
< w or min

{∑
i∈S wi : S ⊆

S1, |S| ≥ qηmin(s)
}
> w then proj−1

J (s) ∩ V = ∅ and s can be removed from VJ .

10

4.4 Partial enumeration of actions

Combining several consecutive actions into single compound actions allows enforcing locally some con-
straints on items even if their consistency is not checked through the DP state space in current relaxation.

Our implementation of this idea uses an input parameter kenum, which controls the depth of the enu-
meration of consecutive actions. More precisely, from a given state, instead of computing the two possible
actions, we compute the O(2k

enum

) possible sequences of kenum successive actions (a1, . . . , akenum). This al-
lows to exclude some sequences that are infeasible (sequences (. . . , a+

i(e), . . . , a
=
i(e)) or (. . . , a=

i(e), . . . , a
−
i(e))

for some e).

4.5 Criteria for choosing constraints to reintroduce

At each sublimation step, dimensions related to violated constraints are integrated into the state space.
At a given iteration, let us denote πq the vector of Lagrangian multipliers that achieves the qth best
dual bound during the relaxation solution step, and let yq be the solution found when solving (17)-(19)
to compute LJ (πq). Let J 6= =

{
i ∈ I \ J : ∃q ∈ {1, . . . , knbsol}, yqein(i) 6= yqeout(i)

}
be the set of items

whose consistency constraint is violated in one of the solutions of best relaxations solved for a fixed J .
Below we describe several criteria for estimating the computational attractiveness of adding a specific
constraint. The next subsection proposes strategies for selecting constraints based on these criteria.

Note that, since the magnitude of the violation of constraints is always one in our relaxation, it is not
significant when it comes to choosing a relaxed constraint to be reintroduced, contrary to application
of SSDP in the context of scheduling. The first criterion (Lagrangian Multipliers) is to use the best
Lagrangian multipliers π1 found to determine the profit related to each consistency constraint: ψ1

i = |π1
i |.

The idea behind the second criterion (Network Size) is to control the number of states in the network
after the sublimation step. For each constraint, we compute an estimation of the number of states added
if the corresponding dimension – and only that one – is included into the state space. Remark that,
when adding a single constraint i, only such states s where dη(s)i = ∅ can yield two different states after
sublimation. Hence, the second criterion we define is the opposite (smaller is better) of an upper bound
on the number of additional states due to i: ψ2

i = −|s ∈ VJ : dη(s)i = ∅|.
The third criterion (Number of violations) favors the constraints that are violated in many ”good”

solutions. For this purpose, we compute the frequency of the constraint violation in the knbsol best

Lagrangian problem solutions: ψ3
i = 1

knbsol

∑knbsol

q=1

∣∣yqein(i) − y
q
eout(i)

∣∣.
4.6 Reintroducing batches of constraints

The sublimation step is a time-consuming procedure. However, preliminary experiments have shown
that in many cases, adding only one dimension is not sufficient to ensure a significant increase in the
dual bound. While adding several dimensions at each iteration is more efficient in many cases, adding
many dimensions may increase dramatically the size of the network. Therefore, we face a bi-criterion
optimization problem, where one has to consider the expected increase in the dual bound, and the
expected increase in the size of the network.

The following proposition provides an upper bound on the number of labels in the network given a
set of consistency constraints enforced in the state space.

Proposition 9. Let J and K such that J ⊆ K ⊆ I. It holds that |VK| ≤
∑
e∈E

(
2|(K\J)∩I(e)||{(e, w,d) ∈

VJ }|
)
.

Proof. Proof. From equations (22) and the definition of dK, the set of labels created in VK from a given
label (e, w,d) ∈ VJ is included in the set

{(e, w,d′) :d′i = di ∀i ∈ J ,
d′i ∈ {0, 1} ∀i ∈ (K \ J) ∩ I(e),

d′i = 0 ∀i ∈ I \ (J ∪ (K ∩ I(e)))}

whose cardinality is 2|(K\J)∩I(e)|. Summing up over all states in VJ yields the result.

This result shows that adding a set K \ J of constraints related to items with pairwise disjoint time
windows is particularly attractive: in such cases, for all events e ∈ E we have that |(K \ J) ∩ I(e)| ≤ 1.
It follows that the network will grow by a constant factor only, as stated formally in the next corollary.
Let us remind that (I, Eint) is the interval graph related to intervals [t−i , t

+
i), i ∈ I (see Section 2).

11

Corollary 1. Let J and K such that J ⊆ K ⊆ I, and K \ J is a stable set in graph Gint. Then
|VK| ≤ 2|VJ |.

This observation guided our strategies to choose the set of constraints that are added during sublima-
tion step. The first strategy, that we call Weighted stable set, consists in adding a set of constraints
that form a stable set in Gint. In order to avoid obtaining a too large DP, we limit the expected network
growth during the sublimation step (the maximum value allowed is denoted by MAXGROWTH). We
aim at maximizing a criterion based on those presented in the previous section (more details on how ψ
is defined are given in the computational experiments section). The problem of constraint selection can
be cast as follows.

max
∑
i∈J 6=

ψixi (29)

∑
i∈J 6=

ψ2
i xi ≤ MAXGROWTH (30)

xi + xj ≤ 1,∀(i, j) ∈ Eint ∩ (J 6= × J 6=) (31)

xi ∈ {0, 1},∀i ∈ J 6= (32)

One can identify this problem as the disjunctive knapsack with interval conflicts, which is NP-complete,
but can be solved in pseudo-polynomial time through dynamic programming (see [SV13]).

The Weighted stable set strategy has the disadvantage of sometimes adding too few new constraints,
leading to a slow convergence of the overall algorithm. Our second strategy, called Cardinality Con-
strained Stable Set aims at circumventing this drawback. It consists in solving first the model above
with unit profits to find a stable set of maximum cardinality (which we denote by Cmax). We then seek
a stable set of cardinality larger than Cmax ∗ krstable where krstable is a parameter in (0, 1], by solving the
following cardinality constrained maximum weight stable set problem:

max
∑
i∈J 6=

ψixi (33)

∑
i∈J 6=

xi ≥ Cmax ∗ krstable (34)

xi + xj ≤ 1,∀(i, j) ∈ Eint ∩ (J 6= × J 6=) (35)

xi ∈ {0, 1},∀i ∈ J 6= (36)

The third strategy, called k-coloring, not only considers stable sets among available dimensions, but
also dimensions that were added in the previous iterations. The rationale behind this technique is to
consider the stable sets globally instead of focusing on a single one and disregarding the dimensions that
were added before. At the end of the first iteration, a variable kcolor is set to 1. At each iteration, we
seek for the maximum weight kcolor-colorable subset of J 6= ∪ J , where J is the set of already added
constraints. If the solution is different from J , then we add the new constraints selected. If the solution
only contains J , then we increase the value of kcolor by one unit, and solve the model again. Obviously,
there is always a feasible solution with a new consistency constraint to add for this new value of kcolor.
We solve repeatedly the following model, where zij are binary variables indicating that item i is assigned
to color j.

max
∑
i∈J 6=

∑
j=1,...,kcolor

ψizij (37)

zij + z`j ≤ 1,∀(i, `) ∈ Eint ∩ ((J 6= ∪ J +)× (J 6= ∪ J +)), j ∈ {1, . . . , kcolor} (38)∑
j=1,...,kcolor

zij ≤ 1,∀i ∈ J 6= (39)

∑
j=1,...,kcolor

zij = 1,∀i ∈ J + (40)

zij ∈ {0, 1},∀i ∈ J 6= ∪ J +, j ∈ {1, . . . , kcolor} (41)

Finally, each strategy can be modified according to the following observation. In the first iterations,
one would like to close the gap between the primal and dual bounds as fast as possible to allow a

12

better efficiency of filtering procedure. When the size of the network becomes large, the most important
criterion becomes its size, since a too large network may lead to intractable Lagrangian subproblems.
Therefore, when the size of the network is larger than a given threshold, we only base our strategy on
the expected size of the network. We call this strategy Hybrid.

4.7 Implementation issues

The efficiency of the filtering step depends heavily on the fact that a good primal solution is known. In
general, during the optimization of the Lagrangian multipliers, it may happen that a primal solution
is computed as a side product of the method. However, one cannot rely on this for TKP, since many
constraints are often violated in a solution of a relaxation. To produce a lower bound for our problem,
we solve heuristically model (4)–(6) by giving a small amount of time to a general purpose integer linear
programming solver. We found out that the solver is able to obtain good quality solutions quickly, but
is not able to prove its optimality, even if it is given a large amount of time.

A good dual solution is also useful to warmstart Volume algorithm, which may take a large amount
of time to converge when the computed DAG are large. To find a good set of multipliers, we solve the
LP relaxation of (7)–(13), and use the optimal dual values of constraints (13). Solving the LP relaxation
is fast and provides a good starting point for Volume.

When dominance rules are applied, many states have only one out-going action. This leads to
unnecessary computational effort in Bellman’s algorithm. To reduce the computational burden, we
remove chains in the initial graph by linking the two extremities of the chain directly. This can be done
on-the-fly when out-going actions are computed from a state.

We implemented a parallel version of Bellman’s algorithm. We first compute the longest path (in
term of number of arcs) from s0 to all vertices. All vertices at the same distance are stored in a common
bucket. The treatment of vertices in the same bucket can be done in parallel.

5 Computational experiments

In this section, we provide experimental results for our methods. For each refinement of the method,
we evaluate its impact on the performance of the general algorithm. Finally, we compare our results to
those of [GI14] and to the results obtained by an all-purpose commercial Integer Linear Programming
solver. In this section, we consider an instance as solved if the algorithm finds an optimal solution and
proves its optimality.

All our experiments are conducted using 2 Dodeca-core Haswell Intel Xeon E5-2680 v3 2,5 GHz with
128Go RAM. For each instance, our code was run on 6 threads and a 32 Go RAM limit. All models
considered in subroutines are solved with IBM ILOG Cplex 12.7.

We use instances proposed in [CFM13], composed of two groups. For instances in the first group (I),
results are not reported since [GI14] and our methods can solve all instances to optimality in a small
amount of time. For the 100 instances in the second group (called U), the number of items is 1000, the
size of the knapsack ranges from 500 to 520. Each item has a profit and a weight between 1 and 100.

The goal of our experiments is twofold. We first want to determine the best parameters for our
method, and the impact of the different improvements that we have proposed. We also want to assess
the efficiency of our method against the best methods from the literature.

In the sequel we present aggregated results. Detailed tables can be found in appendix (online sup-
plement).

5.1 Parameters of the method

In this section, we evaluate the impact of the improvements that we have proposed in this document. For
this purpose, we report the results obtained by the best combination of techniques (called MCF* below),
and methods obtained from MCF* by deactiviting some features. We deactivated the initialization
of the Lagrangian multipliers (subsection 4.7), the partial enumeration technique (subsection 4.4) and
dominance and feasibility tests (subsections 4.2 and 4.3).

For each method obtained, we report in Figure 1 the number of instances solved along the time, with
a maximum of three hours.

A first remark is that all techniques have a significant impact on the number of instances solved after
three hours. It transpires from these experiments that the most important technique is the warm-start
of the Lagrangian multipliers, followed by partial enumeration, and dominance/feasibility tests.

13

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

#
in

st
a
n

ce
s

so
lv

ed
MCF *

Without Lagrangian multipliers initialization
Without partial enumeration

Without dominance and feasibility tests

Figure 2: Number of instances of TKP from data set U ([CFMT16]) solved along time, for the best
version of our algorithm, and three versions obtained by desactivating some techniques.

Initializing the Lagrangian multipliers at the first iteration with help of dual values of model (7)-(15)
allows solving more than 2.5 times more instances compared to starting with null Lagrangian multipliers
(94 against 36 out of 100 instances). There are two possible explanations for this fact: either warmstart
helps Volume converging faster, or the dual bound obtained after convergence is better. To understand
better the behavior of the algorithm, we report in Table 1 the average time needed by Volume to converge
for the first network, the average gap with the best primal bound, and the average number of vertices
and edges in the network after convergence (the two latter values indicate the strength of the filtering
process).

Table 1: Impact of the initialization of the Lagrangian multipliers on the first relaxation solution and on
the size of the network after the first filtering step. ”k” stands for thousands.

Average time (s.) Average nodes Average edges Average gap
MCF* with initial LagMult 118 161 k 1,650 k 0.42%
MCF* without initial LagMult 191 188 k 2,136 k 1.53%

Table 1 indicates clearly that warmstart allows a faster and better convergence of Volume. Altough
it takes almost 200 seconds on average to Volume to converge for an average gap of 1, 53%, warmstart
allows to converge in 118 seconds for an average gap more than three times smaller. The smaller gap
leads to a better filtering phase, and a smaller network. This would hint that our implementation of
Volume is able to converge toward good dual solution when it starts from a solution near the optimum,
and that the dual values from the linear relaxation of (7)-(15) is actually of good estimation of the

14

optimal multipliers.
The number of instances solved optimally within 3 hours increases by about 20% when partial enu-

meration is used. This means that enumerating sequences of actions allows to include useful information
that is used by the filtering algorithm. To illustrate the effect of partial enumeration, we report in Table
2 the size of the first network constructed, for different values of kenum. As one can expect, increasing
the number of consecutive actions considered reduces the number of nodes in the network but increases
the number of arcs (since each combination of actions is replaced by one arc). Although it yields a higher
memory consumption and a longer solving time of the relaxations, it can be advantageous to some extent:
selecting one arc means deciding more actions simultaneously and more impact on the (Lagrangian) cost
of the solution. Thus, such long sequences of decisions are more easily discarded by Lagrangian filtering.
This also explains, along with the removal of short infeasible sequences, that the network with kenum = 2
is smaller than that with kenum = 1.

Table 2: Average size of first network for different value of kenum, after the filtering step. ”k” stands for
thousands.

kenum 1 2 3 4 5 6
Average nodes 703 k 384 k 264 k 202 k 162 k 135 k
Average transitions 1,392 k 1,344 k 1,639 k 2,269 k 3,155 k 4,658 k

Finally, the dominance property stated in Proposition 3 and the feasibility tests proposed in Propo-
sitions 4 to 8 have non-negligible impact on the performance of our algorithm, since they allow solving
ten more instances in one hour-time limit, and eight more instances in three hour-time limit. These tests
remove about 20% of the nodes and 32% of the arcs included in the first network when kenum = 4.

5.2 Strategies for adding dimensions

As stated in most papers working on iterative state-space relaxations, the choice of the dimensions to
add is the most critical component in the method. In what follows, we compare empirically our different
strategies to determine the most effective.

In Table 3, we report how each configuration of our algorithm we tested is parameterized. For
method MCF*, the weight associated with each constraint is a combination of the expected number of
additional labels and the frequency of violation of this constraint in good relaxation solutions. When
using Weighted stable set strategy, minimizing the expected number of added labels comes to selecting
no new constraint. That is why we maximize the complement to the maximum number of expected
additional labels. This value is weighted by the frequency of violation of the constraint. Configuration
Hybrid aims at improving the dual bound as fast as possible by making the most often violated constraints
feasible. Once the network is too large (we empirically fixed a limit at 4,000k nodes), adding fewer labels
is preferred.

Table 3: Parameters of the tested methods.

Configuration Strategy Criterion ψi
MCF* Cardinality constrained ψ2

i

(
1− ψ3

i

)
Stable Weighted stable set

−ψ2
i+max

j∈J 6= ψ2
j

max
j∈J 6= ψ2

j
ψ3
i

NbLabels Cardinality constrained ψ2
i

Hybrid Cardinality constrained First ψ3
i , then ψ2

i

LagMult Cardinality constrained ψ1
i

KColor K-Color
−ψ2

i+max
j∈J 6= ψ2

j

max
j∈J 6= ψ2

j
ψ3
i

In Figure 3, we compare empirically our different methods for choosing the dimensions to add.
Similarly to Figure 2, we report the total number of instances solved along the time, with a maximum
of three hours.

From Figure 3, we observe that k−coloring strategy is clearly not competitive compared to strategies
based on stable sets. The fact that this strategy performs poorly shows that our method to evaluate the
size of the network in the stable-set based strategies is useful, and that one cannot just rely on the interval
structure of the constraints. All strategies based on stable sets have similar behaviour. Configuration

15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

30

40

50

60

70

80

90

100

Time (hours)

#
in

st
a
n

ce
s

MCF *
KColor
Stable

NbLabels
Hybrid

LagMult

Figure 3: Number of instances solved along time for different methods used to determine the dimensions
to add at each iteration.

Stable performs reasonably well within medium time limits. However, it does not seem to be more
effective when more time is allocated. That can be explained by the fact that, the larger the network is,
the less the number of new constraints added is controlled. Indeed, we empirically observed that only a
few constraints are added in general by this method once a critical size is reached. The configurations
based on Cardinality constrained stable set strategy do not suffer from that drawback. The performance
of Hybrid configuration appears to be disappointing. This might be due to the difficulty of finding a
good rule for switching between the basic criteria. Overall, an important conclusion is that taking into
account the increase of the size of the network appears to be crucial for the method.

5.3 Comparison with the best results from the literature

We now compare our best results with those of [GI14] (denoted GI below). Note that [GI14] sent us
the results obtained with a time limit equal to three hours. They implemented a pure branch-and-price
without any primal heuristics and using best-first as node selection strategy. Their experiments were
performed on a standard PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz with 16.0 GB main memory
using a single thread only.

Figure 4 reports the performance of these methods compared to our best algorithm (MCF*), and a
basic version of SSDP applied on TKP without the improvements we propose (MCF). It also shows how
the ILP solver IBM Ilog Cplex performs on model (4)-(6) (CPLEX).

First, all instances but five were solved by at least one of the methods tested. In terms of number
of instances solved after three hours, MCF* shows the best performance, followed by CPLEX applied to
(4)–(6), GI, and MCF.

Applying SSDP in a straightforward fashion (MCF) turns out to be inefficient. Only 12 instances are
solved after three hours of computing time. This confirms that all the improvements proposed in this
document are needed to solve the problem efficiently using this methodology.

CPLEX applied to the first compact model outperforms all other methods for many instances, mostly

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

20

40

60

80

100

Time

#
in

st
a
n

ce
s

MCF *
GI

CPLEX
MCF

Figure 4: Number of instances solved along time for our best algorithm (MCF*), a basic version of SSDP
(MCF), an ILP solver on model (4)-(6) (CPLEX) and the algorithm of [GI14] (GI).

instances numbered from 1 to 55. For most of these instances, it is able to solve the problem in a handful
of seconds, while all other methods may need minutes or hours. That can be explained by the powerful
procedures embedded in such solvers to deal with knapsack constraints (for example to derive cuts),
as well as very good generic heuristics. From instance 55 to 99 however, CPLEX is only able to solve
16 instances. This can be explained by the structure of the instances. Each batch of ten consecutive
instances has a similar structure, most notably the maximum number of items in a clique. This number
increases with the index of the instances. It transpires from these experiments that linear-programming
based methods are highly sensitive to this parameter.

Column generation is better than our method when the time is limited to 30 minutes. When one
allows a large time, MCF* is able to solve much more instances than GI. The latter solves less instances
than CPLEX applied to the compact model. Actually, after three hours of computation, the dual bound
is still striclty less than the optimum.

After three hours, MCF* solved optimally 94 instances, which is 25 more than CPLEX. Only one
instance is solved by CPLEX and not by MCF* (U69). On the contrary, MCF* is able to find 26 solutions
when CPLEX does not reach convergence. Note that although the first twenty test cases of the data set
are easier for our method, the computing time needed does not seem directly correlated to the size of
the maximal cliques.

6 Conclusion

In this manuscript we have proposed a new algorithm for solving the temporal knapsack problem. It
is based on an exponentially large dynamic program. We have shown that the latter can be solved
efficiently using method SSDP. With the help of many refinements that we described, our method is able
to solve significantly more instances than the methods of the literature. The strategies that we propose
are subject to many parameters, and the numerical experiments suggest that better parameterization
could yield better results (notably the Hybrid strategy). More generally, the most crucial ingredient is
the choice of the constraints to add during each sublimation phase. Machine learning algorithms could
be an option both for fine-tuning proposed approaches and guiding the choice of constraints in a more
global way. Several techniques used in this manuscript could be easily adapted to other applications of
SSDP. A generic library providing these features would be a useful tool for the community.

17

7 Acknowledgements.

We would like to thank Fabio Furini and Enrico Malaguti for sending us the detailed results of their
experiments. We also would like to thank Timo Gschwind for running additional experiments for us.

This work was funded by Investments for the future Program IdEx Bordeaux, Cluster of Excellence
SySNum.

Experiments presented in this paper were carried out using the PLAFRIM experimental testbed,
being developed under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI
and IMB and other entities: Conseil Régional d’Aquitaine, Université de Bordeaux, CNRS and ANR in
accordance to the programme d’investissements d’Avenir (see https://www.plafrim.fr/).

References

[AS87] E. M. Arkin and E.B. Silverberg. Scheduling with fixed start and end times. Discrete Applied
Mathematics, 18:1–8, 1987.

[BA00] F. Barahona and R. Anbil. The volume algorithm: producing primal solutions with a sub-
gradient method. Mathematical Programming, 87(3):385–399, 2000.

[BSW14] P.S. Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM journal on computing, 43(2):767–799, 2014.

[CCKR02] G. Calinescu, A. Chakrabarti, H.J. Karloff, and Y. Rabani. Improved approximation algo-
rithms for resource allocation. In Proceedings of the 9th International Conference on Integer
Programming and Combinatorial Optimization, IPCO 2002, page 401–414. Springer-Verlag,
2002.

[CFM13] A. Caprara, F. Furini, and E. Malaguti. Uncommon dantzig-wolfe reformulation for the
temporal knapsack problem. INFORMS Journal on Computing, 25(3):560–571, 2013.

[CFMT16] A. Caprara, F. Furini, E. Malaguti, and E. Traversi. Solving the temporal knapsack problem
via recursive dantzig–wolfe reformulation. Information Processing Letters, 116(5):379 – 386,
2016.

[CHT02] B. Chen, Refael Hassin, and Michal Tzur. Allocation of bandwidth and storage. IIE Trans-
actions, 34(5):501–507, 2002.

[CSVV18] F. Clautiaux, R. Sadykov, F. Vanderbeck, and Q. Viaud. Combining dynamic programming
with filtering to solve a four-stage two-dimensional guillotine-cut bounded knapsack problem.
Discrete Optimization, 2018.

[Fra76] A. Frank. Some polynomial algorithms for certain graphs and hypergraphs. In Proc. 5th Br.
comb. Conf., Aberdeen 1975, pages 211–226, 1976.

[GI14] T. Gschwind and S. Irnich. Stabilized column generation for the temporal knapsack problem
using dual- optimal inequalities. Working Papers 1413, Gutenberg School of Management
and Economics, Johannes Gutenberg-Universität Mainz, 2014.

[Iba87] Toshihide Ibaraki. Successive sublimation methods for dynamic programming computation.
Annals of Operations Research, 11(1):397–439, December 1987.

[IN94] T. Ibaraki and Y. Nakamura. A dynamic programming method for single machine scheduling.
European Journal of Operational Research, 76(1):72 – 82, 1994.

[SV13] R. Sadykov and F. Vanderbeck. Bin packing with conflicts: a generic branch-and-price
algorithm. INFORMS Journal on Computing, 25(2):244–255, 2013.

[TFA09] Shunji Tanaka, Shuji Fujikuma, and Mituhiko Araki. An exact algorithm for single-machine
scheduling without machine idle time. Journal of Scheduling, 12(6):575–593, December 2009.

18

