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Abstract The stochastic model proposed by Mémin [24] for turbulent flow1

simulations is analysed, both theoretically and numerically. It is shown to be a2

generalisation of the classical large-eddy simulation approach, and to describe3

a richer physics. The model does not lead to the eddy-viscosity assumption4

and can be reduced to Smagorisky model under restrictive hypotheses; hence,5

it can be considered as a generalisation of classical models. Simulations of a6

turbulent channel flow at Reτ = 590 shows the presence of physical phenom-7

ena usually not reproduced; namely a weak turbophoresis and of a turbulent8

compressibility linked to streaks structures. The turbulent kinetic energy bud-9

get suggests that the model is more effective in dissipating energy near the10

wall. For the sake of completeness, alternative and detailed derivation of the11

stochastic model is reported in detail in the appendix.12

Keywords Stochastic models · Turbulence modelling · Numerical simula-13

tions · OpenFOAM.14

1 Introduction15

The reliable numerical simulation of turbulent flows is still nowadays a chal-16

lenging issue, both in terms of mathematical modelling and of computational17

cost required. In the last decades, different techniques were developed to tackle18

this problem, the most fruitful for practical applications being the Reynolds-19

averaged simulation and the Large-Eddy Simulation (LES) methodologies. De-20

spite the continuous improvements with increasingF accuracy of the models,21
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such methodologies are developed within a deterministic framework. Hence,22

they cannot completely represent the random nature exhibited by turbulent23

flows, that eventually requires the use of stochastic calculus. In the field of24

geophysical flows, probabilistic models are used to correct the effects of the25

coarse spatial discretisation. Similarly, the stochastic variables can be em-26

ployed to account for the unresolved processes in the numerical reproduction27

of engineering and environmental flows.28

The literature proposes different approaches on this topic. The stochastic29

Langevin equation is derived assuming that a fluid-particle velocity is per-30

turbed by a Brownian motion, which is found to well described the dynamics31

of turbulent flows; see Pope [35]. This equation was used in the framework32

of Probability Density Function (POF) methods to reproduce homogeneous33

isotropic turbulence, but also inhomogeneous and anisotropic turbulence by34

Pope [36] and by Durbin & Speziale [8], respectively. Orszag [33] and Leslie [22]35

introduced the Eddy-Damped Quasi-Normal Markovian (EDQNM) models;36

see the overview by Lesieur [21]. The large-scale equations were closed in37

spectral space through a Gaussian closure. They were particularly suitable38

to study strong non-linearity in the small-scale turbulence. In the same frame-39

work, Chasnov [5] develops a forced-dissipative model, where the large-eddy40

Navier-Stokes equations were corrected by a stochastic force terms. This was41

a Gaussian forcing uncorrelated in time, homogeneous and isotropic in space.42

Kraichnan [16] exploits a different approach: the momentum equations are43

replaced by a set of equations with same mathematical properties, which are44

closed using a Gaussian stochastic model. This theory leads to valuable results45

in terms of mathematical properties (existence, singularities) and physical ef-46

fects (turbulent diffusion, backscatter) analyses. Frederiksen [11] shows that47

the same strategy can be used for a stochastic modelling of barotropic flows48

or in quasi-geostrophic approximation, that includes the interaction between49

topography and small-scale eddies. The randomness effects can be also explic-50

itly introduced by means of ad hoc stochastic terms. Investigating the plane51

shear mixing layer, Leith [20] improves the accuracy of LES with Smagorinsky52

model by introducing an explicit stochastic terms. On the theoretical side,53

Flandoli [9] studied fluid dynamic systems corrected with a random white54

noise force to reproduce the complex phenomena related to turbulence.55

These attempts have some limitations: the POF and EDQNM models re-56

quired to work in the spectral space instead of the physical one; there is a57

certain degree of arbitrariness when explicit random terms are introduced58

(e.g. the random forcing should be multiplicative or additive); and overall the59

models can be hardly generalised for practical applications.60

The methodology here presented aims to overcome these shortcomings. It61

develops from a different starting point: the fluid-particle trajectory in the62

Lagrangian framework is assumed to be a random process. It is expressed63

by a semimartingale, where the finite-variation part represents the smooth64

macroscopic velocity, while the martingale models the perturbations due to65

the turbulent motion. Consistently, an expression of the velocity is found and66

stochastic calculus is used to derived the stochastic equations of motions. In67
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such a procedure, the use of the Itō-Wentzell formula is crucial to compute the68

time derivative, see Kunita [18]. A first work in this direction was that one of69

Brzeźniak [2], subsequently extended by Mikulevicius and Rozovskii [27] and70

Flandoli [10]. Globally, these works focused on the mathematical properties of71

the stochastic equations. The work of Mémin [24] follows a similar approach72

and developed the so called model under Location Uncertainty (LU), which73

is oriented to practical application in computational fluid dynamics. Recently,74

Holm [13] derived a similar set of equations using Lagrangian mechanics, which75

leads to additional terms, while Neves et al. [29] studied theoretically a simi-76

lar system of equations. The LU model was applied to different applications:77

Resseguier et al. [37,38,39] used it for geophysical flows simulations, where78

it exhibits a high accuracy in reproducing extreme events and provided new79

analysis tools. Chapron et al. [4] investigated the Lorentz-63 case and found80

that LU is able to explore the region of the deterministic attractor faster than81

the classical models. Resseguier et al. [40] employed it in conjunction with the82

proper orthogonal decomposition technique for the numerical simulation of a83

flow past a circular cylinder at Re = 3900.84

Although this is a promising methodology, the inherent mathematical com-85

plexity of stochastic partial differential equations poses some difficulties: the86

resolution of stochastic partial equations is not straightforward and can con-87

siderably increase the simulation time. For these reasons, Mémin [24] also88

introduces a simplified model, where the resolution of stochastic equations is89

avoided by modelling the effects of the random velocity term by physical as-90

sumption. This give rise to the so called pseudo-stochastic simulation (PSS)91

methodology: the flow dynamics is described by classical partial differential92

equations, which includes additional terms provided by the stochastic mod-93

eling. The PSS was adopted by Harouna and Mémin [12] to investigate the94

Green-Taylor vortex flow applying several models for the stochastic contribu-95

tion. Chandramouli et al. [3] employed it to simulate the transitional wake96

flow with coarse mesh resolution, proving that it generates a more accurate97

outcomes with respect to classical LES.98

Notwithstanding the above mentioned studies, a pointwise analysis of the99

pseudo-stochastic model is lacking. The aims of the present work is to study100

in details the characteristics of the LU and the PSS model, both theoretically101

and numerically, establishing a parallelism with the classical LES methodol-102

ogy. First, a theoretical analysis of the PSS equations is reported; second, a103

simplified closure model is adopted to perform numerical simulations on the104

plane channel flow at Reτ = 590. The simulation outcomes are discussed in105

light of the previous theoretical analysis and the peculiarity of the PSS are106

highlighted. The main novelty of this work is to propose a detailed and sys-107

tematic comparison between PSS and LES approach, pointing out the physical108

meaning of the extra term arising from the stochastic derivations (supported109

by simulations). Moreover, after few years from its first formulation, an alter-110

native mathematically derivation of the LU and PSS model is proposed in the111

appendix. Efforts have been made to simplify and give a linear structure to112

the procedure, highlighting the key hypotheses.113
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The paper is organized as follows: section 2 presents the pseudo-stochastic114

model and the relative turbulent kinetic budget; section 3 reports a physical in-115

terpretation of the model and make a comparison with the LES methodology;116

section 4 describe the closure model for PSS; section 5 discusses the numer-117

ical simulation results; section 6 gives some final remarks. In appendix A an118

alternative and detailed derivation of the stochastic model for turbulent flows119

is presented.120

2 Pseudo-Stochastic Model121

In this section, the stochastic formalism and the pseudo-stochastic equations122

are reported.123

2.1 Stochastic formalism124

The particle trajectory in a turbulent regime is not completely known be-125

cause it is subject to some random (turbulent) effects. Consequently, the fluid-126

particle displacement is described by the stochastic differential equations of the127

type:128

dXi
t(x0) = wi(Xt, t)dt+ dηit(Xt), (1)129

where the index i = 1, 2, 3 indicates respectively the x,y,z-component in space130

(they are placed at top or bottom indifferently); Xi
t(x0) is the trajectory fol-131

lowed by a fluid-particle initially located in x0; wi is a differentiable function of132

bounded variation (i.e. equivalent to a deterministic function) that corresponds133

to the resolved flow velocity; ηit =
∫ t
0
dηit is a martingale that accounts for the134

stochastic contributions to the motion. The Einstein summation convention135

over repeated indexes is adopted. The stochastic contribution is constructed136

as a combination of a cylindrical Wiener processes Bkt (x) not differentiable in137

time, and a differentiable diffusion tensor σik which acts as an integral kernel:138

139

dηit(x) =

∫
Ω

σik(x, y, t)dBkt (y) dy. (2)140

Notice that the stochastic processes ηit are uncorrelated in time and correlated141

in space by means of the diffusion tensor.142

The expression of the velocity field Ui in Eulerian coordinate x is derived143

from equation (1); it reads:144

Ui(x, t) = wi(x, t) + η̇it(x), (3)145

where the second term on the right-hand side expresses the stochastic velocity146

defined by formula (22). From a physical point of view, wi is the velocity147

expected value and η̇it(x) represents a noise: a generalised stochastic process148

that has to be defined in the space of temperate distribution, see Øksendal [31].149
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The quadratic variation of the diffusion tensor is a quantity of particular150

interest; it represents the time-variation of the spatial variance of the stochastic151

increments along time. It is named variance tensor and is defined as:152

aij(x, t) =

∫
Ω

σik(x, y, t)σjk(x, y, t) dy. (4)153

As a function, it is assumed to have all the regularity (differentiable and inte-154

grable in time and space) required by computation; as a tensor, it is a point-155

wise symmetric and semi-positive definite matrix.156

2.2 Pseudo-stochastic equations of motion157

The stochastic fluid dynamics equations for a Newtonian incompressible fluid158

are derived in appendix A. The final system (63) is composed by one set of159

stochastic equations and one of pure deterministic ones. The former allows160

to find an expression for the variance tensor aij , which is required for the161

resolution of the latter. Together, they provide a close system of equations162

that composes the LU model. Let us not that full stochastic model can be163

obtained by relaxing the assumption of bounded variation for the resolved164

velocity (see [37]).165

In order to simplify the model by avoiding the resolution of stochastic par-166

tial differential equations, the variance tensor aij is not computed but modelled167

through physical assumptions. This choice gives rise to a hybrid model where168

the stochastic contribution on the governing equations is modelled by a de-169

terministic function, and, overall, no stochastic equations have to be resolved.170

Such model leads to pseudo-stochastic simulation approach. The PSS momen-171

tum and continuity equations for incompressible flows reads, respectively:172 
∂wi
∂t

+ w∗j
∂wi
∂xj

= − ∂p

∂xi
+ ν

∂2wi
∂xj∂xj

+
1

2

∂

∂xj

(
ajk

∂wi
∂xk

)
∂w∗i
∂xi

= 0.

(5)173

where ν is the molecular viscosity, the modified pressure p = ph + ν
3
∂w`

∂x`
is the174

sum of the hydrostatic pressure and the divergence of the velocity field (which175

is not solenoidal), and the effective advection velocity w∗i reads:176

w∗i = wi −
1

2

∂

∂xk
aik. (6)177

The terms depending on aij account for the effects of the Stochastic Unresolved178

Scales (SUS) of motion, since the variance tensor is a measure of the intensity179

and the anisotropy of turbulent random velocities.180

Notice that system (5) reduces to the classical Navier-Stokes equations181

when the aij is the zero matrix, i.e. when the stochastic contributions disap-182

pear.183
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2.3 Resolved kinetic energy budget184

The turbulent kinetic energy (TKE) budget of the resolved scales of motion185

is presented. The resolved velocity is decomposed in a mean and a fluctuating186

part, respectively:187

wi = Wi + w′i, (7)188

where the capitol letter indicates the averaged field, Wi = 〈wi〉. Variance
tensor and pressure are decomposed in a similar way: aij = Aij + a′ij and
p = P + p′. The (resolved) turbulent kinetic energy κ = w′iw

′
i/2 budget reads:

∂〈κ〉
∂t

+

(
Wj −

∂

∂xk

Ajk
2

)
∂〈κ〉
∂xj

+ 〈
(
w′j −

∂

∂xk

a′jk
2

)
∂κ

∂xj
〉︸ ︷︷ ︸

advection

=

=
∂

∂xj

[
−〈p′w′j〉+

(
νδjk +

Ajk
2

)
∂〈κ〉
∂xj

+ 〈
a′jk
2

∂κ

∂xj
〉+ 〈

a′jkw
′
i

2
〉∂Wi

∂xk

]
︸ ︷︷ ︸

transport

+ 〈p
′

2

∂2a′jk
∂xj∂xk

〉︸ ︷︷ ︸
turb. compress.

−
(
νδjk +

Ajk
2

)
〈∂w

′
i

∂xj

∂w′i
∂xk
〉 − 〈

a′jk
2

∂w′i
∂xj

∂w′i
∂xk
〉︸ ︷︷ ︸

dissipation

− 〈
(
w′j −

∂

∂xk

a′jk
2

)
w′i〉

∂Wi

∂xj︸ ︷︷ ︸
production

−〈
a′jk
2

∂w′i
∂xj
〉∂Wi

∂xk︸ ︷︷ ︸
loss to SUS

(8)

The TKE terms are interpreted in light of the classical budget analysis, e.g.189

see Kundu and Cohen [17]. On the left-hand side, the second and third terms190

represent the TKE advection by mean and SUS effective advection velocity.191

On the right-hand side:192

– first four terms: transport by pressure, molecular viscosity and turbulent193

stresses;194

– fifth term: turbulent compression/expansion due to SUS;195

– sixth and seventh terms: dissipation by molecular viscosity (it can be196

proven that Aij is positive defined), resolved turbulence and SUS motions;197

– eight term: shear production, this term appears in the mean kinetic budget198

(not shown here) with opposite sign;199

– last term: loss due to SUS also present in the mean kinetic energy budget.200

The pseudo-stochastic TKE budget reduces to the classical one if the stochastic201

contribution is negligible aij ' 0. It is worth to notice that the production term202

includes the contribution of the fluctuations of turbulent advection velocity,203

while the variance tensor plays a role of a turbulent viscosity dissipation tensor.204
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3 Analysis of pseudo-stochastic model205

The expression of fluid-particle displacement (1) states that a particle trajec-206

tory is driven by two actors: a differentiable drift velocity and a Brownian207

process highly fluctuating in time. In the framework of PSS, the drift velocity208

wi that can be interpreted as the resolved velocity field, while the random field209

assembles the residual motion that are fast oscillating stochastic components,210

possibly anisotropic and non-homogeneous in space.211

3.1 Physical interpretation212

Recalling the decomposition of the velocity gradient in symmetric and antisym-213

metric parts, respectively called the strain-rate tensor and the rotation-rate214

tensor:215

∂wi
∂xj

=
1

2

(
∂wi
∂xj

+
∂wj
∂xi

)
+

1

2

(
∂wi
∂xj
− ∂wj
∂xi

)
= Sij +Ωij , (9)216

the pseudo-stochastic Navier-Stokes equation (5) and continuity equation (6)
are rearranged as, respectively:

∂wi
∂t

+

(
wj −

1

2

∂ajk
∂xk

)
︸ ︷︷ ︸
effective advection

∂wi
∂xj

=− ∂

∂xi

(
ph +

ν

3

∂2ask
∂xk∂xs

)
︸ ︷︷ ︸
modified pressure

+2ν
∂Sij
∂xj

+
1

2

∂

∂xs
(askSki)−

1

2

∂

∂xs
(askΩki)︸ ︷︷ ︸

diffusion due to SUS

, (10)

and217

∂wi
∂xi

=
1

2

∂2ajk
∂xj∂xk︸ ︷︷ ︸

turb. compr.

. (11)218

The terms that depend on variance tensor account for the influence of the SUS219

on the resolved scales. A physical interpretation of such terms is proposed:220

Effective advection: the advection velocity is corrected by an inhomoge-221

neous turbulence contribution. It corresponds to a velocity induced by the222

unresolved turbulent motions, that can be linked to the turbophoresis phe-223

nomenon detectable in geophysical flows; i.e. the tendency of fluid-particle224

to migrate in the direction of less energetic turbulence (see also [37]).225

Modified pressure: the non-solenoidal velocity field leads to the presence of226

an isotropic turbulent factor, that has the dimension of a pressure: pt =227

ν
3
∂2ask
∂xk∂xs

. This term does not contribute to the flow and it is included in228

the pressure gradient in the same manner as the isotropic residual stress229

in the Smagorinsky model, see [35].230
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Diffusion due to SUS: they account for the turbulent diffusion; the vari-231

ance tensor plays the role of a diffusion tensor similar to a generalised232

eddy-viscosity matrix. Both the deformation rate and rotation-rate con-233

tribute to diffusion, unlike to the classical eddy-viscosity model in which234

fluid rotation-rate is assumed to be irrelevant in turbulent modelling (see235

also following section 3.2).236

Turbulent compressibility: the continuity equation (11) suggests that the237

flow is turbulent-compressible; i.e. the unresolved turbulence induces a local238

fluid compression or expansion.239

The variance tensor is the key parameter of the pseudo-stochastic model. It240

has the physical dimension of a dynamic viscosity [m2/s] and carries informa-241

tion on the intensity and the anisotropy of the SUS. As already mentioned,242

aij can be interpreted as a generalised eddy-viscosity parameter. Implicitly,243

this leads to the hypothesis that the SUS influences the resolved flow as an244

alteration of fluid viscosity, that is an empirical consideration largely accepted.245

The divergence of the variance tensor is hereafter named turbulent advection246

velocity:247

uta,i = −1

2

∂aij
∂xj

, (12)248

while the divergence of the turbulent advection velocity measured the turbulent249

compressibility :250

Φtc =
1

2

∂2aij
∂xi∂xj

, (13)251

and it is directly proportional to the isotropic turbulent factor pt appearing in252

the modified pressure. The numerical simulations reported later allow to gain253

additional insights regarding these two quantities, we refer to section 5.3 for254

the numerical analysis.255

3.2 Comparison with LES eddy-viscosity models256

The LES methodology consists in applying a spatial filter to velocity field, and257

then directly resolve the filtered velocity and model the sub-filter velocities.258

See Sagaut [42] and Piomelli [34] for an extended introduction on this subject.259

Practically, the computational grid acts as an implicit spatial filter on the260

governing equations, which generates an extra term τij in the classical Navier-261

Stokes equations:262 
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

,

∂ui
∂xi

= 0,

(14)263

where the sub-grid scale (SGS) tensor is τij = uiuj − uiuj , and the straight264

over-bar denotes the spatial filter associated to the local cell width, com-265

puted as ∆ = (∆x∆y∆z)1/3. Adopting the eddy-viscosity assumption, the266
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anisotropic part of such tensor reads:267

τRij = τij −
τkk
3
δij = −2νsgsSij , (15)268

where νsgs is the SGS viscosity parameter, which has to be specified by addi-269

tional models (e.g. Smagorinsky model, Spalart-Allmaras, k−ω, k− ε). Equa-270

tion (15) implies that: (a) the anisotropic Reynolds stress tensor is aligned with271

the mean strain-rate tensor; (b) the two are directly proportional through a272

single parameter, equal for all the six independent components of τRij .273

The pseudo-stochastic model is equivalent to a constant eddy-viscosity274

model if the variance tensor is expressed by aij = 2νsusδij where the SUS275

viscosity νsus is constant. In this sense, the pseudo-stochastic model can be276

considered a generalisation of the eddy-viscosity model. The theoretical ad-277

vantages of the former to the latter are pointed out:278

1. The PSS does not rely on hypothesis (a). The effects of unresolved scales of279

motion are given by aij , without imposing any constrains on the directions280

along with the SUS acts on the resolved flow.281

2. The PSS does not rely on hypothesis (b). The tensorial form of aij allows to282

reproduce the anisotropy of unresolved turbulence, i.e. different turbulent283

contributions along different directions.284

3. The extra terms in PSS account for turbulent effects usually not consid-285

ered in the classical models, namely turbulent advection and turbulent286

compressibility.287

The eddy-viscosity models are quite reasonable for simple shear flows and288

it is largely applied in computational fluid dynamics. However, most of their289

shortcomings derive from the fact that hypotheses (a) and (b) are not generally290

satisfied; see Pope [35]. Efforts have been made to develop alternative models291

where the principal axis of τRij are not forced to be aligned with those of292

the mean strain tensor (e.g. the Reynolds-stress models), or where equation293

(15) is substituted by a non-linear viscosity models, in which the rotation294

strain-rate comes into play, see for example Bauer et al. [1]. In geophysical295

flow simulations, the strong grid anisotropy between horizontal and vertical296

directions is successfully handled using a directional eddy-viscosity, see Roman297

and Armenio [41].298

It is worth mentioning that the eddy-viscosity parameter aij comes directly299

from the basic assumption of velocity decomposition in a smooth and a fast300

oscillating components (3), whereas it is introduced in LES equations through301

an ad hoc physical assumption.302

4 Variance tensor model303

In the LES framework, a popular model for νsgs in LES methodology is the304

the Smagorinsky model, first proposed by Smagorinsky [43] for simulation of305

environmental flows (see also Deardorff [7]). It is derived under the hypothesis306
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of local equilibrium between production and dissipation of turbulent kinetic307

energy, and reads:308

νsgs = c2s∆
2|S|, (16)309

where |S| is the norm of the strain-rate tensor. The parameter c2s is set con-310

stant and can be evaluated from experiments, direct numerical simulations or311

analytical considerations, e.g. see Lilly [23].312

In order to perform a close comparison with the LES methodology, the313

variance tensor is modelled by a simple model analogous to the Smagorinsky314

model:315

aij = cm∆
2|S|δij (17)316

where∆ is the cell grid width and cm is a model parameter. Hence, the variance317

tensor reduces to a diagonal matrix with equal elements because turbulence is318

assumed isotropic and homogeneous in all directions.319

The relation with the classical Smagorinsky model is now highlighted. In
LES, having applied the Smagorinsky model, the anisotropic Reynolds stress
tensor reads:

−
∂τRij
∂xi

=
∂

∂xi

(
2c2s∆

2|S|Sij
)

= Sij
∂Cs|S|
∂xi

+
Cs
2
|S| ∂

2wj
∂xi∂xi

, (18)

where Cs = 2c2s∆
2 denotes an auxiliary variable, c2s is the Smagorinsky param-

eter and the velocity is divergence-free. In the PSS, the total turbulent model
can be expressed by a single term, that gathers the dissipative and turbulent
advective contributions. Applying formula (17) with cm = 2c2s and defining
Cm = cm∆

2, such a term becomes:

1

2

∂2askwi
∂xs∂xk

=

(
Sij

∂Cm|S|
∂xi

+
Cm
2
|S| ∂

2wj
∂xi∂xi

)
︸ ︷︷ ︸

eddy−viscosity terms

+ Ωij
∂Cm|S|
∂xj︸ ︷︷ ︸

rotational term

+
wi
2

∂2Cm|S|
∂xj∂xj︸ ︷︷ ︸

strain−rate diff.

,

(19)

where the first two terms on the right-hand side have (formally) the same ex-320

pression as (18), while the third and fourth term are additional contributions.321

The PSS with isotropic constant model reduces to the LES Smagorinsky322

model under two approximations:323

1. the rotation-rate does not contribute to turbulence effects on the mean324

flow, thus it is neglected;325

2. the norm of strain-rate tensor is almost harmonic (Laplacian is close to326

zero), which makes the fourth term negligible.327

Notice that the latter hypothesis implies that the continuity equation (6) turns328

into the classical solenoidal constrain. Therefore, the LES Smagorinsky model329

can be interpreted as a particular case of the PSS constant isotropic model.330

Approximation (1) is valid if the turbulent energy is mainly concentrated in331

the region where the irrotational strain dominates vorticity. Exceptions on this332

behaviour have been found and have motivated the development of alternative333
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models, like the Wall Adaptive Local Eddy-viscosity (WALE) model of Nicoud334

and Ducros [30] or the structure function model of Métais and Lesieur [25].335

Approximation (2) implies that the flow deformation rate can be represented336

by a linear function in each spatial point; thus it is a particularly regular337

function. This is equivalent to neglect the turbulent correction on advective338

velocity and continuity equation, hence the associated physical phenomena of339

turbophoresis and turbulent compressibility are not reproduced.340

5 Numerical simulations341

PSS and LES are compared on turbulence channel flow at Reτ = 590. The for-342

mer adopts a constant isotropic model for variance tensor, the latter adopts a343

constant Smagorinsky model for sub-grid scale viscosity. The Direct Numerical344

Simulation (DNS) of Moser et al. [28] is taken as reference.345

5.1 Case geometry and settings346

The channel is composed by two horizontal and parallel walls between which347

a shear flow develops. The dimensions in stream-wise (x), vertical (y) and348

span-wise (z) directions are 2πδ × δ × πδ, respectively. The flow is driven by349

a constant pressure gradient ∂p
∂x = −ρuτ/δ. The Reynolds number based on350

the friction velocity uτ is defined as Reτ = uτδ/ν. The spatial variables are351

made non-dimensional as y+ = yuτ/ν, the velocity as u+ = u/uτ , time as352

t+ = tuτ/ν. The characteristic flow time is estimated as t0 = U0/2πδ, where353

U0 is the bulk velocity in stream-wise direction.354

The computational domain is discretised by 96× 96× 96 points. They are355

uniformly distributed in stream-wise and span-wise directions, leading to a356

cell width ∆x+ < 40 and ∆z+ < 20, respectively. In vertical direction, the357

grid is stretched in a way such that the first cell is within y+ = 1 and with 9358

cells in y+ ≤ 11; thus ensuring an accurate resolution of the boundary layer.359

The stretching is symmetric with respect to the channel centre plane y = δ,360

and it is obtained with a double-side stretching function based on hyperbolic361

tangent:362

y(ξ) =
1

2

(
1 +

tanh(λ(ξ − 1/2))

tanh(λ/2)

)
, (20)363

where ξ is the vertical coordinate of uniform point distribution and the stretch-364

ing factor is set to λ = 5.25.365

Cyclic boundary conditions are set at the vertical boundaries, while velocity366

no-slip condition and pressure zero-gradient are imposed at the horizontal367

walls. All the cases are initialised with the instantaneous fields provided by a368

preliminary LES with constant Smagorinsky SGS model, that has reached the369

statistical steady state.370
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5.2 Algorithm and implementation371

Simulations are performed taking advantage of the open-source software Open-372

FOAM v. 2.3.0. This is a C++ library for computational fluid dynamics and373

adopts the finite volume methods.374

The LESs are carried out using the solver pisoFoam included in the stan-375

dard software distribution. The implementation details on this basic solver can376

be found in the official OpenFOAM documentation and in the work of Jasak377

et al. [15]. The constant Smagorinsky SGS model is provided by OpenFOAM,378

and its correct implementation was checked.379

Two PSSs are performed using the code pseudoStochasticPisoFoam, a380

home-made solver developed by the authors within the Fluminance research381

group at INRIA Rennes (France). The non-conservative form of pseudo-stochastic382

governing equations (5) are solved employing the Pressure-Implicit with Split-383

ting of Operators (PISO) algorithm proposed by Issa et al. [14] and Oliveira384

& Issa [32].385

Variables are discretised in space with a second-order central difference386

scheme, while time integration is performed using an implicit Euler backward387

scheme. Such a scheme employs the variables at the previous two time steps,388

leading to a second order accuracy. Globally, the numerical solvers are second-389

order accurate in time and space. The time advancement fulfils the Courant-390

Friedrichs-Lewy condition Co < 0.5. The Courant number is computed as391

Co = ∆t|v|/δx, where: ∆t is the time step, |v| is the velocity magnitude392

through the cell, δx is the cell length. The model constants are chosen to be393

c2s = cm/2 = 0.004225, and for PSS v = w∗ while for LES w∗ = u.394

5.3 Results discussion395

The simulations are run till the statistical steady state is reached, then they396

are re-run for an additional period of 12t0 where the statistics are collected.397

The quantities are averaged in time and in space along span-wise and stream-398

wise directions, and exploiting the domain symmetry in vertical direction. The399

angular brackets 〈ψ〉 denote the average in time and wall-parallel directions400

for a generic variable ψ.401

First and second order statistics402

The first and second order statistics of the velocity filed are analysed.403

Figure 1 top-panel reports the mean non-dimensional stream-wise velocity404

along the wall coordinate. PSS and LES lead to similar profiles in the near-wall405

region (y+ < 30), while the former exhibits slightly lower values in the log-law406

region (y+ > 30). They underestimate the velocity magnitude at the centre407

channel and, as expected, both are not accurate in reproducing the boundary408

layer profile. This is a well known shortcoming of Smagorinsky model when c2s409

is constant, and it is inherited by the constant isotropic model.410
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Fig. 1 First and second order statistics of velocity field versus non-dimensional vertical
coordinate (wall coordinate). Top panel: non-dimensional mean stream-wise velocity. Bottom
panel: non-dimension velocity root-mean square. Reference DNS by [28].

Figure 1 bottom-panel displays the velocity RMS components. If ψ is a411

generic variable, we denote [ψ]rms =
√
〈ψ′2〉 the root-mean square, where412

ψ′ = ψ − 〈ψ〉 is the instantaneous fluctuation. Both PSS and LES collapse on413

the same profiles.414

Because the isotropic model is very similar to the Smagorinsky model, an415

improvement of accuracy by the PSS is not expected. The interest of this416

validation is to prove that the pseudo-stochastic model is as accurate as the417

state-of-the-art LES methodologies, despite its derivation relies to a substan-418

tially different framework and its governing equations include several extra419

terms, which are analysed in the following sections.420
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Fig. 2 Mean value of non-dimensional terms appearing in the pseudo-stochastic model with
constant isotropic model, equation (19): component x along the wall-normal coordinate. EV,
eddy-viscosity terms; RT, rotational term; SD, strain-rate diffusion.

Effects of the extra terms in PSS421

The LES constant Smagorinsky model and the PSS constant isotropic model422

lead to similar governing equations, but the latter has some additional terms423

not present in the former: the eddy-viscosity terms (EV), the rotational term424

(RT) and the strain-rate diffusion (SD) defined in equation (19). The influence425

of such terms is checked.426

Figure 2 shows the x-component of the above-mentioned terms (averaged)427

versus the wall coordinate. They are made non-dimensional by u3τ/ν. In LES,428

the term EV accounts for all sub-grid scale effects and represents a negative429

turbulent diffusion near the wall. In the PSS constant isotropic model, two430

other terms come into play: SD is negative in the region y+ < 10, while it431

shows positive value at y+ > 10; RT exhibits a positive contribution against432

the negative one of EV. The three terms become negligible in the log-law433

region; hence, the SUS model acts mainly at the near-wall region. The point434

y+ = 10, located in the buffer layer, is of particular interest: approximately435

at this height, EV and RT reach the minimum and maximum (respectively),436

while SD changes sign. Globally, the RT and SD terms reduce the negative437

contribution of EV to the velocity equations in the buffer region, eventually438

producing a positive turbulent diffusion.439

Turbulent advection and compressibility440

Figure 3 presents the non-dimensional turbulent advection velocity u+ta =441

uta/uτ and the turbulent compressibility Φ+
tc = Φtcu

2
τ/ν are scrutinised. The442

stream-wise component of uta is practically zero, as well as the span-wise com-443

ponent; thus they are not displayed. The vertical component profile reveals low444
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Fig. 3 Mean value of non-dimensional turbulent advenction (12) and compressibility (13)
appearing in the pseudo-stochastic model with constant isotropic model: x-component along
the wall coordinate.

negative values, with a climax at y+ ∼= 10. Quantitatively, the turbulent ad-445

vection is not strong enough to produce remarkable results on the mean flow;446

however, it generates a weak vertical velocity wy directed from the center to447

the wall of the channel (not reported). Hence, uta is qualified as a weak tur-448

bophoresis velocity: it advects the flow from the buffer region to the log-law449

region, i.e. in the direction of decreasing turbulence level (estimated by the450

velocity RMS intensity). The turbulent compressibility Φtc assumes negative451

values in the viscous sub-layer and positive values in the buffer layer. Else-452

where, it is practically zero. In light of equation (11), this behaviour is related453

to the presence of a turbulent fluid compression and expansion, respectively.454

Additional insight on this phenomenon is gained visualising the Φtc instanta-455

neous values.456

Figure 4 displays the Φtc negative (blue) and positive (orange) isosurfaces457

near the bottom wall, at an instantaneous flow configuration. They are organ-458

ised in spots, confined in the near-wall region and elongated in the stream-459

wise direction. In accordance with the Φtc mean profile, the negative spots460

are closer to the wall (y+ < 10), while the positive one are immediately above461

(10 < y+ < 20). The shape and the location of the isosurfaces suggest a corre-462

lation with the streaks structures that characterises turbulent wall flows. The463

streaks are generated in a region of low velocity, very close to the wall, ap-464

proximately at y+ ' 5. They are elongated in the stream-wise direction, with465

a characteristic length of ∆x+ ∼= 1000 and a span-wise period of ∆z+ ∼= 100.466

This estimation can vary with respect to the wall distance, see Smith & Met-467

zler [44]. Despite their widespread presence, there is no clear consensus on468

the streak formation mechanism and multiple theories have been proposed in469

literature, see Chernyshenko & Baig [6]. The Φtc isosurfaces have, overall, the470
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Fig. 4 Positive and negative isosurfaces of Φtc near the bottom wall at an instantaneous
flow configuration. Orange: isosurface at Φ+

tc = 3.5/times10−4. Blue: isosurface at Φ+
tc =

−3.5/times10−4.
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Fig. 5 Selected contributions to the pseudo-stochastic TKE budget versus wall-normal
coordinate. The TKE terms are labelled as in equation (8). Results of three simulations
are displayed: PSS with constant isotropic model, black lines with solid symbols; LES with
constant Smagorinsky model, red lines with empty symbols.

same stream-wise extension and span-wise period. Also, the negative spots are471

located at the same height at which steaks are triggered. Therefore, these two472

structures appears to be related.473

Resolved turbulent kinetic budget474

The pseudo-stochastic TKE budget (8) is finally scrutinised for PSS and LES475

simulations476
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Figure 5 shows selected terms of the TKE budget. Production and dissipa-477

tion profiles are similar for PSS and LES, but the former appears to be more478

effective in energy dissipation in near-wall region and has a higher production479

of TKE in the range 5 < y+ < 20. In the PSS, the turbulent compression480

term is almost zero and does not contribute to the budget; while the loss due481

to SUS presents slightly negative values mainly localised in the viscous layer.482

Hence, it contributes to global energy dissipation.483

6 Conclusions484

The pseudo-stochastic simulation (PSS) methodology introduced by Mémin [24]485

is analysed theoretically and numerically, through a direct comparison with486

the classical large-eddy simulations (LES) approach. The PSS model is based487

on an innovative decomposition of the fluid-particle trajectory in a drift dis-488

placement and a stochastic perturbation. The former reproduces the mean489

flow, the later accounts for the turbulent perturbations which are modeled490

as a Brownian motion. Imposing such a decomposition, together with a reg-491

ularity assumption on the drift velocity, a set of deterministic and stochastic492

equations of motion are derived using stochastic calculus; then, the pseudo-493

stochastic equations are obtained by neglecting the solution of stochastic equa-494

tions and closing the system by physical assumptions. The result is a new set495

of governing equations which includes extra terms deriving from the stochas-496

tic modeling of turbulence. The PSS model is found to be a generalisation of497

the classical Navier-Stokes equations, and reproduces phenomena usually not498

considered: turbophoresis and turbulent compressibility.499

The PSS of turbulent channel flow at Reτ = 590 is performed, together500

with the LES with constant Smagorinsky sub-grid scale model. For a better501

comparison, a closure model analogous to the Smagorinsky one is used for the502

PSS. However, it is shown that this last does not rely on the eddy-viscosity hy-503

potheses, hence it is not affected by its shortcomings. The PSS does not show504

improvement in first and second order statistics, possibly because of the sim-505

ple expression of aij , but reproduces additional features: a weak turbophoresis506

is detected in the buffer region, while a turbulent compression and expansion507

is identified in the viscous and buffer layer (respectively). This quantity ap-508

pears to be related to the streaks, turbulent structures appearing near the wall509

region.510

Finally, the pseudo-stochastic model is a generalisation of the LES eddy-511

viscosity model and describes a richer physics. Overall, it represents a promis-512

ing approach for simulation of turbulent flows: the mathematical analysis here513

reported gives a clear physical interpretation of the model, supported by nu-514

merical results.515
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A . Formal derivation of stochastic model516

The mathematical conditions under which this derivation is consistent are reported in [9,26,517

27]. An introduction to the mathematical framework in which the present model is developed518

can be found in Øksendal [31] and Kunita [18].519

A.1 Trajectory and stochastic velocity definitions520

As already mentioned, expression (1) has to be understood in an integral sense:521

Xi
t = Xi

0 +

∫ t

0
wi(Xs, s)ds+

∫ t

0
dηis(Xs), (21)522

where the Itō stochastic integral is used to integrate the random process. The process Xi
t(x0)523

is a semimartingale defined for each spatial point x0 ∈ Ω and time t ∈ T ⊆ R+ in an524

appropriate probability space.525

The stochastic velocity in equation (3) is a symbolic expression that is defined as a weak526

derivative of the random displacement:527 ∫
h(t)η̇it(x)dt =

∫
h′(t)ηit(x)dt, (22)528

for each h test function; see also [31].529

A.2 The stochastic Reynolds transport theorem530

Being the velocity field a stochastic process, the governing equations of fluid dynamics531

cannot be recovered using deterministic calculus, ref. [24,27]. In this concern, the key point532

is to give an expression of the Reynolds transport theorem (RTT) for stochastic quantities.533

Subsequently, the stochastic Navier-Stokes equations are found imposing conservation of534

mass and momentum.535

Theorem 1 (Stochastic RTT) Let us consider a physical quantity q(x, t) within a ma-536

terial volume V (t) ⊂ R3, transported by a stochastic flow of the form (1) and such that it537

can be written as a semimartingale of the type:538

q(x, t) = q(x, 0) +

∫ t

0
g(x, s)ds+

∫ t

0

∫
Ω
fk(x, y, s)dBks (y)dyds, (23)539

where g, f are processes of bounded-variation and the Itō integral are employed. If the fol-540

lowing properties holds:541

1. symmetric diffusion tensor: σij = σji,542

2. solenoidal diffusion tensor: ∂
∂xi

σij(x, y, t) = 0 for all j,543

3. conserved quantity: dq(Xt, t) = 0,544

then the stochastic RTT has an explicit differential form that reads:

d

∫
V (t)

q(x, t)dx =

∫
V (t)

[
∂tq +

∂(qwi)

∂xi
dt−

1

2

∂2(qaij)

∂xi∂xj
dt+

∂q

∂xi
dηit

]
dx, (24)

where ∂t is the differential with respect to the second variable, and d denotes the total time545

increment at a fixed spatial point.546
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Assumption (1) greatly simplifies the computation and can be justified a posteriori : it implies547

that the variance tensor aij is symmetric, a desirable properties in light of its physical548

interpretation (see section 3.1). Therefore, this assumption is considered reasonable in the549

fluid dynamics context; however it is not mandatory, see [37]. Hypothesis (2) can be removed,550

but the stochastic RTT expression assumes a more complex formulation. It is found that this551

constrain is naturally satisfied by fluids where density is constant in space (see section A.3),552

thus formula (24) is directly applied when the flow is incompressible or when the Boussinesq553

approximation is applied. On the contrary, an explicit formula has not been derived for a554

generic non-conserved quantity; hence hypothesis (3) is essential.555

Notice that equation (24) reduces to the classical RTT when the stochastic contribu-556

tion in equation (1) is suppressed. This happens e.g. when σij = 0 and, consequently, the557

martingale ηit as well as the variance tensor are identically zero.558

559

A concise derivation of the stochastic RTT is now presented. A generic random process560

φ(x, t) is expressed hereafter as a semimartingale of the form:561

φ(x, t) = φ(x, 0) +

∫ t

0
g(x, s)ds+

∫ t

0

∫
Ω
fk(x, y, s)dBks (y)dyds, (25)562

where g, f are processes of bounded-variation and the Itō integral are used.563

Proposition 1 (Differential of transported process) Let us consider φ a semimartin-
gale of the type (25), sufficiently regular in space (bounded spatial gradient, two times deriv-
able). If it is transported by a flow of the form (21); then, the time total-differential of φ is
expressed by:

dφ(Xt, t) = ∂tφ+
∂φ

∂xi
dXi

t +
1

2
aij(Xt, t)

∂2φ

∂xi∂xj
dt+

∫
Ω
σij(Xt, y, t)

∂

∂xi
fj(Xt, y, t)dydt,

(26)

where ∂t is the time partial-differential (i.e. with respect to second variable), and aij is the564

variance tensor defined by equation (4).565

Proof: The Itō -Wentzell formula is used to differentiate (in time) the transported process
φ(Xt, t), corresponding to a composition of two processes. It reads:

dφ(Xt, t) = ∂tφ+
∂φ

∂xi
dXi

t +
1

2
d
〈
Xi, Xj

〉
t

∂2φ

∂xi∂xj
+ d

〈
∂φ

∂xi
, Xi

〉
t

, (27)

where the angular brackets denote the quadratic variation operation; e.g. see Le Gall [19] for566

an extended presentation. The following properties of the quadratic variation are recalled:567

1. is symmetric and bilinear;568

2. if g is a process of bounded-variation:
〈
g,Bk

〉
t

= 0569

3. if f is deterministic function:
〈
fBi, Bj

〉
t

= f
〈
Bi, Bj

〉
t

570

4. singularity: d
〈
Bi(y), Bj(z)

〉
t

= δ(y − z)δijdt571

where Bt is a cylindrical Wiener process, δ(x) is the Dirac function and δij is the Kronecker
symbol. Using these properties, the third and fourth terms in equation (27) are written
explicitly. The third term is directly computed:

d
〈
Xi, Xj

〉
t

=

∫
Ω
σik(Xt, y, t)σjk(Xt, y, t)dydt = aij(Xt, t)dt. (28)

In the fourth term, the gradient of φ is obtained differentiating equation (25):

∂

∂xi
φ(Xt, t) =

∂φ0

∂xi
+

∫ t

0

∂

∂xi
g(Xs, s)ds+

∫ t

0

∫
Ω

∂

∂xi
fk(Xs, y, s) dB

k
s (y)dyds, (29)

then, the last term in (27) is rewritten as:

d

〈
∂φ

∂xi
, Xi

〉
t

=

∫
Ω
σij(Xt, y, t)

∂

∂xi
fj(Xt, y, t)dydt. (30)

Substituting formula (28) and (29) in equation (27), expression (26) is recovered. �572
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Proposition 2 (Differential of transported and conserved process) Let us consider
a stochastic process φ of the type (25). If such a process is transported by a stochastic flow
(21) and is conserved, i.e. dφ(Xt, t) = 0, then:

∂tφ(Xt, t) = −
∂φ

∂xi
widt+

1

2
aij

∂2φ

∂xi∂xj
dt+

∫
Ω

∂φ

∂xk

∂σkj

∂xi
σijdydt−

∫
Ω

∂φ

∂xi
σikdB

k
t dy.

(31)

This formula expresses the time variation along a fluid-particle trajectory.573

Proof: If φ(Xt, t) is conserved, then equation (26) can be re-arranged as follows:

∂tφ(Xt, t) = −
∂φ

∂xi
widt−

∫
Ω

∂φ

∂xi
σik(Xt, y, t)dB

k
t (y)dy−

−
1

2
aij

∂2φ

∂xi∂xj
dt−

∫
Ω
σij(Xt, y, t)

∂

∂xi
fj(Xt, y, t)dydt. (32)

An expression of ∂tφ is obtained also from (25), and is compared with formula (32). Ex-
ploiting the unique decomposition of the semimartingales, one obtains:

g(Xt, t) = −
∂φ

∂xi
wi −

1

2
aij

∂2φ

∂xi∂xj
−
∫
Ω
σij(Xt, y, t)

∂

∂xi
fj(Xt, y, t)dy, (33)

and the following implicit formula for f :574 ∫
Ω

[
fk(Xt, y, t) +

∂φ(Xt, t)

∂xi
σik(Xt, y, t)

]
dBkt (y)dy = 0. (34)575

This latter holds for every Brownian motion dBkt , thus:576

fk(Xt, y, t) = −
∂φ(Xt, t)

∂xi
σik(Xt, y, t). (35)577

Substituting formula (35) in equation (32) the final expression (31) is obtained. �578

579

Notice that a general form of a conserved semimartingale can be found by substituting580

equation (33) and (35) in formula (25).581

Translating equation (31) from Lagrangian to Eulerian coordinates and rearranging the582

second and third terms in the left-hand side, one obtains the expression of the material583

derivative (in differential form) within the stochastic framework.584

Proposition 3 (Stochastic transport operator) If φ is a stochastic process of the type
(25), transported by a stochastic flow (21) and conserved, then the stochastic material
derivative in differential form is:

Dφ(x, t) = ∂tφ+ (widt+ dηit)
∂φ

∂xi
−

1

2

∂

∂xi

(
aij

∂φ

∂xj

)
dt

−
(

1

2

∂aij

∂xi
−
∫
Ω
σkj

∂σij

∂xi
dy

)
∂φ

∂xj
dt, (36)

which is reported in [37] as the stochastic transport operator for a conserved quantity.585

The derivation of Stochastic RTT is now summarised. Let us consider a generic physical586

quantity, mathematically expressed by a stochastic scalar process q(x, t) that satisfies the587

hypotheses of Stochastic RTT. The solution of transport equation is found in the space of588

weak solutions.589

590
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Proof (Stochastic RTT): Consider a control volume V (t) and a test function ϕ(x, t) in
the space domain Ω such that: it has compact support on V (t), it is conserved and satisfies
(25). Then, the weak transport equation for q reads:

d

∫
V (t)

q(x, t)ϕ(x, t)dx =

∫
Ω

[
ϕ∂tq + q∂tϕ+ d 〈q, ϕ〉t

]
dx, (37)

applying the Itō integration by part and passing to the integral on Ω because ϕ has compact
support on V . The last term on the right-hand side needs to be explicited. An expression of
q and ϕ is given by the semimartingale decomposition (25):

ϕ = ϕ(x, 0) +

∫ t

0
g(x, s)ds+

∫ t

0

∫
Ω
fj(x, y, s)dB

j
sdy, (38)

q = q(x, 0) +

∫ t

0
h(x, s)ds+

∫ t

0

∫
Ω
κj(x, y, s)dB

j
sdy, (39)

where explicit formulae for g, h, f, κ are given, see proof of Proposition 2. Using these ex-
pressions to compute the quadratic variation, we get:

d 〈q, ϕ〉t = d

∫ t

0

〈∫
Ω
κidB

idy,

∫
Ω
fjdB

jdz

〉
t

=
∂q

∂xk

∂ϕ

∂x`
ak`dt, (40)

The same expressions are differentiated to express ∂tq(x, t) and ∂tϕ(x, t), that are substi-
tuted in the transport equation (37) together with formula (40). Subsequently, ϕ is used to
compute the weak derivative and gathered; the final equation reads:

d

∫
Ω
q(x, t)ϕ(x, t)dx =

∫
Ω
ϕ

[
∂tq +

∂qwi

∂xi
dt+

1

2

∂2

∂xi∂xj
(qaij) dt−

−
∂

∂xk

∫
Ω
q
∂σkj

∂xi
σijdydt+

∂

∂xi

(
qdηit

)
−

∂

∂x`

(
∂q

∂xk
ak`

)
dt

]
dx. (41)

Equation (41) is valid for every test function ϕ with compact support in V (t), thus:

d

∫
V
q(x, t)dx =

∫
V

[
∂tq +

∂qwi

∂xi
dt+

∂

∂xi

(
qdηit

)
+

1

2
q

∥∥∥∥∂σ∂x
∥∥∥∥2 dt

−
1

2

∫
Ω

(
q
∂σik

∂xj

∂σkj

∂xi
+

∂2q

∂xi∂xj
σikσkj + 2σij

∂q

∂xk

∂σkj

∂xi

)
dydt

]
dx, (42)

where the terms are rearranged and the definition of variance tensor is used to simplify591

some terms. Equation (42) is the general form of Stochastic RTT, that is quite complex and592

eventually difficult to handle. One can notice that under the additional hypothesis that the593

random term is solenoidal in space, i.e.594

∂

∂xi
dηit(x) = 0 ⇔

∂

∂xi
σik(x, y, t) ≡ 0, (43)595

where the if and only if statement holds because the Brownian motion is arbitrarily chosen,
the equation (42) simplifies to:

d

∫
V
q(x, t) dx =

∫
V

[
∂tq +

∂ (qwi)

∂xi
dt−

1

2

∂2 (qaij)

∂xi∂xj
dt+

∂
(
qdηit

)
∂xi

]
dx, (44)

that is the final form of Stochastic RTT. �596

597

In the following section, it is shown that the assumption of a solenoidal random turbu-598

lence field is satisfied by incompressible fluids, thus the simpler equation (44) can be used599

to derived the equation of motion.600

It is worth noticing that the Stochastic RTT can be applied to all functions of the601

form (25); specifically, to all process of bounded-variations that are a particular case of602

semimartingale where the martingale term is zero.603
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A.3 Derivation of Stochastic Navier-Stokes equations604

The derivation of governing equations for fluid flows is performed with a similar strategy as605

in the classical framework, e.g. see [17].606

Conservation of mass607

If ρ(x, t) is the mass density, then the conservation of mass is:

d

∫
V (t)

ρdx =

∫
V (t)

[
∂tρ+

∂ρwi

∂xi
dt+

∂

∂xi

(
ρdηit

)
+

1

2
ρ

∥∥∥∥∂σ∂x
∥∥∥∥2 dt (45)

−
1

2

∫
Ω

(
ρ
∂σik

∂xj

∂σkj

∂xi
+

∂2ρ

∂xi∂xj
σikσkj + 2σij

∂ρ

∂xk

∂σkj

∂xi

)
dydt

]
dx = 0, (46)

where the general form of Stochastic RTT (42) is used here. For an incompressible fluid,608

density is constant ρ(x, t) = ρ and the mass conservation equation simplifies accordingly.609

The integral is then removed exploiting the arbitrariness of control volume:610

∂wi

∂xi
dt+

∂

∂xi
dηit +

1

2

∥∥∥∥∂σ∂x
∥∥∥∥2 dt− 1

2

∫
Ω

∂σik

∂xj

∂σkj

∂xi
dydt = 0. (47)611

Separating the processes of bounded-variation and the martingales, the following system is
recovered: (

∂wi

∂xi
+

1

2

∥∥∥∥∂σ∂x
∥∥∥∥2 − 1

2

∫
Ω

∂σik

∂xj

∂σkj

∂xi
dy

)
dt = 0,

∂

∂xi
dηit = 0. (48)

Equation (48) shows that for an incompressible fluid the Brownian term is solenoidal; thus,612

the use of the simplified expression Stochastic RTT (44) is a posteriori justified for incom-613

pressible fluids. Using the solenoidal constraint, equations (48) leads to the system:614

∂

∂xi

(
wi −

1

2

∂

∂xj
aij

)
= 0,

∂

∂xi
σik = 0, (49)615

which expresses the conservation of mass.616

Conservation of momentum617

Two derivations are proposed, they are named Lagrangian and Eulerian for convenience of618

notation. The former is based on the work of [27], the latter on that one of [24].619

620

• Lagrangian: The second Newton’s law is:621

d

dt
ρUi(Xt, t) = Fi(Xt, t), (50)622

where Fi are the forces acting on a fluid-particle. If Ii if the time integral of the forces (the623

impulse), equation (50) is re-written in a differential form as dρUi = dIi. It is expressed in624

a weak form as:625

ρ

∫
h dUi(Xt, t) =

∫
h dIi(Xt, t), (51)626

where h are test functions and ρ is constant. The left-hand side is:627

ρ

∫
h dUi(Xt, t) = ρ

∫
h dwi(Xt, t)− ρ

∫
h′dηit, (52)628
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then, the right-hand side of equation (51) must have the same structure, see [27]. Hence,629

the impulse divides into two contributions and equation (51) becomes:630

ρ

∫
h dwi(Xt, t)− ρ

∫
h′dηit =

∫
h dJi −

∫
h′dλtt. (53)631

Matching similar terms, we arrived at the following relations:

ρdwi = dJi, dηit = dλit. (54)

Equations (54)-first is exploited to obtain the governing equation of motion, while (54)-632

second states that the forces balance the contribution of random velocities. In Eulerial633

framework, this latter reads:634

ρDwi(x, t) = dJi(x, t), (55)635

Applying the stochastic transport operator (36) with the solenoidal constrain (49), one gets:636

637

Dwi = ∂twi + (wj −
1

2

∂akj

∂xk
)
∂wi

∂xj
dt−

1

2

∂

∂xk

(
ajk

∂wi

∂xj

)
dt+ dηjt

∂wi

∂xj
, (56)638

while the impulse is determined by a physical analysis of the forces acting on the system,
as in the classical derivation:

dJi = −
∂

∂xi
(pdt− dξt) + µ

∂2

∂xj∂xj

(
dXi

t

)
+
µ

3

∂

∂xi

∂

∂x`

(
dX`

t

)
(57)

=

[
−
∂p

∂xi
+ µ

∂2wi

∂xj∂xj
+
µ

3

∂2w`

∂xi∂x`

]
dt−

∂(dξt)

∂xi
+ µ

∂2
(
dηit
)

∂xj∂xj
+
µ

3

∂2
(
dη`t
)

∂xi∂x`
, (58)

with µ is the fluid viscosity, and pressure is written in a semimartingale form (25) where639

dξt(x) =
∫
Ω ϑi(x, y, t)dB

i
t(y)dy denotes the martingale contribution to pressure. Imposing640

the equality (55) and using the unique decomposition of semimartingale, the governing equa-641

tions (63) are recovered.642

643

• Eulerian: Once again, the momentum conservation is formulated in differential form. If644

Ji(x, t) is the impulse of total forces per volume, the second law of mechanics reads:645

d

∫
V (t)

ρUi(x, t)dx =

∫
V (t)

dJi(x, t)dx. (59)646

The Stochastic RTT is applied to the left-hand side in order to get:

d

∫
V (t)

ρUi dx =

∫
V (t)

ρ

[
∂twi +

∂

∂xj
(wiwj)dt−

1

2

∂2

∂xs∂xk
(wiask) dt+

+
∂

∂xj

(
widη

j
t

)]
dx+ d

∫
V (t)

ρ η̇itdx, (60)

where the velocity decomposition (3) is employed. The impulse acting on V (t) is expressed
by (58). Then, imposing equality (59) and separating the processes of bounded-variation to
the martingales, one obtains:

∂twi +
∂wiwj

∂xj
dt−

1

2

∂2(wiask)

∂xs∂xk
dt = −

∂p

∂xi
dt+ ν

∂2wi

∂xj∂xj
dt+

ν

3

∂

∂xi

∂w`

∂x`
dt (61)

with ν = µ/ρ is the dynamic viscosity, and

d

∫
V (t)

η̇itdx =

∫
V (t)

[
−

∂

∂xi
dξt + ν

∂2

∂xj∂xj
dηit − dη

j
t

∂wi

∂xj

]
dx (62)
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where the conservation of mass constrain (49) is applied to simplify the formula. Notice that647

the expected value of noise is zero because the random displacement is uncorrelated in time.648

Then, the integral at the right-hand side can be interpreted as a spatial empirical mean of649

zero-mean random process, and have to be null. With this simplification, the system (63) of650

fluid dynamics equations is obtained.651

652

Finally, the stochastic model for an incompressible (Newtonian) fluid reads:653 

∂wi

∂t
+
∂(wjwi)

∂xj
= −

∂p

∂xi
+ ν

∂2wi

∂xj∂xj
+
ν

3

∂

∂xi

∂w`

∂x`
+

1

2

∂2 (askwi)

∂xs∂xk

∂

∂xi

(
wi −

1

2

∂

∂xj
aij

)
= 0

1

ρ

∂

∂xi
dξt = ν

∂2

∂xj∂xj
dηit − dη

j
t

∂wi

∂xj

∂

∂xi
dηit = 0

(63)654

The system is composed by two coupled sets of deterministic and stochastic non-linear655

partial differential equations, in the unknowns wi and σij . The pseudo-stochastic model is656

obtained by avoiding the resolution of the last two stochastic equations, and closing the657

system by providing an expression aij through physical assumptions.658

Let us also outline that the system (63) has been obtained under the assumption that659

the drift velocity is of bounded variation. Removing this assumption, the separation of660

the regular and the stochastic terms cannot be performed anymore. Hence, one obtains661

a fully stochastic Nevier-Stokes composed by stochastic partial differential equations. For662

geophysical flows (for isochoric flows in general), the continuity equations is also stochastic;663

see [37].664
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40. Resseguier, V., Mémin, E., Heitz, D., Chapron, B.: Stochastic modelling and diffusion760

modes for proper orthogonal decomposition models and small-scale flow analysis. Jour-761

nal of Fluid Mechanics 826, 888–917 (2017). DOI 10.1017/jfm.2017.467762

41. Roman, F., Stipcich, G., Armenio, V., Inghilesi, R., Corsini, S.: Large eddy simulation763

of mixing in coastal areas. International Journal of Heat and Fluid Flow 31(3), 327 –764

341 (2010). DOI doi.org/10.1016/j.ijheatfluidflow.2010.02.006765

42. Sagaut, P.: Large eddy simulation for incompressible flows. An introduction. Springer766

(2000)767

43. Smagorinsky, J.: General circulation experiments with the primitive equations: I. the768

basic experiment. Mon. Weather Rev. 91, 99 (1963)769

44. Smith, C.R., Metzler, S.P.: The characteristics of low-speed streaks in the near-wall770

region of a turbulent boundary layer. Journal of Fluid Mechanics 129, 27–54 (1983).771

DOI 10.1017/S0022112083000634772


	Introduction
	Pseudo-Stochastic Model
	Analysis of pseudo-stochastic model
	Variance tensor model
	Numerical simulations
	Conclusions
	. Formal derivation of stochastic model

