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ALLASSONNIÈRE AND CHEVALLIER 1

A New Class of EM Algorithms. Escaping Local
Minima and Handling Intractable Sampling

Stéphanie Allassonnière and Juliette Chevallier

Abstract—

The expectation-maximization (EM) algorithm is a powerful computational technique for maximum likelihood estimation in incomplete
data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used.
The convergence of the SAEM toward local maxima of the observed likelihood has been proved and its numerical efficiency has been
demonstrated. However, despite appealing features, the limit position of this algorithm can strongly depend on its starting position.
Moreover, sampling from the posterior distribution may be intractable or have a high computational cost. To cope with this two issues,
we propose here a new stochastic approximation version of the EM in which we do not sample from the exact distribution in the
expectation phase of the procedure. We first prove the convergence of this algorithm toward local maxima of the observed likelihood.
Then, we propose an instantiation of this general procedure to favor convergence toward global maxima. Experiments on synthetic and
real data highlight the performance of this algorithm in comparison to the SAEM.

Index Terms—EM-like algorithm, stochastic approximation, stochastic optimization, tempered distribution, theoretical convergence.

F

1 INTRODUCTION

A LTHOUGH the expectation-maximization (EM) algo-
rithm [1] is a very popular and often efficient approach

to maximum likelihood (or maximum a posteriori) estimation
in incomplete data models, as it a simple use algorithm,
it has one major issue : the computation of the expecta-
tion with respect to the conditional distribution. Indeed,
in certain situations, the EM is not applicable because the
expectation step cannot be performed in closed form. To
overcome this restriction, many different options have been
proposed. The first one is to replace the expectation step
by a sampling of the unobserved data step. We refer to
this EM version as the Stochastic EM (SEM) algorithm [2].
In particular, in the SEM, only one sample of the latent
variable is drawn. A possible generalization of the SEM is
the Monte-Carlo EM (MCEM) [3], in which a Monte-Carlo
implementation of the expectation in the E-step is carried
out. In an alternative way, Delyon, Lavielle and Moulines
[4] proposed to replace the expectation step of the EM
algorithm by one iteration of a stochastic approximation
procedure, referred to as SAEM, standing for stochastic
approximation EM. In addition to avoiding the computation
of the expectation, introducing randomness may enable to
escape local maxima. However, this is not yet theoretically
proved nor numerically illustrated in the literature.

The convergence of the SAEM toward local maxima has
been proved in [4] and its numerical efficiency has been
demonstrated in several situations such as in inference in
hidden Markov models [5]. However, despite appealing
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features, the limit position of this algorithm can strongly
depend on its initialization. In order to avoid convergence
toward local maxima, Lavielle and Moulines [6] have pro-
posed a simulated annealing version of the SAEM. The
main idea was to allow the procedure to better explore the
state-space by considering a tempered version of the model.
More precisely, assuming that the data are corrupted by an
additive Gaussian noise with variance σ2, at each iteration
k of the SAEM algorithm, they consider the ”false” model
in which the noise variance is equal to ((1 + Tk)σ)2, where
(Tk) is a positive sequence ot temperatures that decreases
slowly toward 0. Therefore, the bigger Tk is, the more the
likelihood of the model is flattened and the optimizing se-
quence can escape easily from local maxima. The simulations
gave good results but there were no theoretical guarantee
for this procedure. Based on the same idea, Lavielle [7] has
proposed to use the simulated-annealing process as a ”trick”
to better initialize the SAEM algorithm. This initialization
scheme is implemented in the MONOLIX software and gives
impressive results on real data [8], [9], [10].

All theoretical results regarding the convergence of the
SAEM algorithm assume that we are able to sample from the
posterior distribution, but in practice it may be intractable
or have a high computational cost. To overcome this issue,
Picchini and Samson [11] have proposed to couple the
SAEM algorithm to an approximate Bayesian computation
step (ABC, see [12] for a review), leading to the ABC-SAEM
method in which ABC is used to sample from an approxima-
tion to the posterior distribution. Simulations show that this
algorithm can be calibrated to return accurate inference, and
in some situations it can outperform a version of the SAEM
incorporating the bootstrap filter. However, [11] do not
provide any theoretical guarantee of its convergence. More
broadly, when sampling from the posterior distribution is
prohibitive, one may want to shift to variational inference
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[13], [14], [15].
Behind variational inference, the main idea is to replace

the objective function by a minorant function which is
a trade off between a likelihood and a Kullback-Leibler
(KL) divergence between the conditional distribution and
a parametric probability density function. This minimizing
function is then optimized by a stochastic gradient descent.
These methods are known to converge toward local minima
for bounded parameters or positive objective functions.

We propose here a new stochastic approximation version
of the EM algorithm where we do not sample from the exact
distribution but rather from a distribution which converges
to the conditional one along the algorithm iterations. This
new procedure allows us to derive a wide class of SAEM-
like algorithms, including the ”trick” initialized SAEM of
[7] and the ABC-SAEM algorithms, to cope with intractable
or difficult sampling. We refer to this new algorithm as the
approximated-SAEM.

This general framework allows us to build a procedure,
with the thought of the simulated annealing version of the
SAEM [6], to favor convergence toward the global maxima.
We introduce a sequence of temperatures and sample from
a tempered version of the conditional distribution. There-
fore, the conditional likelihood of the model is ”flattened”
and the optimizing sequence can escape more easily from
local maxima. We refer to this particular instantiation as the
tempering-SAEM. Note that our tempering-SAEM differs to
the ones of Lavielle and Moulines [6] as we do not modify
the model but only the sampling-step.

In Section 2, we introduce our new stochastic approxima-
tion version of the EM algorithm, namely the approximated-
SAEM, and prove the convergence of this algorithm toward
local maxima under usual assumptions. The demonstration
of the convergence, by its similarity with the proof of the
convergence of the SAEM, highlights the unconstraining
nature of the different assumptions and therefore the great
applicability of our algorithm. Then, we provide a theo-
retical study of the convergence of the tempering-SAEM
toward local maxima. We also give an heuristic to the con-
vergence toward ”less local” maxima. Section 3 is dedicated
to experiments. The first application we take into account
is the maximum likelihood estimation of the parameters of
a multivariate Gaussian mixture models. This example sup-
ports the previous heuristic discussion and gives intuitions
into the behavior of the tempering-SAEM algorithm. The
second application consists in independent factor analysis
[16]. In both applications, we focus on the contribution of
the tempering-SAEM in comparison to the SAEM.

2 MAXIMUM LIKELIHOOD ESTIMATION THROUGH
AN EM-LIKE ALGORITHM

We use in the sequel the classical terminology of the missing
data problem, even though the approaches developed here
apply to a more general context.

Let Y ⊂ Rny denote the set of observations, Z ⊂ Rnz
the set of latent variables and Θ ⊂ Rnθ the set of admissible
parameters. Let µ be a σ-finite positive Borel measure on
Z . For sake of simplicity, we will use the notation q for
different likelihoods, specifying their variables in brackets.
In particular, for all (y; θ) ∈ Y ×Θ, q(y, · ; θ) is the complete

likelihood given the observation y and parameter θ and
we assume it is integrable with respect to the measure µ.
As for, we note q(y; θ) =

∫
Z q(y, z; θ) dµ(z) the observed

likelihood and q(z|y; θ) = q(y,z;θ)
q(y;θ) the posterior distribution

of the missing data z given the observed data y. Our goal
is to estimate the parameters that maximize the likelihood
of the observations of n independent samples of a random
variable Y , i.e. that maximize the observed data likelihood.

2.1 A New Stochastic Approximation Version of the EM
Algorithm

We propose in this contribution a generalization of the
SAEM algorithm, referred to as approximated-SAEM. Sim-
ilar to the SAEM, the basic idea is to split the E-step into a
simulation step and a stochastic averaging procedure. This
averaging concerns the conditional expected log-likelihood

θ 7→ Q(θ|θk) =

∫

Z
log q(y, z|θ)q(z|y, θk) dz ,

where θk denotes the current optimal parameter. Starting
from Q0(θ) = 0 for all θ ∈ Θ, we build an approximation
of θ 7→ Q(θ|θk) through stochastic approximation of the
compete log-likelihood. We denote Qk this approximation.
In the original SAEM, the S-step consists in generating
realizations of the missing data vector under the posterior
distribution q(·|y; θ). Here, we propose to sample under
approximation of the posterior distribution. The following
paragraph describes this new algorithm.

Let γ = (γk)k∈N be a sequence of positive step-size
for the stochastic approximation, and q̃ = (q̃k)k∈N be a
sequence of approximated distributions on Z × Θ such that
for all k ∈ N and all θ ∈ Θ, q̃k(·; θ) is integrable on Z
with respect to the measure µ. As in the SAEM, once the
step size γk decreases, we can consider a constant number
of simulations. In practice (and from now on to avoid
cumbersome notations), as the S-step is generally the most
computationally costly, we set this number to one. Then, the
approximated-SAEM iterates the following three steps:

S-step: Sample the latent variable z̃k under the approx-
imated density q̃k(·; θk);

SA-step: Update Qk(θ) as

Qk(θ) = Qk−1(θ)+γk
(

log q(y, z̃k; θ)−Qk−1(θ)
)

;

M-step: Maximize Qk(θ) in the feasible set Θ, i.e. find
θk+1 ∈ Θ such that

∀θ ∈ Θ, Qk(θk+1) > Qk(θ) .

Note that without approximation, i.e. if the approxi-
mated densities q̃k match with the correct posterior dis-
tribution, we feature the classical SAEM. Moreover, the
approximated densities q̃k may not depend on the obser-
vations y, as in variational Bayesian methods or may be
done by ABC samplers as in ABC-SAEM. In Section 2.2,
we propose a way to build a sequence q̃ leading to good
properties in practice and theoretical guarantees are given
in the following section.
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2.1.1 Curved Exponential Family
Before establishing the convergence of this procedure, we
briefly recall the hypothesis required to prove the conver-
gence of the EM. More precisely, we restrict our attention
to models for which the complete data likelihood belongs
to the curved exponential family. In this paragraph and the
following, we keep the notations of [4]: an hypothesis stated
with a (?) means that it is a direct generalization of the
corresponding one in [4]; on the contrary, hypothesis stated
without are unchanged compared to the original one.

(M1?) The parameter space Θ is an open subset of Rnθ .
For all y ∈ Y , z ∈ Z and θ ∈ Θ, the complete
data likelihood function can be expressed as

q(y, z; θ) = exp
(
−ψ(θ) + 〈S(y, z) |φ(θ) 〉

)

where S : Rnz → S ⊂ Rns is a Borel function
and S is an open subset of Rns . The convex hull
of S(Rnz ) is included in S . For all θ ∈ Θ, all
y ∈ Y and all k ∈ N, we have

∫

Z
‖S(y, z)‖ q̃k(z; θ) dµ(z) < +∞

and
∫

Z
‖S(y, z)‖ q(z|y; θ) dµ(z) < +∞ .

Let ` : Θ→ R and L : S ×Θ→ R defined as,

for all y ∈ Y, ` : θ 7→
∫

Z
q(y, z; θ) dµ(z)

and L : (s, θ) 7→ −ψ(θ) + 〈 s |φ(θ) 〉 .
Note that if the function ` is defined as above, it implicitly
depends on y. However, as the observations y are assumed
to be i.i.d, the counterpart function that would be defined
on the whole set Y would be a sum over y of the defined `.

(M2) The functions ψ : Θ→ R and φ : Θ→ S are twice
continuously differentiable on Θ;

(M3) The function s̄ : Θ→ S is continuously differen-
tiable on Θ, where s̄ is defined as: ∀y ∈ Y ,

s̄ : θ 7→
∫

Z
S(y, z)q(z|y; θ) dµ(z) = Eθ [S(Z)] ;

(M4) The function ` : Θ → R is continuously differen-
tiable and for all y ∈ Y and θ ∈ Θ

∂θ

∫

Z
q(y, z; θ) dµ(z) =

∫

Z
∂θ q(y, z; θ) dµ(z) ;

(M5) There exists a continuously differentiable func-
tion θ̂ : S → Θ such that

∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) > L(s, θ) .

Hypothesis (M1?) differs from (M1) as we do not only
require the function z 7→ ‖S(z; θ)‖ to be integrable with
respect to the posterior measure q(·|y; θ) dµ, but also with
respect to all approximated distributions q̃k(·; θ) dµ, for all
parameters θ ∈ Θ, all observations y ∈ Y and all iterations
k ∈ N. For most models of practical interest (see for in-
stance Section 3.2), the function L(s; ·) has a unique global
maximum and the existence and the differentiability of θ̂ is a
direct consequence of the implicit function theorem.

For exponential families, the SA-step is more conve-
niently (and equivalently) replaced by an update of the

estimation of the conditional expectation of the sufficient
statistics. Let sk denote the kth approximation of the suffi-
cient statistics. Then, the k-th iteration of the approximated-
SAEM summarizes in:

sk = sk−1 + γk
(
S(y, z̃k)− sk−1

)
(1)

and θk = θ̂(sk) where z̃k ∼ q̃k(·; θk−1) ,

where sk is initialized to zero: s0(θ) = 0 for all θ ∈ Θ.

2.1.2 Convergence Toward Local Maxima
Let F̃ = {F̃k}k∈N the natural filtration with respect to the
process (z̃k)k∈N and F = {Fk}k∈N the natural filtration
with respect to the process (zk)k∈N where zk ∼ q(·|y; θk−1)
for all k. Let, for all set X , clos(X ) denotes the closure
of X and consider the following assumptions which are
generalization of the ones of [4]:

(SAEM1) For all k ∈ N, γk ∈ [0, 1],
∑∞
k=1 γk = ∞ and∑∞

k=1 γ
2
k <∞;

(SAEM2) The functions ψ : Θ → R and φ : Θ → S are
m times differentiable;

(SAEM3?) For all positive Borel functions φ, for all k ∈
N and all y ∈ Y ,

E
[
φ(Zk+1)

∣∣F̃k
]

=

∫

Z
φ(z)q̃k(z; θk) dµ(z)

and

E
[
φ(Zk+1)

∣∣Fk
]

=

∫

Z
φ(z)qk(z|y; θk) dµ(z) ;

(SAEM4?) For all θ ∈ Θ, all y ∈ Y and all k ∈ N,
∫

Z
‖S(y, z)‖2 q̃k(z; θ) dµ(z) < +∞ .

Assumption (SAEM1) is characteristic of stochastic ap-
proximation procedures in which the step-size have to
decrease not too fast. Like Assumption (M1?), (SAME3?)
is similar to (SAEM3), except that we assume that, given
θ0, . . . , θk, both simulated latent variables z̃1, . . . , z̃k and
z1, . . . , zk are conditionally independent, given their re-
spective natural filtration. In Assumption (SAEM4?), we
demand the integrability of z 7→ ‖S(y, z)‖2 with respect
to the measures q̃k(z; θ) dµ.

The following theorem ensures the convergence of our
new stochastic approximation version of the EM algorithm.
This theorem is the approximated counterpart of Theorem 5
of [4].

Theorem 2.1 (Convergence of the approximated-SAEM).
Assume that (M1?), (M2-5), (SAEM1), (SAEM2), (SAME3?)
and (SAEM4?) hold. Assume in addition that:

(A) For all y ∈ Y , the sequence
(
q̃k(·; θ)

)
k∈N converges in

mean on every compact subset of Θ for the measure S.µ
to q(·|y; θ), that is to say for all observations y ∈ Y
and all compact K ⊂ Θ,

lim
k→∞

{
sup
θ∈K

∫

Z
S(y, z)

(
q̃k(z; θ)

− q(z|y; θ)
)

dµ(z)

}
= 0 ;
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(B) With probability 1, clos ({sk}k∈N∗) is a compact subset
of S .

Let L = {θ ∈ Θ|∂θ`(θ) = 0}. Then, with probability 1,

lim
k→∞

d(θk,L) = 0 .

Hypothesis (A) makes explicit what we mean by se-
quence of approximated densities. In particular, it allows a
wide variety of numerical schemes; we propose an example
of practical interest in Section 2.2. Note that (SAEM4?) and
(A) ensure the function z 7→ ‖S(y, z)‖2 to be integrable with
respect to the measure q(y, zθ) dµ.

In practice, checking the compactness condition (B) may
be intractable. In that case, we have to recourse to a stabi-
lization procedure. We proceed as in [17]. Let (Kn)n∈N be an
exhaustion by compact sets of the space S , i.e. be a sequence
of compact subsets of S such that

⋃

n∈N
Kn = S and ∀k ∈ N, Kn ⊂ int(Kn+1) ,

where int(A) denotes the interior of the set A. The main
idea is to reset the sequence sk to an arbitrary point every
time sk wanders out of the compact subset Knk , where nk
is the number of projections up to the k-th iteration. Let ε =
(εk)k∈N be a monotone non-increasing sequence of positive
numbers and let K be a subset of Z . Last, let Π: Z × S →
K ×K0 be a measurable function (See [17] for details about
the way to choose Π). The stochastic approximation with
truncation on random boundaries summarizes as:

Fig. 1. Stochastic approximation with truncation on random boundaries
1: Set n0 = 0, s0 ∈ K0 and z̃0 ∈ K
2: for all k ∈ N do
3: Sample z̃∗ ∼ q̃k(·; θk−1)
4: Compute s∗ = sk−1 + γk

(
S(y, z̃∗)− sk−1

)

5: if s∗ ∈ Knk−1
then

6: Set (z̃k, sk) = (z̃∗, s∗) [
7: else
8: Set (z̃k, sk) = Π(z̃k−1, sk−1) and nk = nk−1 + 1
9: Set θk = θ̂(sk) ]

10: end if
11: end for

Note that the statement of Theorem 2.1 is very similar
to the corresponding one of [4], namely Theorem 5 which
establish the convergence of the SAEM. In other words,
approximate the posterior distribution in the S-step does
not require supplementary considerations to still guarantee
the convergence of the sequence (θk)k∈N. Thus, the scope of
application of the approximated-SAEM algorithm is at least
as unrestrictive as the one of the SAEM.

The proof of the theorem consists in applying Theorem
2 of [4]. We recall this theorem in Appendix A. In particular,
(SA0 - 4) refer to their hypothesis (SA0 - 4). Moreover, since it
is used in our demonstration, we also recall Lemma 2 from
the same paper. For sake of simplicity, we prove the conver-
gence of the approximated-SAEM under the compactness
condition (B). However, the result remains true even if (B)
is not satisfied, on condition of having recourse to this
truncation on random boundaries procedure (Algorithm 1).

Proof. As for all k ∈ N, γk ∈ [0, 1], (SA0) is verified under
(M1?) and (SAEM1). Moreover, (SA1) is implied by (SAEM1)
and (SA3) by (B). Note that under Assumption (B), there
exists, with probability 1, a compact set K such that for all
k ∈ N, sk ∈ K .

Let, for all s ∈ S and k ∈ N, h(s) = s̄(θ̂(s))− s,

ek = S(y, z̃k)− E
[
S(y, z̃k)|F̃k−1

]

and rk = E
[
S(y, z̃k)|F̃k−1

]
− s̄(θ̂(sk−1))

such that Equation (1) writes on Robbins-Monro type ap-
proximation procedure.

As Lemma 2 of [4] (see Appendix A) depends only of
the meanfield of the model, it can be applied as it is. Thus,
(SA2.i) is satisfied with the Lyapunov function V = −` ◦ θ̂
and

{s ∈ S|F (s) = 0} = {s ∈ S|∂sV (s) = 0} ,
θ̂ ({s ∈ S|F (s) = 0}) = {θ ∈ Θ|∂θ`(θ) = 0} = L .

Moreover, (SA2.ii) is satisfied due to the Sard theorem and
(SAEM2). We only need to focus on (SA4).

Set for all n ∈ N∗, En =
∑n
k=1 γkek. The sequence

(En)n∈N∗ is a F̃ -martingale: for all m > n, E
[
Em|F̃n

]
= En

as for all k > n, F̃n ⊂ F̃k−1. Moreover, for all n ∈ N,

E
[∥∥∥S(y, z̃n+1)− E

[
S(y, z̃n+1)|F̃n+1

]∥∥∥
2 ∣∣∣ F̃n

]

6 E
[
‖S(y, z̃n+1)‖2

∣∣∣F̃n
]
<∞ a.s.

since by (B) and (M5), with probability 1, θ̂(sn) is in the
compact set θ̂(K) ⊂ Θ. So,

∞∑

n=1

E
[
‖En+1 − En‖2

∣∣∣ F̃n
]

6
∞∑

n=1

γ2
n+1 E

[
‖S(z̃n+1)‖2

∣∣∣F̃n
]
<∞ a.s. .

According to Theorem 2.15 of [18], with probability 1,
limn→∞En exists. Moreover,

rn =

∫

Z
S(y, z)

(
q(z|y, θ̂(sn−1))− q̃n(z, θ̂(sn−1))

)
dµ(z)

for all n ∈ N, which converge to 0 according to hypothesis
(A), proving (SA4).

Thus, Theorem 2 of [4] applies and

lim sup
k→∞

d(sk, {s ∈ S|∂sV (s) = 0})

= lim sup
k→∞

d(sk, {s ∈ S|F (s) = 0}) = 0 .

Lastly, by continuity of θ̂ : S → Θ,

lim sup
k→∞

d
(
θ̂(sk), θ̂

(
{s ∈ S|F (s) = 0}

))

= lim sup
k→∞

d(θk,L) = 0 .

The obtained results demonstrate that, under appropri-
ate conditions, the sequence (θk)k∈N converges to a con-
nected component of the set L of stationary points of `.
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Fig. 2. Construction of the temperature scheme. Fig. 2a: Evolution of the
temperature over iteration for the tempering-SAEM. Fig. 2b: Influence of
the temperature over the pattern of the distribution.

Moreover, some conditions upon which the convergence
toward local maxima is guaranteed are given in Section 7
of [4]. As this conditions only depend on the design of the
model and not on the definition of the optimizing sequence
(θk)k∈N, the corresponding theorems remain exact in our
context leading to classical hypothesis ensuring convergence
toward local maxima.

2.2 A Tempering Version of the SAEM

We focus in the following on an instantiation of the
approximated-SAEM, leading to the tempering-SAEM. Let
(Tk)k∈N be a sequence of positive numbers such that
limk→∞ Tk = 1. We set, for all y ∈ Y , all z ∈ Z , all θ ∈ Θ
and all k ∈ N,

q̃k(z; θ) =
1

cθ(Tk)
q(z|y; θ)

1/Tk ,

where cθ(Tk) is a scaling constant.
Let y ∈ Y and K ⊂ Θ compact. Then, by continuity of

the function θ 7→ q(z|y; θ), it exists M ∈ R such that

sup
θ∈K
|S(y, z) (q̃k(z; θ)− q(z|y; θ))|

6 sup
θ∈K

M

∣∣∣∣1−
1

cθ(Tk)
exp

(
−
(

1− 1

Tk

)
q(z|y, θk)

)∣∣∣∣ .

Thus, as K is compact, (A) is satisfied.
Note that our tempering-SAEM differs from the simu-

lated annealing version of [6] as we do not modify the model
but only the sampling-step of the estimation algorithm.

2.2.1 Escape Local Maxima

This scheme has been built with the intuition of the simu-
lated annealing: the sequence (Tk)k∈N has to be interpreted
as a sequence of temperatures. The higher Tk, the more
the corresponding distribution q̃k lies flat and the (approxi-
mated) hidden variable zk is able explore all the set Z . On
the contrary, a low temperature will freeze the exploration
of zk (see Figure 2b). Thus, finding an appropriate sequence
(Tk)k∈N to keep a balance between both behaviors is a great
methodological challenge.

We propose here an oscillatory tempering pattern which
oscillate around one with decreasing amplitude. In other
words given the decreasing and amplitude rate a and b, the

scaling-parameter r and the delay c, we define our sequence
of temperatures by: for all k ∈ N,

Tk = 1 + aκ + b
sin(κ)

κ
, where κ =

k + c× r
r

.

We design this scheme to decrease, with an exponential
rate toward 1, with dampened oscillations. In this form, the
tempering scheme includes the tempering scheme used by
MONOLIX. Even so, the experiments conducted in section 3
tend to show that the exponential decrease is not necessary.
In particular, a is set to zero for all the experiments.

In order the tempering scheme to converge toward 1,
we just need to require that the exponential rate a ∈ [0, 1[.
In particular, the parameter b can be chosen independently
negative or positive. A positive b will flattened the distribu-
tion at the beginning of the optimization procedure. On the
contrary, a negative b will make the profile of the distribu-
tion look more prickly. It can be interesting to enforce the
distinction of two close modes, as in Section 3.1.2.

Due to the oscillations of the temperature, the latent
variable zk will explore and gather in turns. Thus, in case
of multimodal density, the latent variable will be able to
switch from one mode to an other during the heating steps
and to explore these same modes during the cooling phases.
In particular, during the optimization, the tempering-SAEM
may escape from local minima in which the SAEM would
get stuck. Figures 13 and 14 effectively illustrate this phe-
nomenon. In this way, the local maxima of the likelihood
can be avoided. Moreover, as the approximated distribu-
tions regularly gather around the modes of the posterior
distribution q(·|y; θk), the exploration of z will stabilize and
the algorithm will converge.

Although the analysis of this algorithm is heuristic, the
simulations (see the following section) confirm the intuition
and give good results. A theoretical analysis is an ongoing
problem.

3 APPLICATION AND EXPERIMENTS

As explained in the previous paragraph, the tempering-
SAEM allows us to escape from local maxima. To illustrate
this phenomenon, we propose two applications: cluster
analysis through Gaussian mixture model and independent
factor analysis which can lead to blind source separation
[16], [19], [20].
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Fig. 3. : Learning dataset used to perform the experience regarding
Section 3.1.1.
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Fig. 4. Performance of the estimation for the Multivariate Gaussian mixture model. Figs. 4a, 4c and 4e: Qualitative comparison of the maximum
likelihood estimation of the parameters. The estimation is performed with the same initial points (the blue crosses). Figs. 4b, 4d and 4f: Relative
error (expressed as a percentage) for the weights α and the centroı̈ds µ. Kullback-Leibler distance between the true covariance matrices Σ and the
estimated ones, for 500 runs and n = 1000.

3.1 Multivariate Gaussian Mixture Models
Before considering a more realistic application, we first
present an application of the tempering-SAEM to multivari-
ate Gaussian mixture model (GMM). Actually, in spite of
an apparent simplicity, this model illustrates well the main
features of our algorithm.

Let y = (yi)i∈J1,nK ∈ Rnd be a n-sample of Rd. We
assume that y is distributed under a a weighted sum
of m d-dimensional Gaussians: Given the weights α =
(αj)j∈J1,mK[0, 1]m such that

∑m
j=1 αj = 1, the centroids

µ = (µj)j∈J1,mK ∈ Rmd and the covariance matrices

Σ = (Σj)j∈J1,mK ∈ (SdR)m, we assume that

y|z, θ ∼
n⊗

i=1

N (µzi ,Σzi) and z|θ ∼
m∑

j=1

αjδj ,

where θ = (α, µ,Σ) and z = (zi)i∈J1,nK is the latent variable
specifying the identity of the mixture component of each
observation. In the following, we compare the efficiency of
the EM, the SAEM and the tempering-SAEM algorithms to
produce a maximum likelihood estimate of the parameters
with the a priori given exact number of components m.
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Fig. 5. The three scattered clusters’ datasets used to perform the experiences regarding Section 3.1.2. For each dataset, we consider two possible
initial positions for the means µ: either all at the barycenter of the dataset (the blue asterisk) or two of them in the single right cluster and the last
mean on the left side (the orange asterisks).
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Fig. 6. Relative error (expressed as a percentage) for the weights α, for 100 runs and n = 1000, according to the dataset and the type of initialization.

Classically, as closed-form expressions are possible for
finite GMM, the EM algorithm is a very popular technique
used to produce the maximum likelihood estimation of the
parameters [21]. However, the computational cost can be
prohibitive. A faster procedure is to use the SAEM algo-
rithm. Nevertheless, both algorithms are very sensitive to its
initial position: solutions can highly depend on their start-
ing point and consequently produce sub-optimal maximum
likelihood estimates [22]. The tempering-SAEM appears as
a way to escape from local maxima and reach global maxima

more often.

3.1.1 Insensitivity of the tempering-SAEM to Initialization

To estimate the sensitivity of the tempering-SAEM algo-
rithm to its initial position, we generate a synthetic dataset
(Figure 3) and perform the estimation 500 times for the three
algorithms, with the same sequences of points chosen at
random within the dataset.

The relative errors for α and µ and the Kullback-Leibler
divergence between the true covariance matrices Σ and the
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TABLE 1
Mean (standard deviation) relative errors (expressed as a percentage) for the estimated parameters of the GMM within the dataset I, according to

the initial positions of the centroı̈des and the type of algorithm. Over 100 runs.

EM - 1 EM - 2 SAEM - 1 SAEM - 2 tmp-SAEM - 1 tmp-SAEM - 2

α̂1 0.00 103.10 24.83 (46.24) 99.46 (18.99) −4.46 (0.00) 2.01 (8.54)
α̂2 0.00 −48.02 −19.41 (25.89) −77.72 (28.72) −4.23 (0.00) 0.39 (8.35)
α̂3 0.00 −55.08 −5.42 (26.22) −21.87 (24.94) 8.69 (0.00) −2.40 (0.18)

µ̂2 78.46 39.44 14.28 (18.28) 38.07 (7.15) 1.24 (0.00) 1.62 (4.18)
µ̂2 78.46 185.93 58.54 (84.14) 168.49 (37.28) 0.17 (0.00) 2.56 (17.03)
µ̂3 126.23 0.73 2.86 (4.06) 2.94 (4.40) 0.34 (0.00) 1.03 (0.01)

Σ̂1 1503.22 306.00 104.94 (216.86) 295.19 (31.90) 0.99 (0.00) 7.08 (33.01)

Σ̂2 1503.22 7.26 19.04 (98.85) 18.85 (5.96) 4.78 (0.00) 2.16 (2.41)

Σ̂3 1503.22 8.90 5.19 (0.20) 6.07 (0.21) 2.35 (0.00) 1.52 (0.27)

TABLE 2
Mean (standard deviation) relative errors (expressed as a percentage) for the estimated parameters of the GMM within the dataset II, according to

the initial positions of the centroı̈des and the type of algorithm. Over 100 runs.

EM - 1 EM - 2 SAEM - 1 SAEM - 2 tmp-SAEM - 1 tmp-SAEM - 2

α̂1 0.00 97.4 55.16 (48.27) 97.4 (0.00) 0.34 (19.25) 3.81 (18.33)
α̂2 0.00 −18.36 −44.85 (38.38) −79.44 (7.78) −2.01 (18.19) −3.67 (12.17)
α̂3 0.00 −79.04 −10.31 (15.68) −17.96 (7.78) 1.67 (3.15) −0.14 (10.95)

µ̂2 70.97 29.12 17.05 (13.80) 29.12 (0.00) 3.34 (7.31) 3.21 (6.94)
µ̂2 70.97 192.96 104.28 (92.43) 187.28 (1.11) 5.31 (25.61) 9.47 (39.60)
µ̂3 132.29 13.28 2.15 (1.82) 2.94 (1.09) 0.79 (0.48) 1.45 (5.57)

Σ̂1 1438.21 154.34 88.00 (57.50) 154.34 (0.00) 7.81 (27.00) 10.60 (34.47)

Σ̂2 1438.21 10.58 44.17 (608.01) 13.68 (0.01) 7.28 (27.00) 3.48 (13.66)

Σ̂3 1438.21 13.60 7.64 (0.13) 10.12 (0.00) 4.14 (0.90) 4.63 (2.97)

TABLE 3
Mean (standard deviation) relative errors (expressed as a percentage) for the estimated parameters of the GMM within the dataset III, according to

the initial positions of the centroı̈des and the type of algorithm. Over 100 runs.

EM - 1 EM - 2 SAEM - 1 SAEM - 2 tmp-SAEM - 1 tmp-SAEM - 2

α̂1 0.00 96.5 82.77 (34.01) 94.91 (12.40) 2.99 (22.04) 68.43 (20.77)
α̂2 0.00 −24.85 −41.62 (23.97) −44.71 (18.13) −4.64 (19.36) −33.88 (9.76)
α̂3 0.00 −71.65 −41.15 (25.54) −50.20 (18.62) 1.65 (6.42) −34.55 (11.24)

µ̂2 70.56 20.82 18.11 (6.74) 20.51 (2.46) 3.58 (7.16) 19.26 (5.28)
µ̂2 70.56 196.07 158.34 (69.90) 187.25 (24.20) 9.84 (38.15) 174.04 (51.80)
µ̂3 131.10 5.64 6.46 (4.50) 7.43 (3.48) 0.95 (1.04) 7.10 (1.93)

Σ̂1 1451.58 87.14 75.49 (8.35) 85.79 (1.10) 10.40 (21.34) 80.38 (22.82)

Σ̂2 1451.58 5.51 29.18 (194.51) 12.84 (1.76) 6.42 (11.62) 11.61 (2.48)

Σ̂3 1451.58 6.99 7.07 (0.21) 7.92 (0.21) 3.06 (0.67) 7.49 (1.49)

estimated one are compiled in Figures 4b, 4d and 4f. The
class refer to the ones of Figure 3. We consider the algebraic
relative error for α so that we can deduce if the studied algo-
rithm tend to empty (class E) or overfill (class B) the classes.
First, the tempering-SAEM is always competitive with the
EM and the SAEM and most of the time greater. In other
words, the global maximum is more often reached while
tempering the posterior distribution. Moreover, while EM
and SAEM achieve fairly identical results, the tempering-
SAEM is able to discriminate overlapped classes. Figures
4a, 4c and 4e displays the result of a type run for each
of the three algorithms, with the same initial points (the
blue crosses). Class A, which is the only isolated class, is
seemingly the best learned. The EM and SAEM seem to
empty the class C for the benefit of the class B and merge
them together on a ”super-class” as if there were only 5

components in the Gaussian mixture.
The three procedures are detailed in Appendix B.

3.1.2 Escaping Local Minima

We then consider a situation known to be badly managed
by the EM algorithm. Namely, we consider a three clusters’
dataset. One cluster is on the far right side, two are on the
far left side and all the three clusters are equiprobable. More-
over, we want to study the influence of the distance between
the two left clusters. So we build three datasets: one where
the two left clusters are properly distinct, one where they
are close and a last one where they are almost merged. The
three datasets are displayed at Figure 5. For each dataset, we
perform the optimization for two different initial positions,
referred as initialization 1 and 2 in the following. In the first
case, the three centroı̈des µ are initialized at the barycenter
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(a) Dataset I – Initialisation 1
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Fig. 7. Dataset I. Mean centroı̈des and covariance matrices estimated by the EM, the SAEM and the tempering-SAEM algorithms within the
dataset I, according to the initial position of the means. In purple dashed lines, the covariance matrix estimated by the EM; in blue plain lines, the
one estimated by the SAEM and in bold red lines the one estimated by the tempering-SAEM. In dotted blue lines the initial covariance matrices
associated to the two different initial means (the blue crosses).
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(a) Dataset II – Initialisation 1
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Fig. 8. Dataset II. Mean centroı̈des and covariance matrices estimated by the EM, the SAEM and the tempering-SAEM algorithms within the dataset
II, according to the initial position of the means. Same conventions as for the previous figure.
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Fig. 9. Dataset III. Mean centroı̈des and covariance matrices estimated by the EM, the SAEM and the tempering-SAEM algorithms within the
dataset III, according to the initial position of the means. Same conventions as for the previous figure.
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of the observed data. In the second one, we initialize two
means on the right side and one on the left side.

For each situation, we perform the estimation through
all the three algorithms. We present at Tables 1, 2 and 3 the
relative errors for the different parameters. As previously,
we consider the algebraic relative error for the weights α. To
better understand the behavior of the different algorithms,
we also provide a box plot of these relative errors at Figure
6. The SAEM algorithm tends to empty classes for the
benefit of other(s). It seems to be less the case for the
tempering-SAEM. Note that, whatever the dataset, if the
mean parameters are initialized to the mean of the dataset,
the EM algorithm does not move. Thus, the error concerning
the mixture proportion α seems to be very small, but this is
only due to the initialization of the parameters α in favor to
an equiprobable mixture.

Figures 7, 8 and 9 display the mean of the estimated µ̂
and Σ̂ by the three algorithms (EM vs SAEM vs tempering-
SAEM), for each dataset and each initial position.

The tempering-SAEM succeed to accurately estimate all
the parameters related to the first and second datasets
(Figure 7, Figure 8, Table 1 and Table 2), even when two
of the mean parameters µ are initialized in the right cluster
(Initialization 2). When the parameters µ are initialized to
the barycenter of the dataset, the tempering-SAEM still
accurately estimates the different parameters, including for
the dataset III where the left clusters are merged (Figure 9a).
However, when two of the mean parameters are initialized
within the single right cluster, the tempering-SAEM does
not succeed to capture the two left classes if the left clusters
are to close (Figure 9b), but this can be easily explained by
the distribution of the observations (Figure 5c). Still concern-
ing initialization 2 and dataset 3, the tempering-SAEM is
nevertheless at least competitive with the SAEM algorithm.
Most interesting behavior: even though the tempering-
SAEM does not always explain the whole distribution, the
relative error may fall to zero with the tempering-SAEM,
whereas it is never the case for the SAEM algorithm. In
other words, the tempering-SAEM favor the convergence
toward global maxima, and may succeed to almost surely
reach them as in the first dataset, that is exactly the expected
behavior of this algorithm.

Last, we present at Figures 13 and 14, in Appendix B,
the evolution of the means and their associated covariance
matrices. The lines 6 and 7 of Figure 13 illustrate the capacity
of the tempering-SAEM to distinguish two close classes. On
the contrary, the SAEM algorithm does not seem to be able
to do so and remains trapped in a local minimum.

This experiment also highlights the benefits of an oscil-
lating temperature scheme over a simple warming up phase
at the beginning of the optimization. Indeed, initializing the
centroı̈ds to the mean of the dataset may be interpreted
as the limit case of heating the conditional distribution for
the first iterations. However, our experiments show that the
SAEM initialized at the mean (Initialization 1) behave less
well than the tempering-SAEM, whatever the initialization.

3.2 Independent Factor Analysis

The decomposition of a sample of multi-variable data on a
relevant subspace is a recurrent problem in many different

fields from source separation problem in acoustic signals to
computer vision and medical image analysis. Independent
component analysis has become one of the standard ap-
proaches. This technique relies upon a data augmentation
scheme, where the (unobserved) input are viewed as the
missing data. We observe multivariable data y which are
measured by n sensors and supposed to arise fromm source
signals x, that are linearly mixed together by some linear
transformation H , and corrupted by an additive Gaussian
noise ε. Simply put, we observe y = (y(t))t∈J1,T K, where
each measurement is a point of Rn and assumed to be given
by y(t) = Hx(t) + ε(t), where H ∈ Mn,mR, x(t) ∈ Rm

and ε(t) i.i.d∼ N (0, λIn), λ ∈ R. The suitability of the SAEM
algorithm in this context has been demonstrated in [19] and
[20]. We propose here to modify the learning principle to
make the procedure less susceptible to trapping states.

As in [16] and [19], we assume that:

1) (x(t))t∈J1,T K and (ε(t))t∈J1,T K are independent;
2) (x(t))t∈J1,T K is an i.i.d sequence of random vectors,

with independent component. Each component x(t)
i

is given by a mixture of k Gaussians indexed by
z

(t)
i ∈ J1, kK with means µzi(t) , variances σ2

zi(t)
and

mixing proportions αzi(t) :

q(x
(t)
i ; θ

(t)
i ) =

k∑

z
(t)
i =1

αzi(t) G
(
x

(t)
i − µzi(t) ;σ2

zi(t)

)
,

θ
(t)
i =

(
αzi(t) , µzi(t) , σ

2
zi(t)

)
,

where for all vectors x and µ and all symmetric
matrix Σ, G(x − µ,Σ) refers to the (multivariate)
Gaussian distribution.

This model is called independent factor analysis (IFA). The
problem is to find the value of the parameter W = (H,λ, θ)
given y. Identifiability in this model is discussed in [23].
Basically, the sources are defined only to within an order
permutation and scaling. To avoid trivialities, we fix the
variances (σ2

j )j∈J1,kK to one [20]. Note that this definition
of the IFA model is somewhat less general that the one
introduced by Attias [16] in which the components are
supposed to be independent but not necessarily identically
distributed. Nevertheless, it has been shown that restrictive
IFA models can perform well in practice [20].

The likelihood of the IFA can be put in exponential form
using the sufficient statistics, for all j ∈ J1, kK,

S1,j(x, y, z) =
1

m

m∑

i=1

1{zi=j} ; S4(x, y, z) = y ty ;

S2,j(x, y, z) =
1

m

m∑

i=1

xi 1{zi=j} ; S5(x, y, z) = y tx ;

S3,j(x, y, z) =
1

m

m∑

i=1

x2
i 1{zi=j} ; S6(x, y, z) = x tx .

The M-step is then given by

H = [S5] ([S6])
−1

; α = [S1] ; µ =
[S2]

[S1]
; σ2 = 1k ;

λ = ‖ [S6] ‖22 − 2〈H | [S5] 〉+ 〈 tHH | [S6] 〉 ,
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Fig. 10. Independent factor analysis – BG-ICA renormalized L2 norm
between the source matrix H used to build the dataset and the esti-
mated one. The dataset consists of 100 images distributed in accor-
dance with the two-components Bernouilli-Gaussian model build from
the square and the cross binary images.

where 1k stands for the k-vector off all 1 and the brackets
denote the empirical-average. Moreover, it is possible to
compute the conditional distribution of the hidden variable
(x, z) given observed values of y and the E-step can be
computed exactly [16]: For all ζ ∈ J1, kKm,

P(z = ζ|y;W ) =
αζ G (y −Hµζ ;H∆ζ

tH + λIn)∑
z αz G (y −Hµz;H∆z

tH + λIn)

and q(x|y, z;W ) = G (x− νy,z; Σz) ,

where

αz =
m∏

i=1

αzi ; µz = (µzi)i ; ∆z = Diag
(
(σ2
zi)i
)

;

Σz =

(
1

λ
tHH + ∆−1

z

)−1

; νy,z = Σz

(
1

λ
tHy + ∆−1

z µz

)
.

Thus, as well as for the GMM, we can compare the efficiency
of SAEM vs tempering-SAEM algorithms in this context.

In Section 3.1, we were interested in the performance
of our algorithm for data generated according to the true
model. We relax here this assumption and observe T =
100 images distributed in accordance with the Bernoulli-
Gaussian model (BG-ICA, [20]), with two components. The
components are represented as two-dimensional binary im-
ages. The first one is a black image with a white cross
in the top left corner. The second one has a white square
in the bottom right corner. At Figure 10, we present the
two decomposition images, 4 typical observations and the
renormalized L2 norm between the true H (in the BG-ICA
model) and the estimated one for 100 runs.

This experience confirms the robustness of the
tempering-SAEM. Moreover, one could have feared that the
augmentation of the number of hyper-parameters due to
the choice of the temperature scheme would increase the
variance. Figure 10 eliminates this assumption. However,

TABLE 4
Mean (standard deviation) of the p-values for the five decomposition

vectors presented at Figure 12, over 50 runs.

SAEM tmp-SAEM
Groups 1 vs 2&3 10−3× 0.43 (0.31) 0.37 (0.27)
Groups 1 vs 2 10−3× 11.76 (7.43) 11.33 (7.18)

(a) SAEM (b) tempering-SAEM

Fig. 11. Independent factor analysis – USPS dataset. Results of the
independent factor estimation on a balanced mix of digits 0, 3 and 8
from the USPS database. The dataset is composed of 50 samples of
each digit.

the context is very favorable to the SAEM algorithm which
obtain very good and hard to outperformed results. To
measure the efficiency of the tempering-SAEM, we test it
on the USPS database, which contains gray-level images of
handwritten digits.

We consider a balanced mix of the digits 0, 3 and 8, which
consists of 50 samples for each of the three digits. We then
run both the SAEM and the tempering-SAEM. We present
at Figure 11 two typical runs (in line). If the two of them
succeed in discriminate 0 against 3 and 8, the tempering-
SAEM outperform the SAEM algorithm concerning 3 versus
8. Thus, the tempering-SAEM produces meaningful sources,
which could be the result of a clustering procedure, while
the SAEM runs into difficulties. Hence, this experience
suggests that the tempering-SAEM can indeed escape from
local maxima in which the SAEM can be trapped.

Last, we consider a dataset consisting of 101 hippocampi
surfaces. The subjects of the dataset can be split in three
groups of size 57, 32 and 12 respectively. The first group
corresponds to healthy patients; the next two groups corre-
spond to patients with Alzheimer’s disease, at two stages of
advancement (mild and advanced). Over each hippocam-
pus, a scalar field represent the deformation of the con-
sidered hippocampus regarding a template one. Thus we
can study the diversity of atrophy patterns, depending on
the patient’s state of health. We have computed m = 5
decomposition vectors based on the complete data set.
Figure 12 presents these decomposition vectors mapped on
the meshed hippocampus for both SAEM and tempering-
SAEM algorithms. For comparison purpose, we enforce the
same colorbar for both experiments and all hippocampi.
Then, it seems that the two algorithms behave in much the
same way, at least visually. This experiment attests to the
reliability of the tempering-SAEM.

At Table 4, we provide the p-values obtained from the
comparison of the five columns of H among the three sub-
groups. The test is based on a Hoteling T -statistic evaluated
on the coefficients, the p-value being computed using per-
mutation sampling. Following [20], we compute the p-value
for two different comparisons: the first one compare the
healthy patients with respect to Alzheimer’s and dementia
patients (the two last groups). The second test compare
the healthy patient with respect to the mild Alzheimer’s
patients (the second group). Due to the stochasticity of the
SAEM algorithm, we computed an average and a standard
deviation of the p-values over 50 runs, with the same initial
conditions. Thus, the tempering-SAEM algorithm always
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behaves at least as well as the SAEM algorithm.
Finally, applying the tempering-SAEM for independent

factor analysis aims to check that the advantages of the
tempering-SAEM over the SAEM can improve or at least
does not deteriorate the results of maximum likelihood
estimation in complex hierarchical models.

3.3 Discussion and Perspective

We propose here a new stochastic approximation version
of the EM algorithm. The benefit of this general procedure
is twofold: we can deal with the problem of intractable
or difficult sampling in one hand and favor convergence
toward global maxima in the other hand.

Our first contribution is theoretical with the proof of
the convergence of the approximated-SAEM toward local
maxima. This result gives an a posteriori justification for
some existent schemes like the ABC-SAEM or MONOLIX.
Moreover, our general framework is versatile enough to
encompass a wide range of algorithms. Our second con-
tribution goes this way by proposing an instantiation of
this general procedure to prevent convergence toward local
maxima, referred to as tempering-SAEM. This tempering-
SAEM method is the one used in the MONOLIX software. We
have applied this algorithm in both synthetic and real data
frameworks and obtained improved results with respect to
the state of the art algorithms in both cases.

This opens up new perspectives. Typically, now that
we have ensured of the convergence of the approximated-
SAEM, a natural opening concerns the study of the conver-
gence of the approximated-MCMC-SAEM. Indeed, although
the convergence of this algorithm has not yet been demon-
strated, the tempering-MCMC-SAEM has already shown
its numerical efficiency, especially in the case of medical
applications [24].

APPENDIX A
THEOREM 2 AND LEMMA 2 OF [4]
In order our article to be more self-contained, we recall The-
orem 2 and Lemma 2 of [4]. Actually, the proof of Theorem
2.1 is based on this theorem which establish the convergence
of Robin-Monroe type approximation procedure, i.e. the
convergence of sequences defined recursively as

∀k ∈ N, sk = sk−1 + γk
(
h(sk) + rk + ek

)
.

Theorem A.1 (Delyon, Lavielle, Moulines [4]). Assume that

(SA0) With probability 1, for all k ∈ N, sk ∈ S .
(SA1) (γk)k∈N∗ is a decreasing sequence of positive num-

bers such that
∑∞
k=1 γk =∞.

(SA2) The vector field h si continuous on S and there exists
V : S → R continuously differentiable such that :

(i) for all s ∈ S , F (s) = 〈dsV (z) |h(s) 〉 6 0,
(ii) int (V (L)) = ∅ where L = {s ∈ S|F (s =

0)}.
(SA3) With probability 1, clos ({sk}k∈N) is a compact sub-

set of S .
(SA4) With probability 1,

∑
γkek exists and is finite,

lim rk = 0.

Then, with probability 1, lim d(sk,L) = 0.

Lemma A.2 (Delyon, Lavielle, Moulines [4]). Assume (M1-
M5) and (SAEM2). Then (SA2) is satisfied with V = −` ◦ θ̂.
Moreover,

{s ∈ S|F (s) = 0} = {s ∈ S|dsV (s) = 0}
and θ̂ ({s ∈ S|F (s) = 0}) = {θ ∈ Θ|dθ`(θ) = 0} ,

where F : s 7→ 〈dsV (s) |h(s) 〉.

APPENDIX B
MULTIVARIATE GAUSSIAN MIXTURE MODEL

We give here some details about the estimation procedure
in the multivariate Gaussian mixture model. The complete
log-likelihood of the GMM model is

log q(y, z; θ) = −n log 2π −
m∑

j=1

n∑

i=1

(
1

2
log|Σj | − logαj

+ t(yi − µj) Σ−1
j (yi − µj)

)
1{zi=j} .

B.1 Estimation through the EM Algorithm
Let t index the current iteration. The general EM algorithm
iterates the following two steps:

E-step: Compute Q(θ|θt) = E [log q(y, z; θ)|y, θt];
M-step: Set θt+1 = argmaxθ∈ΘQ(θ|θt).

For all (i, j) ∈ J1, nK× J1,mK, set τi,j = P [zi = j|yi, θt].

Then, Q(θ|θt) = −n log 2π−
m∑

j=1

n∑

i=1

(
1

2
log|Σj | − logαj

+ t(yi − µj) Σ−1
j (yi − µj)

)
τi,j .

According to Bayes’ rule,

τi,j =
αj G(yi − µj ; Σj)∑m
j=1 αj G(yi − µj ; Σj)

,

where G(y − µ; Σ) refers to the Gaussian distribution with
mean µ and covariance matrix Σ. Lastly, a straightforward
computation gives

αt+1
j =

1

n

n∑

i=1

τi,j , µt+1
j =

∑n
i=1 τi,jyi∑n
i=1 τi,j

and Σt+1
j =

∑n
i=1 τi,j(yi − µt+1

j ) t(yi − µt+1
j )

∑n
i=1 τi,j

.

B.2 Estimation through the SAEM Algorithm
Given a sequence of positive step-size for the stochastic
approximation γ = (γt)t∈N, the general SAEM algorithm
iterates the following two steps:

SAE-step: Sample a new hidden variable zt+1 accord-
ing to the conditional distribution q(z|y, θt)
and compute

Qt+1(θ) = Qt(θ)+γt
(
log q(y, z; θt)−Qt(θ)

)
;

M-step: Set θt+1 = argmaxθ∈ΘQt+1(θ).
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Fig. 12. Independent factor analysis – Hippocampi dataset. Results of the independent factor estimation on a corpus of 101 hippocampi. Atrophy
patterns of the hippocampi in the context of Alzheimers disease.

The GMM belongs to the curved exponential family.
Actually, for all y, z and θ,

log q(y, z; θ) = −n log(2π)

+
m∑

j=1

(
logαj −

1

2
log|Σj |+ 〈µj tµj |Σ−1

j 〉F
)
S1,j(y, z)

+
m∑

j=1

[
〈Σ−1

j |S3,j(y, z) 〉F−2〈Σ−1
j µj |S2,j(y, z) 〉

]
,

where, for all j ∈ J1,mK, S1,j(y, z) =
n∑

i=1

1zi=j

S2,j(y, z) =
n∑

i=1

yi 1zi=j and S3,j(y, z) =
n∑

i=1

yi
tyi 1zi=j .

So, the SAE-step is replaced by an update of the estimation
of the conditional expectation of the sufficient statistics,
namely, for all ` ∈ {1, 2, 3}, and all j,

S t+1
`,j = S t`,j + γt

(
S`,j(y, z

t+1)− S t`,j
)
,

where, for all i, zt+1
i is sampled from the discrete law∑m

j=1 τi,jδj , where τi,j = P [zi = j|yi, θt] as in the EM-case.
The M-step can also be computed in close-form:

αt+1
j =

1

n
S1,j , µt+1

j =
S2,j

S1,j

and Σt+1
j =

S3,j − S2,j
tµt+1
j

S1,j
.

B.3 Estimation through the tmp-SAEM Algorithm

The previous computation remain true except that
the hidden variables zt+1

i are now sampled from the
tempered conditional distribution 1

c(Tt)

∑m
j=1 τ

1/Tt
i,j δj , where

c(Tt) =
∑m
j=1 τ

1/Tt
i,j and Tt is defined in Section 2.2.

To stabilize the convergence of both SAEM and
tempering-SAEM, we may use inverse Wishart priors for
the variances and Gaussian priors for the weights.
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Fig. 13. Evolution of the parameters throughout the estimation by the tempering-SAEM algorithm, within the dataset I, with initial means at the
barycenter of the dataset, for a typical run. For each class, we plot the trajectories of the mean µ and the evolution of the associated covariance.
The observed data are colored according to their probability to belonging to the classes: from 0 in dark blue to 1 in yellow.
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Fig. 14. Evolution of the parameters throughout the estimation by the SAEM algorithm, within the dataset I, with initial means at the barycenter of
the dataset, for a typical run. We keep the conventions of the previous figure.
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