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Abstract. Various altimetry satellite missions provide water level elevation measurements of wide rivers; in
particular the future Surface Water and Ocean Topography (SWOT) mission which will provide measurements
at unprecedented accuracies for 90% of the globe. The capabilities of these data to infer the inflow discharge
and roughness parameters in the 1D Saint-Venant equations are investigated. As a first step, identifiability
maps representing the observations and the model waves in the (x, t) plan are analysed. These maps provide
a comprehensive overview of the inverse problem di�culties. Next the inflow discharge, and potentially the
roughness coe�cients, are inferred by variational data assimilation. The inferences are analysed for various
observation sparsity degrees. Sensitivity analyses with respect to the observation errors and the first guess
values demonstrate the robustness of the VDA inferences. The identifiability maps may make it possible to
recover the space-time windows where the inference obtained by VDA are potentially unreliable. Finally this
study demonstrates the great potential of these forthcoming measurements but also their limitations in 1D
river flow dynamic models if not combined to other data sources.

Keywords. Identifiability, shallow water, variational data assimilation, altimetry, SWOT, river hy-
draulics, discharge.

1. Introduction

While the in situ observability of continental water cycle, especially river flows, is declining, satellites
provide increasingly accurate measurements. The future Surface Water and Ocean Topography (SWOT)
mission, CNES-NASA, equipped with a swath mapping radar interferometer, will provide river surface map-
ping at a global scale with an unprecedented spatial and temporal resolution [32]. Maps of water elevations
are expected at a resolution of approximately 100 m with a vertical accuracy on the order of centimeters if
averaged over 1 km� [32]. An other highlight of SWOT will be its global coverage and temporal revisits (1
to 4 revisits per 22 ≠ days repeat cycle). This should o�er the opportunity to increase our knowledge of the
spatial and temporal distribution of hydrological fluxes including stream and rivers see e.g. [5]. Thanks to
this increased observability of water surfaces worldwide, it will be possible to address a variety of inverse
problems in surface hydrology. From the river hydraulics point of view, the basic inverse questions are the
following: given these surface measurements (elevation, water mask width and potentially the slopes), can
we infer the discharge ? the roughness coe�cients ? the bathymetry ? the lateral contributions ? given what
space-time observations density and at what scale ?

A quite recent but already large literature addresses some of these inverse questions. Since rivers may be
correctly modeled by quite simple 1D equations, some inverse problems can be addressed analytically, see e.g.
[12, 13]. On similar mathematical approaches but in the SWOT context (hence sparse measurements both in
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space and time), [11] demonstrates that the bathymetry and/or the roughness may be successfully infered,
depending on the regime variations of the observed flow, see also [40, 10]. In order to better constrain these
underdetermined inverse problems, prior hydraulic information or empirical laws may be required.

Sophisticated data assimilation techniques, both sequential and variational, are more and more commonly
employed in the river hydraulic modeling community. Numerous studies employ the sequential approach
(Kalman’s filter and variants). Let us cite for example [31] which consider a di�usive wave model with the
river bathymetry and roughness coe�cients given, and it corrects the upstream discharge via the assimila-
tion of downstream water depth measurements. [39] assimilates synthetic observations corresponding to 8
cycles of SWOT in a 1D simplified shallow water model which improves the discharge estimation (with the
roughness coe�cient given). [2] demonstrate that the assimilation of SWOT like data makes it possible to
improve discharge forecasts for di�erent lead times.

The Variational Data Assimilation (VDA) approach, based on optimal control, consists in minimizing a
cost function measuring the discrepancy between the model outputs and the observations. This approach
aims at optimally combining the model, the observations and prior statistical information. In some circum-
stances, it is possible to infer unknown “parameters” such as the boundary conditions (e.g. inflow discharge),
model parameters (e.g. roughness) and/or forcing terms. (In meteorology, the historical application of VDA,
the main unknown “parameter” is the initial state). Inferring the river discharge and/or hydraulic param-
eters from the surface measurements is not straightforward and may be even impossible, depending on the
flow dynamics, the observations sparsity etc. Several studies tackle the identification by VDA of the river
bathymetry and/or discharge in various observational contexts. In [33, 34], the direct model is the 1D Saint-
Venant model; the authors manage to infer flood hydrographs from dense water surface width measurements
if the bathymetry and the roughness parameters are given. Based on the 2D shallow water river equations,
VDA experiments are presented in [3, 20, 19]. For example, upstream, downstream and lateral conditions
are identified on the Pearl River (China) from water levels measured at in situ gauging stations [20]; again
the river bathymetry and roughness are given. In [22, 21], di�erent densities of spatially distributed water
level observations (corresponding to partial snapshot images potentially acquired by SAR and partial time
series acquired at a gauging station) are investigated, potentially making possible the estimation of the inflow
discharge of the observed flooding event. In other respects the VDA approach provide useful sensitivity maps
to better understand the flow and the model, see e.g. [27].

Despite the huge improvement of the forthcoming altimetric data, data remain extremely sparse for river
applications, both in space and time, hence making inferences very challenging in river hydraulic models
from these data only. Typically as demonstrated in [11], for a steady-state low-Froude model with reach
averaged variables (called 0.5D model), the inference of the (bathymetry, roughness) pair may be impossible
depending on the observed flow variations. In the SWOT mission context (planned to be launched in 2021),
the next step is to address similar inverse questions but for the complete 1D Saint-Venant equations (hence
valid for unsteady and non low Froude flows). These equations are adequate to model dynamic river flows
with quite fast discharge variations (otherwise the 0.5D model or the Manning-Strickler balance law per
reach is generally su�cient). This is the goal of the present study: to investigate the identifiability of input
parameters in the Saint-Venant equations (1D shallow water) from the SWOT-like altimetric data, and
perform the unknown parameters by VDA. The unknown “parameters” are the inflow discharge Qin(t) and
potentially a non uniform roughness coe�cient K(h), h denoting the water depth. The bathymetry zb is
given (it is an e�ective bathymetry defined as a superimposition of trapeziums to be compatible with the
assimilation of altimetric data).

In this context, before performing any “blind” VDA process, so-called identifiability maps are presented
and analysed. The latter are simply the representation in the (x, t) plane of the observations and the model
waves (without the topography and friction source term) arising from (or propagating to) the observed
space time “windows”. This preliminary reading of the inverse problem presents a few advantages. It may
make it possible to anticipate the potential reliability of the VDA process, it helps to define an a-priori
adequate identification frequency and it may make possible to determine a-posteriori the reliability of the
identification (i.e. identified values not arising from “blind windows”). Also these preliminary analyses led
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us to define the unknown inflow discharge as a Fourier series (hence a global function in time) easily readable
in terms of frequencies. Various scenari depending on the observation density / sparsity, on the inflow
discharge definitions and on the unknown parameters (discharge only or the (discharge,roughness) pair) are
investigated. It turns out that if considering SWOT like data only, then the discharge inference cannot be
accurate due to the data sampling sparsity; to be accurate, the altimetric data has to be combined with other
data (e.g. in situ or other sensors measurements). In other respect, several sensitivity analyses (with respect
to the observation sparsity or the observation errors) strengthen the numerical results and the analyses.

The computational code developed for the present inverse analyses is original since it considers a complete
1D shallow water model dedicated to the altimetric data (specific bathymetry geometry), with all realistic
boundary conditions, a roughness coe�cient K(h) depending on the water depth h (hence modeling regime
flow variations), plus a complete VDA process. The adjoint equations are obtained by automatic di�erenti-
ation [17] within the computational software DassFlow [6, 26]. The test cases are quite complete since the
academic ones include all the targeted di�culties; also a real case is considered (a portion of Garonne river
around Toulouse, France, [35, 23]).

The outline of the article is as follows. In Section 2, the Saint-Venant equations with the bathymetry
specifically adapted to the altimetric observations are presented; next the inverse based on VDA approach is
presented. The cost function is defined from realistic SWOT data (generated following a SWOT simulator).
Section 3 presents the academic test cases and the Garonne river case. In Section 4 the inference of the inflow
discharge only is addressed. First the identifiability maps provide a comprehensive overview of the inverse
problem di�culty; next the discharge is infered by VDA for various observation sampling sparsity. In Section
5, similar experiments are conducted but aiming at infering the (discharge, roughness) pair. Sensitivities of
the infered quantities are analysed with respect to the first guesses and the observation errors. In Section 6,
the real Garonne test case is investigated for 3 scenari: the real SWOT temporal sampling, a slightly densified
data sampling (by a factor 1.5 or 2) and finally a data sampling densified by a factor 100. A conclusion and
some perspectives are proposed in Section 7. The two appendices present details of the numerical scheme in
this context of altimetry-compatible river bathymetries.

2. Direct and inverse models

In this part, the forward model (1D Saint-Venant equations) and the inverse model, Variational Data
Assimilation (VDA), are described. In particular the model geometry (e�ective river bathymetry), the
observation operator and the minimized cost function are detailed.

2.1. Forward model. Open channel flows are commonly described with the 1D Saint Venant equations,
which stems from the Navier Stokes equations under several simplifying hypothesis [8, 7] including averaging
of flow variables in the vertical directions. The 1D Saint Venant equations in (S, Q) variables write:

(2.1)
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where S is the wet-cross section (m2), Q is the discharge (m3.s≠1), P is a pressure term, w̃ is the water
surface top width (m), g is the gravity magnitude (m.s≠2), H is the water surface elevation (m), H = (zb +h)
where zb is the bathymetry (m) and h is the water depth (m). Sf denotes the basal friction coe�cient
(dimensionless), Sf = |Q|Q

K2S2R
4/3
h

with K the Manning-Strickler roughness coe�cient (m1/3.s≠1) and Rh the
hydraulic radius (m). The hydraulic radius corresponds to the ratio between the wetted cross section S and
the wetted perimeter Pe (m). Note that the discharge Q is related to the average cross sectional velocity u
(m.s≠1) by: Q = uS.

Let us point out that the left-hand side of the momentum eqation is written in its conservative form
(hyperbolic part of the model), while the right-hand side, or source term, can be viewed as a “nudging” term,
pulling the model to the basic equilibrium: the gravitational force vs the friction forces; it is the classical
Manning-Strickler equation. In terms of energy, this source term constitutes the dissipative term.
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This classical model is considered with a specific bathymetry geometry since it is designed for altimetry
assimilation. This model is implemented into the DassFlow software [1] which is a data assimilation computa-
tional platform which include river hydraulic models adapted for the forthcoming SWOT data. The discrete
cross sections are asymmetrical trapezium layers; each layer is defined by one triplet (Hi,wi,Yi) corresponding
respectively to the water elevation, the water surface width associated to Hi and a centering parameter. In
a SWOT context, each layer corresponds to a satellite pass.

Remark 1. If the Froude number, Fr = u
c , tends to 0, then the 1D St Venant model can be written as a

lubrication like model (a depth-averaged scalar equation) , so-called di�usive wave model, see e.g. [36, 9, 29].

In the case of a wide channel (the hydraulic radius Rh ¥ h), the advective term of the equation corresponds
to the velocity 5

3 u . In the identifiability maps presented in next sections, this wave velocity 5
3 u will be

compared to the Saint-Venant model wave velocities (u ≠ c) and (u + c) (gravity waves model). Let us point
out that whatever the model considered (1D Saint-Venant or di�usive wave equation), those wave velocities
do not transport all the information since the presence of the additional dissipation term (e.g. the right hand
side in (eq 2.1) and the di�usive term in the di�usive wave equation).

Figure 2.1. E�ective geometry considered for each cross section: superimposition of m
trapeziums (yz-view).

The Manning-Strickler roughness coe�cient Ki of a cross section i is defined by a power law in function
of the water depth h, hence modeling finely di�erent flow regimes.

Its expression reads:

(2.2) K(h) = – h—

where – and — are two contants to be determined.
The discharge at upstream boundary Qin(t) will be considered as an unknown parameter of the model (it

will be a control parameter of the forward model). Then Qin(t) will be defined by one of these two methods:
IDbasic.: At each identification time tj , tj œ [t1..tp], a value of Qin(tj) is computed by the VDA pro-

cess. Next the identified inflow discharge is contunuously constructed by simple linear interpolation.
IDFourier.: The inflow discharge is defined as Fourier series:

(2.3) Qin(t) = a0
2 +

NF Sÿ

n=1

3
an cos(nt

2fi

T
) + bn sin(nt

2fi

T
)
4

where {a0; an, bn}, n œ [1..NF S ], are the Fourier coe�cients and T is the total simulation time. The lower
frequency represented by the Fourier serie is 1/T and the highest one is NF S/T . Then this way to identify
Qin(t) is global in time (on the contrary to punctual basic apprach above). Obviously, the hydrograph must
be periodic. In practice this is not a real issue since either the true hydrograph can truncated or extended it
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to make it T-periodic.

Finally the numerical scheme used to solve system of equations (2.1) is the finite volume scheme HLL [16]
with Euler integration in time. This numerical scheme with the specificities due to the particular geometrical
transformations are presented in Appendix 8.1 and Appendix 8.2

2.2. Inverse model. The inference of the unknown parameters are performed by a VDA approach. It con-
sists to minimize a cost function J(k) measuring the discrepancy between the model output (state variables)
and the available measurements (which are sparse and uncertain): mink J(k).

Since J depends on k through the model solution (S, Q), it is an optimal control problem. It is classicaly
solved by introducing the adjoint model and by computing iteratively a “better” control vector k. The latter
contains the inflow discharge Qin(t) and the channel roughness coe�cient K.

In the case the unknown parameters are computed at given times [t1..tp] (it is the identification time grid),
k is defined by:

k = (Qin,1, ..., Qin,p, –, —)T

In the case the inflow discharge is decomposed as a Fourier series, see 2.3, k is defined by:

k = (a0, a1, b1..., aNF S , bNF S , ..., –, —)T

The VDA process requires the computation of the gradient of the cost functionÒJ with respect to k.
The computation of ÒJ is done with DassFlow software which has been originally designed to generate
automatically the discrete adjoint model using the source to source di�erentiation tool Tapenade [18]. The
cost function expression J depends on the observations; the latter are presented below while the expression
of J is detaileded in Section 2.4.

The employed optimization algorithm is a the L-BFGS algorithm, more precisely those implemented in
the M1QN3 routine, see [14]; it has been designed for large variable numbers. The VDA process is sketched
in Fig. (2.2). Given a first guess on parameters k0, the iterates ki are searched with the descent algorithm
such as the cost function J decreases. For each iteration of the minimization:

(1) The cost function J(ki) and its gradient ÒJ(ki) are computed by performing the forward model
(from 0 to T ) and its adjoint (from T to 0).

(2) Given ki , J(ki) and ÒJ(ki), the M1QN3 routine is invoked to compute a new iterate such that:
J(ki+1) < J(ki).

(3) The few convergence criteria are tested: either |J | Æ 10≠7 , or |J(ki+1) ≠ J(ki)| Æ 10≠5 or i > 100.
In order to assess the present hydrological model, the classical Nash-Sutcli�e criteria E is computed [30].

This metric is used to evaluate the accuracy of the identified discharge Qident
in = (Qident

in,1 , Qident
in,2 , ..., Qident

in,p )T

as follows:

(2.4) E(Qident
in ) = 1 ≠

qp
i=1

!
Qreal

in,i ≠ Qident
in,i

"2

qp
i=1

!
Qreal

in,i ≠ Q̄real
in

"2 , with Q̄real
in =

pÿ

i=1

Qreal
in,i

p

where Qreal
in = (Qreal

in,1, Qreal
in,2, ..., Qreal

in,p)T is the true value. The Nash-Sutcli�e value E is close to 1 for
values of Qident

in close to Qreal
in ; it is close to 0 for values of Qident

in is close to Q̄real
in ; finally it is close to ≠Œ

for values of Qident
in none correlated to the true value Qreal

in .
For a given quantity u, e2(u) denotes the 2-norm relative error:

(2.5) e2(u) = Îuident ≠ urealÎ2
ÎurealÎ2

In the inverse process, the varaible u above will denote Qin, – or —.
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Figure 2.2. VDA process, image extracted from[25] .

2.3. The altimetric data (SWOT simulator like). The inverse problem complexity depends greatly on
the spatial and temporal density of the water surface measurements. The interferometer of the future SWOT
satellite will provide measurements of water surface height, width and slope on two tracks of 50 km width
separated by a nadir gap of 20 km. The repeat period is 21 days for a global coverage with 1 to 4 passes
above the same location depending on the pattern of ascending and descending tracks, see Fig. 2.3 Left.
The accuracy of the water surface elevation measurement should be of: 45 cm for a water mask of 100 m2;
20 cm for 250 m2; 10 cm for 1000 m2, see [32]. The expected error on the free surface slope is 1.7 cm/1 km ,
and better for rivers widths greater than 100 m. The relative error on the total water body area should be
smaller than 15 %.

In the present study, synthetic SWOT observations are generated from the 1D forward model described
previously; its outputs are averaged in space in order to reproduce SWOT like observations at the reach
scale; finally a random noise can then be added. Reaches are defined from the intersection of river centerline
and SWOT swath coordinates divided in stripes, see Fig. 2.3. For each group of forward model cells forming
a reach r and for each observation time t, the spatial averages H̄k

r (t) (resp. w̄k
r (t) ) of the mesh cell water

elevation Hk(x, t) (resp. water surface width wk(x, t)) are computed; k is the parameter vector corresponding
these model ouputs.

These observations, which can be perturbed or not depending on the test case, are then used for parameters
identification; it is twin experiments.

Let us remark that if the bathymetry is known (or equivalently after many satellite passes and given the
set of triplets (Hi,wi,Yi)), the water surface width w does not provide any additional information since given
the geometry and the water elevation H, the width w can be straightforwardly deduced.

From Section 3.2, SWOT like observations are generated according to the expected ground track, temporal
overpasses and SWOT satellite period (21 days). In the case of Garonne River, which is one of the two
present test cases, SWOT satellite will pass 3 times over. Then each swath (50 km wide) defined by the
SWOT ascending and descending tracks are splitted into 1 km stripes, where the river portions define the
reaches for SWOT observables generation. Only 25 stripes contain the considered Garonne river portions,
hence as many observed river reaches; this is the swath portions represented in Fig. 2.3. These 25 observed
reaches can be classified in 3 groups; each of them is observed at di�erent times (see Eqn (2.9)):

• Garonne reach Group 1: 6 reaches corresponding to ”T 1 = 12.58 days.
• Garonne reach Group 2: 1 reach corresponding to ”T 2 = 14.11 days.
• Garonne reach Group 3: 18 reaches corresponding to ”T 3 = 1.51 days.
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Figure 2.3. Location of SWOT reaches on the Garonne case.
(Left) Aerial view of Garonne (black line) and SWOT reaches location. Group of reaches
#3 (green line) corresponds to ascending SWOT reaches; groups of reaches #1 and #2
(respectively blue and red lines) corresponds to descending SWOT reaches. The red line is
not visible since located at the downstream boundary. Only reaches which cross over the
river once have been selected.
(Right) SWOT reaches location in 1D longitudinal view (the only reach og group #2 is
located at the extreme right of the domain).

A SWOT High Resolution (HR) simulator have been developed according to the expected measurement
errors of SWOT, [32]. The following simulator inputs are considered to generate the synthetic SWOT
measurements: a 2D hydrological raster scene (description of water elevation and topography), satellite char-
acteristics (size of swath, satellite period, ...) and physical phenomenon (backscatter coe�cient, landtypes,
...). The output data are the Single Look Complex (SLC) data and cloud point data. SLC data consists in a
complex raster picture: each point of the raster gives an amplitude of the reflected signal (water or not) and
a phase information (from this information it is possible to get elevation). The cloud point data corresponds
to the result after processing the SLC picture; each point describes a water area with its corresponding water
elevation.

For fully realistic test cases, the SWOT HR simulator can consider errors coming from the instrumental
noise, the satellite rolling, the wet/dry troposhere, the ionosphere, the satellite position, layerover, see [4, 24].
The present study aims at analyzing the identifiability of the system given the extremely sparse spatio-
temporal sampling of SWOT data, with either perfect data or perturbed by a random Gaussian noise only.

Let us point out that the geometry is supposed to be given , see Section 8.1 for its description, then given
Hobs (at reach scale) the reach width wobs follows straightforwardly. In the case of uncertain measurements
(data are perturbed by a Gaussian noise), the noise is added to the water surface elevation only.

2.4. Cost function. The cost function J to be minimized is defined from the available measurments as
follows:

J(k) = jobs(k) + “jreg(k)(2.6)
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where jreg(k) is a regularizating term defined later, and jobs(k) is defined by:

jobs(k) = 1
2

⁄ T

0
||H̄k(t) ≠ Hobs(t)||2W dt(2.7)

where H̄k(t) and Hobs(t) are defined by:

• H̄k(t) =
!
H̄k

0 (t), H̄k
1 (t), H̄k

2 (t), ..., H̄k
Nr≠2(t), H̄k

Nr≠1(t)
"T

• Hobs(t) =
!
Hobs

0 (t), Hobs
1 (t), Hobs

2 (t), ..., Hobs
Nr≠2(t), Hobs

Nr≠1(t)
"T

The norm W , W a symmetrical positive semi-define matrix Nr ◊ Nr, Nr the number of observed reaches,
corresponds to an error covariance matrix. Its extra diagonal terms wi,j , i ”= j, represent the correlation
of error observations between reach i and reach j; its diagonal terms wi,i are the a-priori confidence on the
observation of reach i.

In a real measurements case, reaches close to the satellite nadir should give observations more accurate
than reaches far of the nadir. Hence, the diagonal coe�cient values should depend on the distance between
the reach r and the nadir. Extra-diagonal terms are extremely di�cult to estimate; they are considering to
be vanishing.

In all the following , the matrix W is the identity matrix of RNr.
The regularization term jreg(k) is defined by:

jreg(k) = jreg
Q (k) + jreg

K (k)
where jreg

Q (k) (respectively jreg
K (k)) is the regularization term on the discharge (respectively the Manning).

Typically, a low band filter can be imposed to avoid high frequency in the identified value of Qin(t).
The balance coe�cient “ between jreg(k) and jobs(k) can be classicaly set following the empirical Mo-

rozov’s discrepancy principle [28]. However, in the present context, the observations are so sparse that no
regularization term is required.

Let Nt,r denotes the number of SWOT observation of the reach r. Then the discrete form of the cost
function J reads:

(2.8) J(k) = 1
2

ÿ

r=1,Nr

ÿ

j=1,Nt,r

!
H̄k

r,j ≠ H̄obs
r,j

"2

with H̄k
r,j = 1

|�r|
q

i=1,Nr
Hk

i,jdx.
Let us remark that in an altimetry context, the ith observation time of reach group g, tg

i satisfies:

(2.9) tg
i = i�T + ”T g

where �T is the satellite period and ”T g is the time lap of the first observation of the reach group g. Thus
if a river is observed by 3 satellite passes during 1 repeat period (like it is the case for the Garonne river, see
Fig. 2.3), then there are 3 di�erents ”T g (i.e. g = 1, 2 or 3).

3. Test cases

The identifiability of the river flow model and the altimetry data assimilation are studied on a quite
complete academic test case, then on a portion of Garonne river (south-west of France). The twin experiments
are set as follows:

• Realistic true values of the parameters (roughness uniform in space and discharge hydrographs) are
fixed. Then the forward model is run, which allows to compute the SWOT like data as described
previously.

• Given these synthetic data (perturbed or not), the parameter identifiability is investigated for var-
ious temporal samplings of observations and hypothesis on the unknowns; also VDA processes are
performed.
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3.1. Academic test case. The aim of the test case below is to investigate the identifiability of several
discharge hydrographs and/or roughness on a simple, low cost in terms of CPU time, test case. Small
computational times make possible to investigate the response surface of the model. The test case geometry
consists in a 1000 m lenght channel. Each cross-section is defined as a superposition of 5 trapeziums. The
river bed elevation zb and water surface width w are not constant; they are defined as follows:

zb(x) = z�(x) + z”(x)

with mean slopes defined by:

z�(x) =

Y
_]

_[

10 ≠ 0.001x if 0 Æ x Æ 300
9.7 ≠ 0.004(x ≠ 300) if 300 < x Æ 700
8.1 ≠ 0.002(x ≠ 700) else

and local bathymetry oscillations as follows:

z”(x) =

Y
]

[

q4
i=0 an sin(bn(x ≠ 50)2fi

T
) if 50 Æ x Æ 950

0 else

with an = {0.01, 0.01, 0.015, 0.02, 0.02} and bn = {1, 2, 4, 8, 16}. The triplets (Hi,j , wi,j , Yi,j) defined in
Section 2.1 read:

Hi,j = H Õ
i + zb(xj) with H Õ

i = {1, 2, 3, 4, 5}

(3.1) wi,j =

Y
]

[
wÕ

i,j + sin
3

fi(xj ≠ 50)
900

4
if 50 Æ x Æ 950

wÕ
i,j else

with wÕ
i,j = {3, 4.9, 5.1, 6.4, 7.3}

yi,j = {0, 0, 0, 0, 0}

The academic test case geometry is shown in Fig. 3.1.



IDENTIFIABILITY AND ASSIMILATION OF SPARSE ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER MODELS 10

Figure 3.1. Geometry of the academic test case: (Left, top) Channel elevation of river
vs curvilinear abscissa. (Right, top) Channel bottom elevation anomaly (zb≠mean slope).
(Left, bottom) Cross-section geometry for x = 500 m. (Right, bottom) First and top cross
sectional layer width (w0 and w4), see 3.1

The roughness coe�cient is K = 25 m1/3.s≠1. The steady flow lines, velocities and Froude numbers
(F = U/

Ô
gh) are presented in Fig. 3.2 for Qin = 10 m3.s≠1 and in Fig. 3.3 for Qin = 37 m3.s≠1.

The downstream boundary condition consists in a power low rating curve defined by: hout = 0.45Q0.6
out m

, see Fig. 3.4 (Left). This downstream law is, with the inflow discharge, a dominant control of the flow.
Throughout the study, this downstream condition is given.
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Figure 3.2. Academic test case. (Left) Steady state flow for Qin = 10 m3.s≠1: (Left, top)
Water elevation H (Right, top) Discharge Q. (Left, Bottom) Froude F and (Right, Bottom)
Velocity U vs river curvilinear abscissa. (Right) Cross-section example (for x = 500 m).

Figure 3.3. Academic test case. (Left) Steady state flow for Qin = 37 m3.s≠1: (Left, top)
Water elevation H (Right, top) Discharge Q. (Left, Bottom) Froude F and (Right, Bottom)
Velocity U vs river curvilinear abscissa. (Right) Cross-section example (for x = 500 m).
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Figure 3.4. Academic test case. (Left) Downstream power law rating curve. (Right)
Location of observation reaches: 10 reaches (Observation 1).

3.2. Garonne river test case. The zone of interest is located in between Toulouse and Malause (south
west of France). The Garonne river drains an area of about 55000 km� from its headwaters in the Spanish
Pyrenees near the Pic d’Aneto to the Gironde estuary. The 1D Garonne data considered in [35, 23, 11],
consists in digital elevation model of river bathymetry as follows:

• 173 cross sections measurements from the field, distant of 56 to 2200 meters with a median value of
438 m,

• a mesh containing 1158 cross sections; they result of linear interpolations of the orignal 173 cross
sections,

• the cross sections are merged into lidar data of banks and floodplain elevations (5 m horizontal
accuracy).

The mean slope of Garonne data is ≠0.0866 % (86.6 cm/km or 8.66.10≠4 rad). The final mesh size, i.e. the
spacing between interpolated cross sections extended on banks, is between 37.26 m and 70.0 m at maximun
(the average spacing being 65.034 m). The characteristics of the resulting mesh are detailled in Fig. 3.5.
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Figure 3.5. Display of Garonne data: (Left, top) Location of the study area. (Right,
top) Normalized river bottom elevation (zb≠mean slope) in function of the river curvilinear
abscissa. (Bottom) First cross sectional layer width w0 on 151 layers (see Fig. 2.1).

4. Discharge identification in the academic test case

This section aims at analysing the inference capabilities of the altimetric data described previously in the
1D river Saint-Venant model. As a first step, the unknown parameter is the inflow discharge Qin(t) only. The
test case is the academic one, see Section 3.1. The di�erent steps of the investigation are the following. From
the vailable observations, (x, t)-identifiability maps are produced; these maps provide an excellent overview
of the inference capabilities of the forthcomig VDA process. These maps are analysed in three contexts
depending on the observation sparsity; they are denoted as follows:

OD1: (Observation Distribution #1), the whole domain is observed as indicated in Fig. 3.4 Left.
OD2: the observations are available at upstream and downstream only (6 reaches), see Fig. 4.5.
OD3: the observations are available in the middle only (4 reaches), see Fig. 4.5.

Then the inference of Qin(t) is performed either as usual (i.e. by identifying its values on a fixed identification
grid). It the so-called IDbasic case. The other approach is to define Qin(t) as a Fourier series, hence leading
to a more global identification process. It is the so-called IDFourier case. In both cases, an analysis of the
influence of the identification time grid is investigated.

4.1. Identifiability maps. The observations are generated from a hydrograph adapted to the geometry
respecting realistic discharge magnitudes and time scales, see Qreal

in in Fig. 4.3 Top-Left. The hydrograph
indeed creates a similar flooding with a time scale in adequation with the total simulation time (in other
words the flood wave has time enough to propagate throughout the domain).

The roughness coe�cient is constant, K = 25 m1/3.s≠1 (– = 25 and — = 0 in (2.2)), the observation time
step is dtobs = 100 s. The discharge first guess is chosen constant in time: Q = 10 m3/s.

An original reading of the inverse problem consists to plot so-called identifiability maps in the plan (x, t).
Since the inflow discharge (Qin(t) defined at x = 0) is a sought input parameter, the important wave velocity
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is the positive one i.e. (u + c). Recall that without the source terms (gravity waves model), the 1D Saint-
Venant model wave velocities are (u ≠ c) and (u + c), while the di�usive wave velocity is 5

3 u (in the case of a
wide channel), see e.g. [36, 9, 29]and Remark 1.

Then for each reach r (Nr = 10 in the case OD1) and for each time observation tr
i (11 in the case OD1),

the velocity waves of the 1D Saint-Venant model and the di�usive wave model are estimated, then plotted,
Fig. 4.1. To do so, ūr

i and c̄r
i corresponding to the reach r at time i are estimated, where ū denotes the

mean velocity value and c̄ = (gh̄)1/2 with h̄ the mean water depth (deduced from the surface elevation
measurements and the given bathymetry).

Let us point out that in the present synthetic data experiments (twin experiments), ū is known. In a
realistic context, ū can be estimated from a 0.5D model (based on the Manning-Strickler equation written
for each reach) as it is done for example in [11].

The (r, i) observation time intervall is defined as follows: T w
r,i = [tr

i ≠ Lr/(ū + c̄)r
i , tr

i ] with Lr the reach
lenght and tr

i the observation time.
Then in Fig. 4.1 each observation space time window T w

r,i is plotted (in color). Each rectangle diagonal
corresponds to the local (ū + c̄) line; indeed the heigth of T w

r,i corresponds to (ūr
i + c̄r

i ) magnitude. One can
notice that the variation in space time of (ū + c̄) is not significant, see the rectangle height variations and
Table 1.

Let us point out that all the domain is observed at t = 0 hence the wave velocity (ū + c̄) at t = 0 can be
estimated accurately.

The identifiability map in (x, t) is plotted for the three cases depending on the observation sparsity: cases
OD1, OD2 and OD3, see Fig. 4.1. The rectangle colors represent the misfit to the equilibrium between
gravity and friction forces (in norm 1); indeed it is the right-hand side (or source term) magnitude of the
momentum equation, see (2.1):

(4.1) "equilibrium misfit" = norm1[ g

⁄ h

0
(h ≠ z)ˆw̃

ˆx
dz ≠ gS(ˆzb

ˆx
+ Sf ) ]

If this source term vanishes (blue colors), it means that the flow is locally at equilibirum, uniform; the
Manning-Strickler equation would be su�cient to model locally the flow. On the contrary if the misfit term
becomes important (e.g. orange - red colors) then the hyperbolic feature of the model is relatively important.

In terms of energy, this source term representing the misfit to the equilibrium is a dissipative term; while
the left-hand side of the 1D Saint-Venant model is conservative, hyperbolic, see (2.1). Then in Fig. 4.1 the
colors provide a rough estimation of the propagation and dispersion features of the flow model.

Typically, the peak time at inflow is represented by the rectangle (r, i) = (1, 6); then the corresponding
wave velocity (ū + c̄) is faster than those arising from the middle of the domain, rectangle (6, 6) (hence
both lines are not parallel). To illustrate the transport-di�usion phenomena corresponding to Fig. 4.1, the
discharge throughout the domain is plotted at the three observations times 400s, 500s (peak time at inflow)
and 600s in Fig. 4.2.

All these represented information in the (x, t) plan represents the so-called identifiability map, in particular
with respect to the inflow discharge Qin(t) (i.e the control of Q(t) at x = 0).

Typically, in the present case, the identifiability maps show that any change on Qin is observed at least
few times at some locations; and this is true for the three cases OD1, OD2 and OD3, see Fig. 4.1. In
other words, there is no blind time-space window, indeed the same hydraulic information is even observed
few times. Then the forthcoming identification experiments based on VDA should be robust and accurate
for the complete simulation time range [0, T ]. This a-priori analysis are confirmed by the VDA experiments
presented below.

Let us remark that the present source term estimation provides an a-posteriori model error if employing
the usual Manning-Strickler equation to model the flow.
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Figure 4.1. Up. The identifiability map in (x, t) in the case: (Top) OD1 (full observations);
(Bottom, Left) OD2; (Bottom, Right) OD3
The estimated wave velocities for OTSD(r, i) are plotted in black lines. For the same
OTSD(r, i), the dashed lines denote the incoming velocity waves.
The red lines correspond to the first (resp. the last) reach at the first (resp. the last) obser-
vation time.
The misfit term magnitude is represented in each rectangle by the colors
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Statistics mean µ standard deviation ‡

min(|u + c|) 6.3027 0.6063
mean(|u + c|) 6.3521 0.6224
max(|u + c|) 6.4028 0.6394

min(|u|) 1.3018 0.2916
mean(|u|) 1.376 0.2972
max(|u|) 1.4361 0.3069

Table 1. Academic test case. Statistics on the wave velocities (in space-time); Gaussian distribution.

Figure 4.2. Discharge Q(x, ·) vs x at three observations times: 400s, 500s (peak time at
inflow), 600s.

4.2. IDbasic identification for various dta. In this section few identifications of inflow discharge are
performed with a fixed observation time step dtobs = 100 s and various assimilation time steps dta, ranging
from 1/10 to 1 dtobs. The inflow discharge value is identified at each assimilation time step following
the inflow discharge definition IDbasic, see Section 2.1. The parameter vector is k = (Q1, ..., Qp)T with
dta = (ti+1 ≠ ti) = ’i œ [1..p ≠ 1].

The inflow discharge and the gradient value are plotted in Fig. 4.3 Top, for dta = dtobs/10 and dta = dtobs.
In the case dta = dtobs/10 the result is excellent, while if dta = dtobs, the accuracy remains good (excepted
at peak time, t ¥ 500s). The convergence curve of the cost function J is similar than those presented in Fig.
5.1 Right-top. These two experiments have converged in 45 and 17 iterations respectively.

The errors on the identified inflow discharge are plotted in Fig. 4.3 Bottom. Both the 2-norm error
and (1 ≠ E), E the Nash–Sutcli�e criteria, are the lowest for dta between 20 s and 50s = dtobs/2 (with
(1 ≠ E) ≥ 0.0077).

Roughly, the error is improved if dta < dtobs but not too small. Indeed, for dta << dtobs, typically
dta = dtobs/10, over and under estimations of the discharge appear. Indeed, if dta is small, any change of
Qin between two identification times, is not observed, Fig. 4.3 Left-top.
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Figure 4.3. Discharge identification: IDbasic approach with dtobs = 100 s. (Left, top)
Discharge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s. (Right, top)
Normalized gradient ÒQJ with dta = dtobs and dta = dtobs/10 = 10 s. (Bottom) Errors vs
dta.

4.3. IDFourier identification for various dta. The same discharge identification expriments as previ-
ously are performed but with inflow discharge represented in a reduced basis. Here Qin(t) is approxi-
mated by a Fourier series, see IDFourier in Section 2.1 and (2.3). The parameter vector reads: k =
(a0, a1, b1..., aNF S , bNF S )T . Then the VDA process consists in retrieving these Fourier coe�cients; it is
done for NF S = 7 and NF S = 25. Roughly the same accuracy and behaviors as in the previous case are
obtained, see Fig. 4.4.

The minimal errors (e.g. (1 ≠ E) ≥ 0.005) occur for T/NF S = 40 and 60, see Fig. 4.4 right.
An advantage of identifying Qin(t) as a Fourier series is that the optimal solution is always smooth; hence

this circumvents the potential oscillations obtained in the case DIbasic with dta << dtobs .

4.4. Identification robustness vs observation sparsity. A VDA process is global in time. The previous
numerical experiments demonstrate that refining too much the identification time grid dta compared to dtobs
(typically dta = dtobs/10) deteriorates the identification accuracy. In other words, given an observation time
grid, the identification of the time dependent inflow discharge cannot be obtained at much finer time scale.
All these previous experiments have been performed with observations available in the whole domain (case
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Figure 4.4. Discharge identification: IDFourier approach (Fourier series reconstruction)
with dtobs = 100 s: (Left) Discharge identification with NF S = 7 and NF S = 25. (Right)
Errors vs T/NF S .

OD1, see the introduction of Section 4). In a real case (e.g. SWOT data of Garonne river test, see Section
2.3) the observations are not available for the whole domain at the same time. In the present experiments,
the robustness and accuracy of the discharge identification is investigated if considering real-like SWOT data
i.e. less sparse observations.

The inflow identification are performed with a pseudo-optimal assimilation time step dta = 25 s (still with
dtobs = 100 s) for the three cases OD1, OD2, OD3, see Fig. 3.4 Left and Fig. 4.5.

Figure 4.5. Location of the observation reaches. (Left) Case OD2: observations are located
at upstream and downstream (6 reaches). (Right) Case OD3: observations are located in
the middle (4 reaches).

As discussed in Section 4.1, the identifiability maps (see Fig. 4.1) indicate that for all the three cases
the identification should be accurate. Indeed, the numerical results obtained by VDA confirm this a-priori
analysis since the error is extremely low, typically (1 ≠ E) > 0.99, see Tab. 2. Since the results are similar
to the previous case, the identified inflows are not plotted.
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OD 1 OD 2 OD 3
Nash-Sutcli�e coe�cient (E) 0.993 0.994 0.991

Table 2. Nash-Sutcli�e coe�cient (E) for dta = 25 s in function of the observations avail-
ability; cases OD1, OD2, OD3.

5. Discharge and roughness identification in the academic test case

In the previous section, the inflow discharge Qin(t) only was infered. In the present section both the time-
dependent inflow discharge and the roughness coe�cient K (time-independent) are infered. Let us recall
that K is defined by K = –h— . Then the control vector reads: k = (Qin,1, Qin,2, ..., Qin,p, –, —)T in the
IDbasic case and k = (a0, a1, b1..., aNF S , bNF S , –, —)T in the IDFourier case (Fourier series reconstruction).
The synthetic observations are generated from the same hydrograph (inflow discharge) as previously and an
uniform roughness coe�cient K = 25 i.e. – = 25 and — = 0 in Eqn (2.2). Let us point out that similar
results have been obtained for a non vanishing value of — (i.e. for K depending on the water depth h).

First guesses are respectively chosen equal to Qin(t) = 100 m3.s≠1 for all t, and to (–, —) = (23.5, 0.1)
(hence considering K depending on h). The observations are available in the whole domain: case OD1.

5.1. Identifications in the IDbasic and IDFourier cases. The identified inflow discharge with a basic
linear reconstruction (case IDbasic) is as accurate as in the previous case (i.e. while identifying Qin only).
The identified discharge are plotted in Fig. 5.1 Left top in the case dta = 10 s and dta = 100 s.

For dta = 10 s, the identification of the roughness parameters – and — is accurate, see Fig. 5.1 Bottom;
the minimization algorithm has converged in 64 iterations. On the contrary, for dta = 100 = dtobs, the
minimization algorithm has di�culties to converge, see Fig. 5.1 Top right.

In the case IDFourier (Fourier series reconstruction of Qin(t)), the results qre quite similar, see Fig. 5.2.
In both cases (IDbasic and IDFourier), the identified quantities are accurate if the identification time

step dta is small enough (compared to dtobs), or if the Fourier mode number NF S is large enough. In such
cases, the identification of Qin(t) is as accurate and as robust as in the previous case (where Qin only was
identified).

But if dta = dtobs or equivalently if NF S is small enough, then the minimization algorithm has di�culties
to converge, hence the VDA process provides quite unaccurate quantities.

The errors on the roughness coe�cients are plotted in Fig. 5.3. Again the best accuracy are obtained for
dta (resp. NF S) small enough but not much (resp. large enough). Since the error behaviors made on the
identified discharge are very similar than in the previous case, see Fig. 4.3 Bottom and Fig. 4.4 Right, they
are not plotted.

5.2. Sensitivity with respect to the first guesses. The sensitivity of the identified quantities (Qin and
(–, —)) with respect to the first guess values Qin,F G and (–, —)F G is investigated. To do so, the response
surfaces of the identified values are examined in terms of Nash-Sutcli�e criteria E for the discharge and in
terms of relative errors for the roughness parameters, see Fig. 5.4. All the computations are made in the
OD1 case (complete observations) and in the IDFouier case with NF S = 20.
Three sensitivity maps are presented, see Fig. 5.4. For each of them the parameter — is fixed (— = 0); then
each figure corresponds to the error of one of the three identified parameter vs the first guess values of – and
Qin.

The three sensitivity maps show that the identification of inflow discharge Qin(t) and the roughness
coe�cients are accurate for a large value range of Qin,F G. However the accuracy is less high for low values
of Qin,F G.

The results are very similar if the fixed parameter is the discharge Qin or the roughness parameter –, that
is the reason why the corresponding figures are not presented.
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Figure 5.1. Discharge and roughness identification in the academic test case (IDbasic case).
(Left, top) Discharge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s.
(Right, top) Function cost J ,||ÒQJ ||,||Ò–J || and ||Ò—J || vs minimization iterations. (Left,
bottom) Roughness coe�cient – vs minimization iterations. (Right, bottom) Roughness
coe�cient — vs minimization iterations.

5.3. Sensitivity with respect to the observation errors. Finally the impact of observation errors on the
three identified quantities are presented in Fig. 5.5. A Gaussian noise N (0, ‡) is added to the water elevation
data Hobs. In the case ‡ = 0.1 m (which corresponds to the excepted error of the forthcoming SWOT
instrument), the error on the roughness parameters (–, —) equals approximatively 5% and the Nash–Sutcli�e
criteria E ¥ 0.5. In a bad observational context with ‡ = 0.5 m, the error on the roughness parameters (–, —)
equals approximatively 10 ≠ 25% and the Nash–Sutcli�e criteria E(Q) becomes negative.

Therefore, the identification of the composite control parameter (Qin(t); –, —) turns out to be quite sensitive
to the observation errors but its inference remains accurate in the case of the forthcoming SWOT instrument
accuracy (‡ = 0.1 m).
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Figure 5.2. Discharge and roughness identification in the academic test case (IDFourier
case). (Left, top) Discharge identification with NF S = 7 and NF S = 25. (Right, top) Func-
tion cost J ,||Òa0J ||,||ÒanJ ||, ||ÒbnJ ||,||Ò–J || and ||Ò—J || vs minimization iterations. (Left,
bottom) Roughness coe�cient – vs minimization iterations. (Right, bottom) Roughness
coe�cient — vs minimization iterations.

Figure 5.5. Error on the identified quantities with k = (a0, a1, b1..., aNF S , bNF S , –, —)T

vs the observation error ‡ (standard deviation of the Gaussian noise). The vertical dashed
line represents the expected erro of the SWOT mission, both in norm 2 and Nash-Sutcli�e
criteria.
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Figure 5.3. Discharge and roughness identification in the academic test case: errors e2 on
(–, —). (Left) IDbasic case: errors vs dta. (Right) IDFourier case: errors vs T/NF S .

6. Garonne river test case

The accuracy and the robustness of the same VDA process as before, see sections 2.2 and 2.4, is investigated
in a realistic data context. The test case is the Garonne river (portion downstream of Toulouse) presented in
Section 3.2. The hydrograph corresponds to the discharge in Toulouse for a 80 days period during the year
2010. The SWOT-like observations are generated by the model following the method presented in Section
2.3; the roughness coe�cient is constant: K = 25 m1/3.s≠1 (– = 25 and — = 0 in (2.2)). For the VDA
computations the first guess Qin,F G is chosen constant and equal to 268 m3/s (the mean value of the true
hydrograph), see the horizontal dotted lines in the inflow discharge graphs, Fig. 6.3.

As a first step and following Section 4.1, the identifiability maps are computed. These preliminaries
analyses show the forthcoming di�culties, or even the impossibility, to infer the inflow discharge from the
altimetric SWOT like data only. Then three di�erent scenari are performed and analysed.
Scenario 1 (Section 6.2) is based on a real SWOT temporal sampling as defined in Section 2.3 (for a simulation
time T = 80 days); Scenario 2 (Section 6.3) is based on a densified SWOT temporal sampling by a factor
1.5 and 2 (i.e. for a simulation time T = 8 days); Scenario 3 (Section 6.4) is based on a densified SWOT
temporal sampling by a factor 100 i.e. for a simulation time T = 0.8 day.

6.1. Identifiability maps. The identifiability maps in (x, t) are computed from the available observations,
see Fig. 6.1, following the approach described in Section 4.1. These identifiability maps are presented for the
real like case (Scenario 1), see Fig. 6.2 Left) and Scenario 3, see Fig. 6.1.

Let us point out that contrarily to the academic test case, no observation is available at t = 0 hence the
wave velocity (ū + c̄) propagating from t = 0 cannot be estimated.

Fig. 6.2 Left (identifiability map based on the velocity waves without the friction e�ects) show that
in the true sampling case (Scenario 1), the identifiability of Qin(t) is limited to the observation time, hence
extremely limited compared to the total simulation intervall [0, T ]. Then in the forthcoming VDA experiments
(next paragraph), a global identification of Qin(t) in a Fourier series basis (IDFourier case) seems preferable
compared to a “sequential” one (IDbasic case) althought whatever the Qin(t) basis, the VDA process should
not be able to fullfill the “blind” space-time windows with physical information.

Next, the 100 times more dense scenario (Scenario 3) is analysed. In this case, see Fig. 6.1, the inflow
discharge identifiability is represented by the vertical dashed lines at x = 0: in red those coming from the
“far” green observed reaches (hence identifiability information should not be really reliable); in black those
coming from the close blue observed reaches (hence much more reliable). Recall that this identifiability
information is based on the wave velocities estimations only, hence the dissipation due to the source term
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Figure 5.4. Sensitivity to the first guess: errors on the identified quantities vs –F G and
Qin,F G (— is fixed). (Left, top) Error e2(–). (Right, top) Error e2(—). (bottom) Error on
Qin : Nash–Sutcli�e criteria E.

(roughly the Manning-Strickler equation) is not taken into account. Then this figure indicates that a large
proportion of inflow values should be identifiable (see the vertical points at upstream). The forthcoming
VDA experiments confirm the present preliminary analysis, see e.g. Fig. 6.5, where the dashed vertical lines
(red and black) are taken back on the identified discharge graphs.

The identifiability map of Scenario 2 is similar to the identifiability map of Scenario 1 but with larger
identifiable windows (r, i) (respectively 1.5 and 2 times more dense); then it is not plotted here.
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Figure 6.1. Identifiability maps in (x, t) for the Garonne river in the Scenario 3 case (tem-
poral sampling densified by a factor 100). The velocity waves (ū + c̄) (dotted lines) are
estimated at each reach from the available observations. The rectangle heights are pro-
portional to the local value (ū + c̄). The dashed vertical lines at upstream represent the
characteristic feet i.e. the sets of points which can be identified in the model without source
term: in red those coming from the “far” green observed reaches (hence identifiability infor-
mation not fully reliable); in black those coming from the close blue observed reaches(hence
much more reliable).
The circle centered at t ¥ 0.45 days corresponds to the inflow peak.

Figure 6.2. Identifiability maps in (x, t) in the Garonne river case, Scenario 1: true tem-
poral sampling. The “identifiability lines” (the charactersitics feet) are so tiny that they are
not visible in the figure. The circle centered at t ¥ 0.45 days corresponds to the inflow peak.



IDENTIFIABILITY AND ASSIMILATION OF SPARSE ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER MODELS 25

Statistics mean µ standard deviation ‡

min(|u + c|) 5.4502 0.6805
mean(|u + c|) 6.0739 0.6561
max(|u + c|) 6.6827 0.8052

min(|u|) 0.7198 0.2507
mean(|u|) 1.1023 0.1968
max(|u|) 1.391 0.2607

Table 3. Garonne test case. Statistics on the wave velocities (in space-time); Gaussian distribution.

6.2. Scenario 1: real SWOT temporal sampling. Given the bathymetry zb and the roughness coe�cient
K, the inflow discharge is identified by VDA from the real SWOT space time sampling. Following the
preliminary study based on the identifiability maps, Qin(t) is decomposed as a Fourier series (IDFourier
case) with NF S = 5 (Fig. 6.3 Left) and NF S = 10 (Fig. 6.3 Right). Then as expected, the identification is
accurate in the vicinity of each observation (the vertical colored lines in Fig. 6.3) but unaccurate elsewhere.

The too important sparsity of the SWOT data prevents to constraint su�ciently the inflow discharge.
Also as expected, increasing the identification frequency (case NF S = 10) does not improve the coarser
approximation (NF S = 5) since the latter already corresponds to an adequate frequency compared to the
observation mean frequency, see Fig. 6.3. In short and following the identifiability map, only the values
infered in the vicinity of the observation times are reliable.

Figure 6.3. Garonne river, Scenario 1. Discharge identification with Fourier series with:
(Left) NF S = 5. (Right) NF S = 10.
Vertical lines corresponds to the time observations (blue for Group 1, red for Group 2 and
green for Group 3). The horizontal dotted line corresponds to the first guess.

6.3. Scenario 2: densified SWOT temporal sampling by a factor 1.5 and 2. Following the previous
numerical experiment, the data sampling is densified in time by a factor 1.5, Fig. 6.4 Left, and by a factor 2,
Fig. 6.4 Right; the inverse computations are performed with NF S = 10 (corresponding to an identification
time interval ”tident = 8 days).

Like in the previous case and following the identifiability map, the identification is accurate only in the
vicinity of the available observations (the vertical colored lines in Fig. 6.4) and is a-priori unaccurate elsewhere
because of the large “blind” space time intervalls.
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These two experiments show that if the observations are closer to the peak time that the latter is better
capturated. However the inflow peak is not properly captured in none of these two experiments since no
observation is available at the corresponding time.

Figure 6.4. Garonne river, Scenario 2. Discharge identification with Fourier series, NF S =
10 and: (Left) Tobs = Tobsori/1.5. (Right)Tobs = Tobsori/2. Vertical lines correspond
to the time observations (blue for Group 1, red for Group 2 and green for Group 3). The
horizontal dotted line corresponds to the first guess.

6.4. Scenario 3: densified SWOT temporal sampling by a factor 100. In this last test case, the
data sampling and the hydropgraph are re-scaled (densified) in time by a factor 100. Then the hydrograph
remains consistent with the domain lenght since the peak duration is slightly higher than the response time
of the complete domain. As already discussed and as indicated on the identiability map Fig. 6.1, a majority
of the inflow information has time enough to travel throughout the domain and is partially observed. Then
many inflow values should be identifiable (although not all).

Before performing the VDA process, the first step is to define empirically an adequate identification
frequency (equivalently by setting NFS) from the observation times. In the present case, Fig. 6.5, a good
choice for ”T ident would be 0.05 day at least and 0.1 day at last. This corresponds to NFS = 16 and 8
respectively. The VDA experiments are strictly the same as the previous ones but the time scale; they are
performed with NFS equal to 5, 10, 15 and 40, see Fig. 6.5.

To better understand the origin of the identification errors, the approximation of the exact inflow discharge
by the Fourier series are plotted, see the 4 curves “Exact FS with NFS=...” in Fig. 6.5. Also in each figure,
the characteritic feet indicated at t = 0 as vertical lines in Fig. 6.1 are taken back. This defines the so-called
identifiability intervalls.

As expected, the VDA process provides an accurate inflow discharge at the times corresponding to the
black identifiability intervalls. On the contrary, the peak is captured partially only since it occurs during a
red identifiability intervall; the latter being much less reliable since these identifiability intervalls does not
take into account the energy dissipation (the source term in (2.1)). As a result the peak amplitude is partly
capturated only since not fully observed. However, the identification is globally correct considering the quite
sparse observations.
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Figure 6.5. Garonne river, Scenario 3. Discharge identification with Fourier series with:
(Left, top) NF S = 5 (Right, top) NF S = 10 (Left, bottom) NF S = 15. (Right, bottom)
NF S = 40.
The vertical colored lines correspond to the observation times (blue for Group 1, red for
Group 2 and green for Group 3), see Fig. 2.3.
The horizontal colored dashed lines (red and black) at Q = 50 correspond to the characteristic
feet, lines taken back from the identifiability maps.

Remark 2. It can be noticed that since the wave velocity 5
3 ū slower than (ū + c̄), see Fig. 6.6 and 4.1, then

the inflow discharge identifiability in the di�usive wave model would be less severe than in the present 1D
Saint-Venant model. However, in many hydraulic situations the di�usive wave model is unsatisfaying, see
e.g. [29] and references therein.
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Figure 6.6. Identifiability maps in (x, t) in the Garonne river case. Scenario 3 (temporal
sampling densified by a factor 100) like Fig. 6.1 but with the velocity waves equal to 5

3 u
(di�usive wave model). The vertical lines at upstream represent the sets of points which
can be identified in the model without source term (in red those coming from far, in black
coming from close observed reaches).

7. Conclusion

The identifiability of inflow discharge, and potentially roughness coe�cients, have been investigated in the
context of SWOT like data (altimetric data of the river surface). Before performing the Variational Data
Assimilation (VDA) processes, inverse problem identifiability maps (aiming at connecting the observations
and the model waves in the (x, t) plane) have been analyzed. These maps provide a comprehensive overview
of the inverse problem and may give some information in terms of reliability of the VDA results; also this
indicates how to define an adequate identification frequency. Typically, in the SWOT case, the identifiability
map suggests that the sampling sparsity prevents to infer accurately a complete hydrograph, between sparse
observations times, in the Saint-Venant model. Also, these preliminary maps make possible to recover
the space-time windows where the inference obtained by VDA should be reliable. The numerous VDA
experiments which have been performed (both on academic test cases and on a 80 km portion of the Garonne
river) have confirmed these identifiability map analyses. The numerical results have been analysed for various
observation sampling densities. Sensitivity analyses with respect to the observation errors and with respect
to the first guesses values demonstrate the good robustness of the VDA inferences. Surprisingly if infering
the roughness coe�cients (defining a power law K(h)) in addition to the inflow discharge Qin(t), then the
inference robustness and accuracy remain nearly the same (compared to the discharge inference only). The
present precise study related to the only SWOT like data and the Saint-Venant model (1D shallow water
model for river flows) demonstrate on one hand the great contribution of these forthcoming measurements,
on the other hand their limitations for 1D river flow dynamic models. The present study completes the
previous analyses led on this topic and constitute an important stage before addressing the identifiability
and inferences in the flow model by VDA but from multi-sensor and complimentary data.

The present identifiability map concept should be investigated more into details in the context of multi-
source data (e.g. multi- satelites or combination of in situ data and satelite data), and potentially for the
more simple di�usive wave model. In other respect, these identifiability maps may be employed to define
the spatio-temporal data assimilation windows, then leading to better constraint of the flow model hence
more accurate inflow discharge identifications. Finally similar numerical experiments should be performed
for longer time simulations, typically complete multi-year hydrographs, from an already quite accurate first
guess. (Good first guesses are generally obtained from simple models like the Manning-Strickler equation,
see e.g. [40, 10]).
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8. Appendices

8.1. River model geometry . The resolution of the Saint-Venant equation (1D shallow water) (2.1) requires
the computation of wet surface S and perimeter Pe in function of water depth h and geometrical parameters.
Then sequences of wet surface (Si)06i6I and perimeter (Pei)06i6I are introduced with I œ 0, .., Np where
Np is the maximal number of triplets (Hi, wi, Yi)0ÆiÆNp .

For the notations, the reader should refer to Fig. 8.1.
• The wet surfaces (Si)06i6I are defined by:

I
S0 = (H0 ≠ zb)w0

Si = 1
2 (wi≠1 + wi) (Hi ≠ Hi≠1) ’i œ J1, NpK

• The wet perimeters (Pei)06i6I are defined by:
Y
____]

____[

Pe0 = w0 + 2(H0 ≠ zb)

Pei =
A3

Wi

2 ≠
3

Wi≠1
2 ≠ yi

442
+ (Hi ≠ Hi≠1)2

B1/2

¸ ˚˙ ˝
=P e1i

+
A3

Wi

2 ≠
3

Wi≠1
2 + yi

442
+ (Hi ≠ Hi≠1)2

B1/2

¸ ˚˙ ˝
=P e2i

’i œ J1, NpK

with yi = Yi≠1 ≠ Yi, i œ J1, NpK.
Let m œ N such that: Hm < h < Hm+1 ; or equivalently,

qm
i=1 Si < S <

qm+1
i=1 Si.

Thanks to the sequences (Si)06i6I and (Pei)06i6I , it is possible to define the following geometric func-
tions:

• Function Pe(h):

Pe(h) =

Y
___]

___[

0 if h = 0
2h + w0 if 0 < h 6 H0 ≠ zb

(2h + w0) +
mÿ

i=1
Pei + PeÕ

m if h > H0≠zb

with:

PeÕ
m =

31
Wm+1

2 ≠
!

Wm
2 ≠ ym+1

"22
+ (Hm+1 ≠ Hm)2

41/2 1
(h+zb)≠Hm

Hm+1≠Hm

2
+

31
Wm+1

2 ≠
!

Wm
2 + ym+1

"22
+ (Hm+1 ≠ Hm)2

41/2 1
(h+zb)≠Hm

Hm+1≠Hm

2

• Function S(h):

S(h) =

Y
___]

___[

0 if h = 0
hw0 if 0 < h 6 H0 ≠ zb
mÿ

k=0
si + sÕ

m if h > H0≠zb

with:

sÕ
m = 1

2

3
2wm +

31
Pe2

1(m+1) ≠ (Hm+1 ≠ Hm)2
2 1

2 +
1

Pe2
2(m+1) ≠ (Hm+1 ≠ Hm)2

2 1
2
4 3

(h + zb) ≠ Hm

Hm+1 ≠ Hm

44
((h+zb)≠Hm)

• Function h(S):

h(S) =

Y
_]

_[

0 if S = 0
S

w0
if S 6 s0

Hm ≠ zb + hÕ
m if S > s0

with:
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hÕ
m = ≠

3
wm ≠ X

wm+1 ≠ wm

4
(Hm+1 ≠ Hm) , where X =

Û

w2
m + 2

3
wm+1 ≠ wm

Hm+1 ≠ Hm

4
(S ≠ sm)

If m is such that wm+1 = wm, so the relation is simplify by: hÕ
m = (s≠sm)

wm

• Function w(h):

w(h) =

Y
]

[

0 if h = 0
w0 if 0 < h 6 H0 ≠ zb

wm+–1(m+1)((h + zb) ≠ Hm) + –2(m+1)((h + zb) ≠ Hm) if h > H0≠zb

With –1i and –2i the slope of trapezium i so:

–1i, –2i =

1wi

2 ≠
1wi≠1

2 ± yi

22

Hi ≠ Hi≠1

Figure 8.1. Notation used for the geometric functions.

8.2. Finite volume scheme. The Saint-Venant equation (1D shallow water) (2.1) are computationally
solved by the following first order finite volume scheme.

8.2.1. First order scheme. Eqn (2.1) are rewritten in conservative form as follows:

(8.1)

Y
_]

_[

ˆS

ˆt
+ ˆQ

ˆx
= 0 (8.1.1)

ˆQ

ˆt
+ ˆ

ˆx

3
Q2

S
+ P

4
= g

⁄ h

0
(h ≠ z)ˆw̃

ˆx
dz ≠ gS

ˆzb

ˆx
≠ gSSf (8.1.2)

where P is a “pressure term” as proposed by [38], see also e.g [15]. It is defined by:

(8.2) P (x, S̃, t) = g

⁄ h(x,t)

0
(h(x, t) ≠ z)w̃(x, z, t)dz

Then (2.1) is re-written as follows:

(8.3) ˆU
ˆt

+ ˆF(U)
ˆx

= S(U)

with U =
5

S
Q

6
, F(U) =

S

U
Q

Q2

S
+ P

T

V , S(U) =

S

U
0

g

⁄ h

0
(h ≠ z)ˆw̃

ˆx
dz ≠ gS

ˆzb

ˆx
≠ gSSf

T

V and P = g

⁄ h

0
(h ≠ z)w̃dz

The Jacobian matrix of F reads:

JF =
5

0 1
c2 ≠ u2 2u

6
since c =

Ú
ˆP

ˆS
= gh and u = Q

S
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The eigenvalues of JF are: ⁄1 = u + c and ⁄2 = u ≠ c; their associated eigenvectors are: r1 = (1, u + c)T

and r2 = (1, u ≠ c)T .
To solve the homogeneous form of (8.3), the classical scheme based on the Euler time scheme is used:

(8.4) Un+1
i = Un

i ≠ �tn
Fn

i+1/2 ≠ Fn
i≠1/2

�xi

The numerical flux Fn
j are computed by the standard HLL formula, such as derived in [16], see also e.g.

[37] and references therein.

Figure 8.2. Notations. (Left, top) Notations for the river cross sections in (yz-view).
(Right, top) Variational notations for the river cross sections in (yz-view). (Left, bottom)
Notations for the river cross sections in (xy-view). (Right, bottom) E�ective geometry
considered for each cross section: superimposition of m trapeziums. For the Garonne river
case, m = 150 (yz-view).

8.2.2. Pressure term discretization. The pressure term P = g
s h

0 (h≠z)w̃dz has to be correctly discretized
to obtain a correct convergence of the HLL scheme. Thanks to the particular geometry, it is possible to
compute the pressure term piecewise. This computational step is CPU time consuming if the number of
trapezium is high (recall 150 for the For the Garonne river case).
Let P n

i be the discrete pressure term with i the cross section number; let j be the trapezium layer number.
Let us denotes: hn

i © h , Hj,i © Hj , zbi © zb , –1j,i © –1i , –2j,i © –2i , wj,i © wj and hj = (Hj ≠ zb) with
h≠1 = 0. Then,

• If h(x, t) = 0, P n
i = 0.
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• If 0 < h(x, t) Æ H0,

P n
i = 1

2gw0,i(hn
i )2

• Else,

P n
i = g

mÿ

j=0

1
wj≠1

1
h(hj ≠ hj≠1) + h2

j≠1≠h2
j

2

22
+gwm

1
h(h ≠ hm) + h2

m≠h2

2

2

+g(–1j + –2j)
1

h3
j≠1≠h3

j

3 + (h + hj≠1) h2
j ≠h2

j≠1
2 + hhj≠1(hj≠1 ≠ hj)

2

+g(–1(m+1) + –2(m+1))
1

h3
m≠h3

3 + (h + hm) h2≠h2
m

2 + hhm(hm ≠ h)
2

8.2.3. Source term discretization. In order to solve the non-homogeneous problem (8.3), a classical split-
ting method is used, see e.g. [37].

Let us denote Ūn+1
i = [S̄n+1

i , Q̄n+1
i ]T the solution of the homogeneous problem (8.3) at point xi and time

tn+1 ; let us denote Un+1
i = [Sn+1

i , Qn+1
i ]T the solution of the non-homogeneous problem at xi and tn+1.

Then the complete numerical scheme to solve (8.3) reads:

(8.5)

Y
]

[
Ūn+1

i = Un
i ≠ �tn

Fn
i+1/2 ≠ Fn

i≠1/2

�xi

Un+1
i = Ūn+1

i + �tnS(Ūn+1
i )
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