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Highlights1

• The identifiality map: an original and synthetic reading of all the available information which are the data,2

the wave propagation and the Manning-Strickler’s law residual (misfit to the equilibrium).3

• An investigation of the inference capabilities from relatively sparse and large scale altimetry data in a relatively4

complete dynamics flow model (the Saint-Venant equations).5

• An analysis of the inferred discharge in terms of frequencies.6
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Abstract. Given altimetry measurements, the identification capability of time varying inflow discharge Qin(t) and18

the Strickler coefficient K (defined as a power-law in h the water depth) of the 1D river Saint-Venant model is investi-19

gated. Various altimetry satellite missions provide water level elevation measurements of wide rivers, in particular the20

future Surface Water and Ocean Topography (SWOT) mission. An original and synthetic reading of all the available21

information (data, wave propagation and the Manning-Strickler’s law residual) are represented on the so-called iden-22

tifiability map. The latter provides in the space-time plane a comprehensive overview of the inverse problem features.23

Inferences based on Variational Data Assimilation (VDA) are investigated at the limit of the data-model inversion24

capability : relatively short river portions, relatively infrequent observations, that is inverse problems presenting a25

low identifiability index . The inflow discharge Qin(t) is infered simultaneously with the varying coefficient K(h). The26

bed level is either given or infered from a lower complexity model. The experiments and analysis are conducted for27

different scenarios (SWOT-like or multi-sensors-like). The scenarios differ by the observation frequency and by the28

identifiability index. Sensitivity analyses with respect to the observation errors and to the first guess values demon-29

strate the robustness of the VDA inferences. Finally this study aiming at fusing relatively sparse altimetric data and30

the 1D Saint-Venant river flow model highlights the spatiotemporal resolution lower limit, also the great potential in31

terms of discharge inference including for a single river reach.32

Keywords. River flow, variational data assimilation, altimetry, SWOT, discharge, Saint-Venant, Manning, Strick-33

ler.34

1. Introduction35

While the in situ observation of the continental water cycle, especially river flows, is declining, satellites provide36

increasingly accurate measurements. The future Surface Water and Ocean Topography (SWOT) mission (CNES-37

NASA, planned to be launched in 2021) equipped with a swath mapping radar interferometer will provide river38

surface mapping at a global scale with an unprecedented spatial and temporal resolution - decimetric accuracy on39

water surface height averaged over 1 km² [46]. An other highlight of SWOT will be its global coverage and temporal40

revisits (1 to 4 revisits per 21-days repeat cycle). In complementarity with decades of nadir altimetry on inland41

waters [7], SWOT should offer the opportunity to increase our knowledge of the spatial and temporal distribution of42

hydrological fluxes including stream and rivers see e.g. [3, 4]. Thanks to this increased observation of water surfaces43

worldwide, it will be possible to address a variety of inverse problems in surface hydrology and related fields, see e.g.44

[43]. Given these surface measurements (elevation, water mask extents), the challenging inverse problems consist to45

infer the discharge but also the unobservable cross sections, the roughness coefficients and the lateral contributions.46

These inverse problems are more or less challenging depending on the space-time observations density, the targeted47

space-time resolution, the potential prior information and the measurements errors.48

A relatively recent literature addresses some of these inverse questions including in a pure remote sensing data49

context potentially sparse both in space and time, see e.g. [4] for a recent review. Few low-complexity methods, based50

either on steady-state flow models (like the Manning-Strikler’s law) or hydraulic geometries (empirical power-laws)51

have been developed, see [5, 16, 18, 56]. In [15] the performances obtained on 19 rivers with artificially densified daily52

observables are fluctuating depending on the algorithm tested. In order to better constrain these under-determined53

inverse problems, prior hydraulic information or empirical laws may be required. It is shown in [18] with a steady54

model that given one (1) bed level measurement, an effective bathymetry can be infered quite accurately throughout55

the river reach; see also [21, 22] in a purely academic context. No approach aforementioned does satisfactorily solve56

the equifinality issue related to the bathymetry and friction. Indeed if infering the triplet formed by the bathymetry,57

friction and discharge then an equifinality issue is a-priori encountered, see e.g. the discussion led in [18].58

59
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In the river hydraulic community, the most employed data assimilation studies are based on sequential algorithms,60

the Kalman filter and its variants. Let us cite for example [8, 47, 48] who estimate flood hydrographs in the 1D Saint-61

Venant model from dense water surface width measurements; the bathymetry and roughness are given. [45] considers62

a diffusive wave model with the bathymetry and friction coefficients given; it corrects the upstream discharge via63

the assimilation of downstream water depth measurements. The persistence in time of the correction due to the64

assimilation of synthetic SWOT observations on discharge forecasts of ∼ 500 km of the Ohio river is assessed by [1].65

[40] shows the benefit of assimilating virtual SWOT observations for optimizing Selingue dam release (lake depth) and66

river depth in the upper Niger basin. The impact of the hydraulic propagation time (25 days at low flow) compared to67

synthetic SWOT observation maximum spacing (9 days in this case) on assimilation methods is highlighted through68

downstream discharge estimates. Most of those twin experiments use temporal observation sampling much greater69

than the hydrodynamic phenomena time scales, moreover in large river reaches (potentially in network) of several70

hundreds of km. This ensures multiple measurements of the flow variations. The infered parameters are generally the71

water depth h or a constant Strickler coefficient K but rarely both parameters simultaneously.72

Despite the huge improvement of the remotely sensed data (e.g. by satellite altimetry) and the use of data assimila-73

tion methods (variational or sequential), the relative sparsity of the acquired data is challenging for river applications.74

If considering a “small scale” river portion regarding satellite spatio-temporal sampling, typically hundred kilome-75

ters long, the hydraulic information propagates faster than the satellites revisit. The model inversions are generally76

performed at observation times and propagated with a Kalman filter see e.g. [55, 40] and [4] for a review.77

The Variational Data Assimilation (VDA) approach based on the optimal control of the dynamics flow model, see78

[50, 33, 42, 14] and e.g. [6], consists in minimizing a cost function measuring the discrepancy between the model outputs79

and the observations. This approach aims at optimally combining somehow in the least square sense, the model, the80

observations and potential prior statistical information This approach is widely used in meteorology and oceanography81

since it makes possible to “invert” high-dimensional control vectors and models. In some circumstances, it is possible82

to infer unknown “input parameters” such as the boundary conditions (e.g. inflow discharge), model parameters (e.g.83

roughness) and/or forcing terms. Among the first VDA studies related to hydraulic models let us cite [44, 11, 49],84

next [2, 27, 10] which infer the inflow discharge in 2D shallow water river models. Only a few studies tackle the85

identification by VDA of the complete unknown set that is the inflow discharge, the roughness and the bathymetry.86

Infering the discharge and hydraulic parameters from water surface measurements is not straightforward and may87

be even impossible, depending on the flow regime and the adequacy between the observations density and the flow88

dynamics. The inference of the triplet (inflow discharge, effective bathymetry and friction coefficient) is investigated89

in [28, 29] from relatively constraining surface Lagrangian observations. Based on a real river dataset (Pearl river in90

China), the upstream, downstream and few lateral fluxes are identified from water levels measured at in-situ gauging91

stations in [27]; however the bathymetry and roughness are given. The assimilation of spatially distributed water92

level observations in a flood plain (a single image acquired by SAR) and a partial in-situ time series (gauging station)93

are investigated in [31, 30]. In [20, 34] the inference of inflow discharge and lateral fluxes are identified by VDA by94

superposing a 2D local “zoom model” over the 1D Saint-Venant model. These studies are not conducted in a sparse95

altimetry measurement context. More recently [19] have investigated discharge identification of the 1D Saint-Venant96

model by VDA under uncertainties on the bathymetry and the friction coefficient in a purely academic case.97

Finally it is worth to mention that the VDA approach provides instructive local analysis sensitivity maps, making98

possible to better understand the flow and the model, in particular the influence of the bathymetry and local friction99

coefficient values, see e.g. [37].100

The present study investigates the capabilities of accurate, repetitive but relatively sparse altimetry dataset (SWOT101

like) to infer time varying river discharges. To do so, firstly the inverse problem is simply represented by the so-called102

identifiability map. This map represents all the available information in the (x, t) plane, that is the observations (the103

observed “space-time windows”), the hydrodynamic waves propagation (1D Saint-Venant model) and the misfit to the104

“local equilibrium” (more precisely the local misfit with the steady state uniform flow represented by the Manning-105

Strikler law). This preliminary analysis makes possible to roughly estimate the time-windows which can be quantified106

by VDA since the inflow discharge values arise from these observed “space-time windows”. This original reading of107

the hydraulic inverse problem is qualitative only but fully instructive. Indeed this makes possible to roughly estimate108

whether the sought information has been observed or not, in particular in terms of frequency (providing orders of109

magnitude). Next the inference of the inflow discharge Qin(t) and the Strickler coefficient K, with K depending on the110

water depth h (that is a power-law depending on the state of the system) is analyses into details. This analysis provides111

an answer to the temporal variability identifiable given a spatio-temporal distribution of water surface observations.112

The numerical results are presented first on a so-called “academic” case with synthetic data, making possible to113

focus on the computational method (based on the classically called twin experiments) without the specific real data114

difficulties (difficulties due to potential difference of scales, measurement errors, un-modeled subscale phenomena115

etc). This case presents a relatively low identifiability index , that is a quite high frequency hydrograph variations116

compared to the observation frequency. A basic guideline to estimate the a-priori minimal identifiable frequency is117

provided. Next a river portion (74 km long) of the Garonne river (France) [51, 32] is considered with few scenarios of118

observation frequency: from the SWOT like data (21 days period with 1 to 4 passes at mid-latitudes) to a multiple-119

sensor scenario (or SWOT Cal-Val orbit, ∼ 1 day period). The bathymetry is either provided or estimated from one120
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in-situ measurement following [21, 18]. The computational code developed for the present inverse analyses is part of121

the computational software DassFlow [36].122

The outline of the article is as follows. In Section 2, the 1D Saint-Venant forward model and the inverse method based123

on VDA are presented, along with the academic test case and the Garonne river case. In Section 3 the identifiability124

maps are presented and analyses. Next based on the VDA process, the discharge identification is discussed for various125

observation samplings. In Section 4, numerical experiments are conducted to infer by VDA the pair (Qin(t), K(h));126

the bed level is either given or estimated from one (1) in-situ value and a low complexity model. Sensitivities of the127

infered quantities are analyses with respect to the first guess and the observation errors. In Section 5, the Garonne128

test case is investigated for two scenarios: the real SWOT temporal sampling (∼21 days revisiting period) and a data129

sampling densified by a factor 100 . A conclusion and perspectives are proposed in Section 6. The two appendices130

present details of the numerical scheme in the present context of altimetry measurements.131

2. forward-inverse models and test cases132

In this part, the forward model (1D Saint-Venant equations) and the inverse model, Variational Data Assimilation133

(VDA), are described. In particular the model geometry (effective river bathymetry), the observation operator and134

the minimized cost function are detailed.135

2.1. Forward model. Open channel flows are commonly described with the 1D Saint Venant equations in (S,Q)136

variables [12, 9]. The model based on the depth-integrated variables is valid under the long-wave assumption (shallow-137

water). The equations read :138

(2.1)





∂S

∂t
+
∂Q

∂x
= 0 (2.1.1)

∂Q

∂t
+

∂

∂x

(
Q2

S
+ P

)
= g

∫ h

0

(h− z)∂w̃
∂x

dz − gS[
∂zb
∂x

+ Sf ] (2.1.2)
139

where S is the wet-cross section (m2), Q is the discharge (m3.s−1), P = g
∫ h

0
(h − z)w̃dz is the pressure term as140

proposed in [54], w̃ is the water surface top width (m), g is the gravity magnitude (m.s−2), H is the water surface141

elevation (m), H = (zb + h) where zb is the lowest bed level (m) and h is the water depth (m). Sf denotes the basal142

friction slope (dimensionless) and Sf = |Q|Q
K2S2R

4/3
h

(classical Manning-Strikler parameterization) with K the Strickler143

coefficient (m1/3.s−1) and Rh the hydraulic radius (m). The discharge Q is related to the average cross sectional144

velocity u (m.s−1) by: Q = uS. The left-hand side of the momentum equation is written in its conservative form145

(hyperbolic part of the model) while the right-hand is a source term. This source term can viewed as pulling the146

model to the basic equilibrium: the gravitational force vs the friction forces. This classical model is considered with a147

specific bathymetry geometry built from the water surface observables. The discrete cross sections are asymmetrical148

trapezium layers; each layer is defined by one triplet (Hi,wi,Yi) corresponding respectively to the water elevation, the149

water surface width associated to Hi and a centering parameter. In a SWOT context, each layer corresponds to a150

satellite pass.151

Remark 1. If the Froude number, Fr = u
c , tends towards 0 then the 1D St Venant model can be written as a depth-152

averaged scalar equation: the diffusive wave model, see e.g. [12, 39]. In the case of a wide channel (the hydraulic radius153

Rh ≈ h), the advective term of the equation corresponds to the velocity 5
3u . In the identifiability maps presented in154

a next section, this wave velocity 5
3u is plotted simultaneously with the Saint-Venant model wave velocities, that is155

(u− c) and (u+ c) (gravity waves model).156

Figure 2.1. Effective geometry considered for each cross section: superimposition of m trapeziums
(yz-view).
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The Strickler coefficient K is defined as a power law in the water depth h:157

(2.2) K(h) = α hβ

158

where α and β are two constants to be determined. This a-priori law makes possible to set the roughness in function159

of the flow regime. This power-law is richer than a constant uniform value as it is often set in the literature. Also160

such a power-law can be defined by sections or reaches.161

The discharge at upstream boundary Qin(t) will be considered as an unknown variable of the model (it will be a162

control parameter of the model). It will be defined by one of these two methods:163

IDbasic.: At each identification time tj , tj ∈ [t1..tp], a value of Qin(tj) is computed by the VDA process. Next164

the identified inflow discharge is continuously constructed by simple linear interpolation.165

IDFourier.: The inflow discharge is defined as Fourier series:166

(2.3) Qin(t) =
a0

2
+

NFS∑

n=1

(
an cos(nt

2π

T
) + bn sin(nt

2π

T
)

)

167

where {a0; an, bn}, n ∈ [1..NFS ], are the Fourier coefficients and T is the total simulation time. The lower frequency168

represented by the Fourier series is 1/T and the highest one is NFS/T . Then this way to identify Qin(t) is global in169

time (on the contrary to punctual basic approach above). Obviously, the hydrograph must be periodic. However this170

is not an issue since the hydrograph can be extended to make a T-periodic function (T denoting the final simulation171

time).172

The numerical scheme used is the classical finite volume scheme HLL [25] with Euler integration in time. This173

numerical scheme with the specificities due to the particular geometrical transformations are presented in Appendix174

7.1 and Appendix 7.2. The equations above have been implemented into the computational code DassFlow [36]. Note175

that few numerical schemes are possible: the classical implicit Preissmann’s scheme, the HLL finite volume scheme176

and also an original semi-implicit multi-regime scheme.177

2.2. Inverse problem: Variational Data Assimilation (VDA) formulation . The inference of the unknown178

parameters are performed by the VDA approach. It consists in minimizing a cost function J(k) measuring the discrep-179

ancy between the model output (state variables) and the available measurements (which are sparse and uncertain):180

mink J(k). Since J depends on k through the model solution (S,Q), it is an optimal control problem. It is classi-181

cally solved by introducing the adjoint model and by computing iteratively a “better” control vector k. The latter182

contains the inflow discharge Qin(t) and the coefficient K(h) defined by (2.2). In the case the unknown parameters183

are computed at given times [t1..tp] (it is the identification time grid), k is defined by:184

k = (Qin,1, ..., Qin,p, α, β)
T

185

In the case the inflow discharge is decomposed as a Fourier series, see 2.3, k is defined by:186

k = (a0, a1, b1..., aNFS
, bNFS

, ..., α, β)
T

187

The VDA process requires the computation of the gradient of the cost function ∇J with respect to k. The188

computation of ∇J is done with DassFlow software which has been originally designed to generate automatically the189

discrete adjoint model using the source to source differentiation tool Tapenade [26]. The cost function expression J190

depends on the observations; the latter are presented below while the expression of J is detailed in Section 2.5.191

The employed optimization algorithm is a the L-BFGS algorithm (here the M1QN3 routine [23]). Details on the192

basis of VDA can be found e.g. in [35]. Given a first guess on parameters k0, the iterates ki are searched with the193

descent algorithm such as the cost function J decreases. For each iteration of the minimization:194

(1) The cost function J(ki) and its gradient ∇J(ki) are computed by performing the forward model (from 0 to195

T ) and its adjoint (from T to 0).196

(2) Given ki , J(ki) and ∇J(ki), the M1QN3 routine is invoked to compute a new iterate such that: J(ki+1) <197

J(ki).198

(3) The few convergence criteria are tested: either |J | ≤ 10−7 , or |J(ki+1)− J(ki)| ≤ 10−5 or i > 100.199

In order to measure the accuracy of the identified discharge Qident
in = (Qident

in,1 , Q
ident
in,2 , ..., Q

ident
in,p )T , the classical Nash-200

Sutcliffe criteria E is considered, [41]:201

(2.4) E(Qident
in ) = 1−

∑p
i=1

(
Qreal
in,i −Qident

in,i

)2
∑p
i=1

(
Qreal
in,i − Q̄real

in

)2 , with Q̄real
in =

p∑

i=1

Qreal
in,i

p
202
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The vector Qreal
in = (Qreal

in,1, Q
real
in,2, ..., Q

real
in,p)

T contains the true values. The Nash-Sutcliffe value E is close to 1 for203

values of Qident
in close to Qreal

in ; it is close to 0 for values of Qident
in close to Q̄real

in ; finally it is close to −∞ for values of204

Qident
in not correlated to the true value Qreal

in .205

For a given quantity u (it will be Qin, α or β), e2(u) denotes the 2-norm relative error:206

(2.5) e2(u) =
‖uident − ureal‖2
‖ureal‖2

207

2.3. Design of the inversion experiments. The identifiability of the river flow model parameters from water surface208

observables is studied on a so-called academic test case before being studied on a real data set (a portion of the Garonne209

river, France). Analyzing an “academic” case first is important to properly analyse the numerical inversions. Indeed,210

the academic test case makes possible to focus on the computational method (based on the classically called twin211

experiments) without the specific real data difficulties (difficulties due to potential difference of scales, measurement212

errors, un-modeled subscale phenomena etc). Then so-called twin experiments are considered. It consist to set the213

inverse problem as follows:214

• Realistic true values of the parameters (roughness uniform in space and discharge hydrographs) are fixed.215

Then the forward model is run, which allows to compute the SWOT like data (that is water elevation H and216

WS width w at the reach scale -see details in next section-).217

• Given the perturbed synthetic data, the parameter identifiability is investigated for various temporal samplings218

of observations. The input “parameters”, inflow discharge Qin(t) and coefficient power-law K(h), are computed219

by VDA. The inflow discharge may be sought in a reduced Fourier basis; the latter being defined from a-priori220

fixed frequency. In the first numerical experiments, the bathymetry is given. This makes possible to focus the221

investigation on the identifiability of the inflow discharge in terms of frequency ratio between the observation222

and the minimal identified frequency. In the last experiment (Garonne river), the considered bed level can be223

given or estimated from one in-situ value and following the method presented in [18].224

2.3.1. Academic test case. The aim of this test case is to investigate the identifiability of several discharge hydrographs225

and roughness on a fully controlled and low CPU time test case Its geometry consists in a 1000 m length channel.226

Each cross-section is defined as a superposition of 5 trapeziums. The river bed elevation zb and water surface width227

w are not constant; they are defined as follows: zb(x) = z∆(x) + zδ(x), with mean slopes defined by:228

z∆(x) =





10− 0.001x if 0 ≤ x ≤ 300

9.7− 0.004(x− 300) if 300 < x ≤ 700

8.1− 0.002(x− 700) else
229

and local bed level oscillations as follows: zδ(x) =
∑4
i=0 cn sin(dn(x − 50)

2π

T
)if 50 ≤ x ≤ 950 and equal to 0230

otherwise.231

with cn = {0.01, 0.01, 0.015, 0.02, 0.02} and dn = {1, 2, 4, 8, 16}. The triplets (Hi,j , wi,j , Yi,j) for cross section j as232

defined in Section 2.1 with i being a vertical index read: Hi,j = H ′i+zb(xj) with H ′i = {1, 2, 3, 4, 5}, Yi,j = {0, 0, 0, 0, 0}233

and:234

(2.6) wi,j =




w′i,j + sin

(
π(xj − 50)

900

)
if 50 ≤ x ≤ 950

w′i,j else
with w′i,j = {3, 4.9, 5.1, 6.4, 7.3}

235

The coefficient K equals 25m1/3.s−1 (α = 25 and β = 0 in Eq. (2.2)). The considered inflow discharge respecting236

realistic discharge magnitudes and time scales creates a comparable flooding than those considered in the considered237

real case (Garonne river). The hydraulic propagation time Twave over the whole river domain equals ∼ 160s for a238

wave velocity (u + c) and the total simulation time is 1000s (cf.Table 1. Recall that Twave is of great interst when239

using observations of water surface features within a river domain for identifying an inflow discharge (in x = 0). The240

steady-state backwater curve, velocities and local Froude number values (Fr = u√
g A

W

, with u = Q/A the mean cross241

sectional velocity) are presented on Fig. 2.2 for Qin = 10 m3.s−1 . The downstream boundary condition is a power242

law rating curve defined by: hout(Q) = 0.45 Q0.6
out (m).243
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Figure 2.2. Academic test case. (Left) Steady state flow for Qin = 10m3.s−1 (quite a low value with
respect to the considered hydrograph in the forthcoming experiments): (Left, top) Water elevation
H (Right, top) Discharge Q. (Left, Bottom) Froude F and (Right, Bottom) Velocity U vs river
curvilinear abscissa. (Right) Cross-section example (for x = 500m).

Academic test case Garonne river

mean µ [m/s] standard deviation σ [m/s] mean µ standard deviation σ

min(|u+ c|) 6.3027 0.6063 5.4502 0.6805

mean(|u+ c|) 6.3521 0.6224 6.0739 0.6561

max(|u+ c|) 6.4028 0.6394 6.6827 0.8052

min(|u|) 1.3018 0.2916 0.7198 0.2507

mean(|u|) 1.376 0.2972 1.1023 0.1968

max(|u|) 1.4361 0.3069 1.391 0.2607

Hydraulic propagation time ∼ 160 sec ∼ 3.5 hours
Twave = L

mean(|u+c|)

Table 1. Statistics on the wave velocity (u+c), velocity u and the hydraulic propagation time Twave
both for the academic and the Garonne test case.

2.3.2. Garonne river test case. The 1D Garonne dataset contains a DEM of the river bathymetry between Toulouse244

and Malause (South West of France, [51, 32, 18]) defined as follows:245

• 173 cross sections measurements from the field, distant of 56 to 2200 meters with a median value of 438 m,246

• a mesh containing 1158 cross sections; they result of linear interpolations of the original 173 cross sections,247

• the cross sections are merged into lidar data of banks and floodplain elevations (5 m horizontal accuracy).248

The mean slope of this 74 km portion of the Garonne River is −0.0866 % (86.6 cm/km ). The reference bathymetry is249

the effective one respecting the trapezium superimposition structure as described in the academic case and preserving250

the wetted areas, see figures 2.1 and 2.3. The considered bathymetry can be the reference one or the so-called “low-251

Froude bathymetry” estimated from one (1) in-situ measurement and the method proposed in [18]. On the present252

case it is those at the location x = 40 km (the reference point indicated in Fig. 2.1).253

The effective SWOT like bathymetry (superimposition of trapeziums respecting the true wetted section values)254

is compared to the Low Froude bathymetry (same trapeziums but not the same zb ) in Fig 2.3. The difference255
1
N

∑N
n=1 |Ztrueb − ZLFb | equals 38 cm.256

The final mesh size, i.e. the spacing between interpolated cross sections extended on banks, is between 37.26m and257

70.0 m at maximum (the average spacing being 63.96m). The friction coefficient may be variable, depending on the258

water depth. Its value is detailed in the identification experiment section.259

The considered hydrograph is those measured at Toulouse during a 80 days period in 2010, see e.g. Fig. 5.2. In260

terms of wave propagation, basic statistics are indicated in Table 1 and the hydraulic propagation time within the261

whole river portion equals Twave ∼ 3.5 hours.262
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All the forthcoming numerical inversions can be performed from either the effective true value of bed level or from263

the low-Froude one. Indeed the obtained results in terms of infered discharge and roughness coefficient are similar. The264

assimilation of partial in-situ data in addition of the altimetry measurements is addressed into details in a forthcoming265

study. Then the error pourcentages on the estimated discharge values in next sections are those obtained from the266

effective true value.267

Figure 2.3. Garonne data (Top) Effective bed elevation (zb−mean slope) : the effective true value
(gray) and the low-Froude estimated value (blue). (Bottom) First cross sectional layer width w0 on
151 vertical layers, see Fig.

Remark 2. Concerning the unsual definition of K, an uniform power-law, see Eq. (2.2), it is worth to notice that the268

forthcoming inversions performed by a VDA approach could have been done with a locally defined power-law Kr(h)269

with r the “reach” number. However since the main goal of the present study is to focus on the identifiability of the270

inflow discharge, in particular in terms of frequency flow variations, an uniform power law K(h) has been considered.271

Moreover as it has been already mentioned, such a power-law gives already more degree of freedom than a mean272

uniform constant value K̄ as it is almost always considered in the literature.273

2.4. The (SWOT-like) altimetric data . The identifiability capability of the present inverse method depends on274

the spatial and temporal density of the water surface measurements. Synthetic SWOT observations are generated275

over the studied domain (Fig. 2.4 ) from the expected SWOT ground tracks representing three temporal revisits over276

the domain during a 21 days cycle. Then each swath (50 km wide) defined by the SWOT ascending and descending277

tracks are split into 1 km stripes. These stripes define the so-called reaches; these splitting lenghts may related with278

the physical flow features, see e.g. [17]. Only 25 stripes contain the considered Garonne river portions. These 25279

observed reaches can be classified in 3 groups observed at different times δT i, i = 1..3 within a 21 days satellite period280

(see Eqn (2.10) and Fig. 2.4 ).281

1D forward model outputs are averaged in space at each observation time (H̄r(t) and w̄r(t)) in order to reproduce282

SWOT like observations at the reach scale; next a random noise is added in order to be representative of SWOT283

observation errors averaged this reach scale.284
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Figure 2.4. Location of SWOT reaches on the Garonne river.
(Left) Aerial view from OpenStreetMap of Garonne River (black line) and SWOT reaches location
with ascending (green) and descending (blue when the river is seen and red otherwise) tracks. (Right)
Longitudinal river profile with the three groups respectively observed at δT 1 = 12.58 days, δT 2 = 14.11
days and δT 3 = 1.51 days

2.5. Cost function. The cost function J to be minimized is defined from the available measurements as follows:285

J(k) = jobs(k) + γ jreg(k)(2.7)

286

where jreg(k) is a regularization term defined later, and jobs(k) is defined by:

jobs(k) =
1

2

∫ T

0

||H̄k(t)−Hobs(t)||2W dt(2.8)

287

where H̄k(t) and Hobs(t) are defined by:288

• H̄k(t) =
(
H̄k

0 (t), H̄k
1 (t), H̄k

2 (t), ..., H̄k
Nr−2(t), H̄k

Nr−1(t)
)T

289

• Hobs(t) =
(
Hobs

0 (t), Hobs
1 (t), Hobs

2 (t), ..., Hobs
Nr−2(t), Hobs

Nr−1(t)
)T

290

W is a symmetrical positive semi-define matrix Nr ×Nr, Nr the number of observed reaches, and it defines an error291

covariance matrix. Its extra diagonal terms wi,j , i 6= j, represent the correlation of error observations between reach292

i and reach j; its diagonal terms wi,i are the a-priori confidence on the observation of reach i. In a real measurement293

context, reaches close to the satellite nadir would be observed with lower errors. Hence, the diagonal coefficient values294

should depend on the distance between the reach r and the nadir. Extra-diagonal terms are difficult to estimate and295

considered to be null here. In all the following, the matrix W is the identity matrix of RNr (same confidence on all296

observations).297

The regularization term jreg(k) is defined by:298

jreg(k) = jregQ (k) + γjregK (k)

299

where jregQ (k) (respectively jregK (k)) is the regularization term on the discharge (respectively the Strickler coeffi-300

cient).301

The balance coefficient γ between jreg(k) and jobs(k) can be classically set following the empirical Morozov’s302

discrepancy principle and/or the classical L-curve strategy [38]. It will be observed in the numerical experiments that303

no prior regularization needs to be considered on the friction term parameterized with a power law with constant304

coefficients in space. Moreover, in the SWOT context, given the low frequency and high sparsity of the observations,305

it is difficult (and numerically unnecessary) to define such a regularization term on Qin(t). This regularization may306

be done by defining Qin(t) in the Fourier basis with frequencies a priori defined from the observation frequency, see307

the discussion in the next section.308

Let Nt,r denote the number of SWOT observation of the reach r. Then the discrete form of the cost function J309

reads:310
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(2.9) J(k) =
1

2

∑

r=1,Nr

∑

j=1,Nt,r

(
H̄k
r,j − H̄obs

r,j

)2

311

with H̄k
r,j = 1

Ωr

∑
i=1,Nr

Hk
i,jdx. With Ωr the curvilinear length of reach r.312

Let us remark that in an altimetry context, the ith observation time of reach group g, tgi satisfies:313

(2.10) tgi = i∆T + δT g

314

where ∆T is the satellite period and δT g is the time lap of the first observation of the reach group g. Thus if a315

river is observed by 3 satellite passes during 1 repeat period (like it is the case for the Garonne river, see Fig. 2.4),316

then there are 3 different δT g (i.e. g = 1, 2 or 3).317

All the equations and algorithms previously described have been implemented into the computational code DassFlow318

[36]. It contains the 1D shallow water model dedicated to the altimetric data (effective cross section geometries) with319

all required boundary conditions, a Strickler coefficient K(h) depending on the water depth plus a complete VDA320

process. The adjoint equations are obtained by automatic differentiation [26] and the minimizer is a BFGS algorithm.321

Note that few numerical schemes are possible: the classical implicit Preissmann’s scheme, the classical explicit HLL322

finite volume scheme and also an original semi-implicit multi-regime scheme.323

3. Discharge identification on the academic test case324

This section aims at analyzing the inference capability of the 1D river Saint-Venant model from the water surface325

observables described previously. As a first step, the unknown parameter is the inflow discharge Qin(t) only on the326

academic channel described previously (Section 2.3.1). From the available observation distribution, (x, t)-identifiability327

maps are calculated. They provide an overview of the inference capability of the forthcoming VDA process. These328

maps are analyses in three contexts depending on three scenario of observation sparsity (see Fig. 3.1):329

OD1: (Observation Distribution #1), the whole domain is observed (10 reaches),330

OD2: the observations are available at upstream and downstream only (2x3 reaches), Fig. 3.1 (middle).331

OD3: the observations are available in the middle only (4 reaches), Fig. 3.1(right).332

Then the inference of Qin(t) is performed either classically by identifying its values on a fixed identification grid333

(IDbasic case, with dta the constant assimilation time step), or by computing Qin(t) as a Fourier series (IDFourier334

case). IDFourier case leads to a “global” computation of Qin(t) (on the contrary to the IDbasic). In both cases, an335

analysis of the influence of the identification time grid is done.336

Figure 3.1. Location of the observation reaches. (Left) Case OD1: the whole domain is observed
(10 reaches). (Middle) Case OD2: observations are located at upstream and downstream (6 reaches).
(Right) Case OD3: observations are located in the middle (4 reaches).

3.1. The identifiability map. This subsection introduces the identifiability maps. This map represents the com-337

plete information in the (x, t) plane: the observations (the observed “space-time windows”), the hydrodynamic waves338

propagation (1D Saint-Venant model) and the misfit to the “local equilibrium” (more precisely the local misfit with339

the steady state uniform flow represented by the Manning-Strikler law). This preliminary analysis makes possible to340

roughly estimate the time-windows which can be quantified by VDA since the inflow discharge values arise from these341

observed “space-time windows”. This original reading of the hydraulic inverse problem is qualitative only but fully342

instructive. Indeed this will make possible in the next section to roughly estimate whether the sought information has343

been observed or not, in particular in terms of frequency (orders of magnitude).344

The observations are generated from the hydrograph Qreal
in (t) shown in Fig. 3.3 Top-Left. Recall that the so-called345

hydraulic propagation time Twave ∼ 160 s (estimation based on the mean wave velocity (u+ c)). From the hydraulic346



ACCEPTED MANUSCRIPT

AC

 

ON THE ASSIMILATION OF ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER FLOW MODELS 11

propagation time and the observation time step dtobs (time between satellite overpasses), the identifiability index is347

defined as follows:348

(3.1) Iident =
Twave

dtobs
349

In the present case, dtobs = 100 s, hence lower than the hydraulic propagation time; the identifiability index Iident350

∼ 1.6. This means that at least the low frequency variations are observed.351

An instructive analysis of the inverse problem consists to plot the so-called identifiability map in the plane (x, t).352

Since the inflow discharge (that is Q(t) defined at x = 0) is the central sought “parameter”, the important wave353

velocity is the positive one i.e. (u + c) in considering the Saint-Venant system waves. Indeed recall that without the354

source terms (i.e. gravity waves model), the 1D Saint-Venant model wave velocities are (u− c) and (u+ c). Moreoiver355

if considering the diffusive wave model, that is including the RHS of the Saint-Venant system, the wave velocity equals356
5
3u in the case of a wide channel (see e.g. [12, 39, 52]and 1.357

For each reach r (Nr = 10 in the OD1 case) and for each observation time tri (11 in the OD1 case), the velocity358

waves of the 1D Saint-Venant model (and the diffusive wave model) are plotted, see Fig. 3.2. To do so, ūri and c̄ri359

corresponding to the reach r at time i are approximated; ū denotes the mean velocity value and c̄ = (gh̄)1/2 (assuming360

a rectangular cross section) with h̄ the mean water depth. Let us point out that in the present twin experiments, ū361

is known. In a realistic context, ū can be estimated from a low complexity 0.5D model (Manning-Strikler’s equation362

applied at each reach). Such estimations are sufficiently accurate to make the present analysis.363

The (r, i) observation time interval is defined as follows: Twr,i = [tri − Lr/(ū+ c̄)ri , t
r
i ] with Lr the reach length and364

tri the observation time. Each observation space time window Twr,i is plotted (in color) in Fig. 3.2. Each rectangle365

diagonal corresponds to the local (ū+ c̄) line; indeed the height of the rectangle Twr,i corresponds to (ūri + c̄ri )×Lr . It366

can be noticed that the space-time variation of (ū+ c̄) is not significant, see the rectangle height variations and Table367

1.368

In the present case, the whole domain is observed at t = 0 hence the wave velocity (ū+ c̄) at t = 0 can be estimated369

accurately.370

The identifiability map in (x, t) is plotted for the three cases depending on the observation sparsity: cases OD1,371

OD2 and OD3, see Fig. 3.2.372

The rectangle colors represent the misfit to the steady uniform flow (in norm 1). It is the right-hand side (the373

source term) in norm 1 of the momentum equation, see (2.1):374

(3.2) "Steady uniform flow misfit" = Norm1[ g

∫ h

0

(h− z)∂w̃
∂x

dz − gS(
∂zb
∂x

+ Sf ) ]

If this source term vanishes (blue colors in Fig. 3.2), it means that locally in space and time the flow variables satisfy375

the steady state uniform flow equation (here the Manning-Strikler equation). On the contrary, if the misfit term376

becomes important (e.g. orange - red colors) then the hyperbolic feature of the model is important.377

In terms of energy, this non-conservative source term contains the dissipative friction term Sf ; while the left-hand378

side of the 1D Saint-Venant model is conservative, see (2.1). Therefore Fig. 3.2 provide a rough estimation of the379

propagation features of the flow model including advection diffusion phenomena.380

Typically, the peak time at inflow is represented by the rectangle (r, i) = (1, 6). The corresponding wave velocity381

(ū+ c̄) is faster than those arising from the middle of the domain for example, see rectangle (6, 6).382

To illustrate differently the advective-diffusion phenomena corresponding to Fig. 3.2, the discharge throughout the383

domain is plotted at the three observations times 400s, 500s (peak time at inflow) and 600s in Fig. 3.2 Top Right.384

All these information represented in the (x, t) plane constitute the so-called identifiability map. Its analysis provides385

a comprehensive overview of the inversion capability, in particular with respect to the inflow discharge Qin(t).386

If a characteristic (ū+ c̄) line crosses one or more observed reaches (the colored rectangles on Fig. 3.2), the identifi-387

ability of discharge is ensured at the time corresponding approximately to the intersection between the characteristic388

and the vertical axis. In other words, for a reach observed at time tri and abscissa rLr, the inflow discharge should389

be identifiable at time ∼ (tri − rLr/(ū + c̄)). Typically, in the present case, the identifiability maps show that any390

change on Qin is observed at least few times, and this is true for the three scenarios OD1, OD2 and OD3. In other391

words, there is no blind time-space window; the same hydraulic information may be observed even few times. Then392

the forthcoming identification computations based on VDA will be robust and accurate for the complete simulation393

time range [0, T ].394

This a-priori analysis is confirmed by the VDA experiments presented in next paragraphs.395

Remark 3. The present source term estimation provides an a-posteriori model error if employing the usual Manning-396

Strikler’s law to model the flow.397

Remark 4. It can be noticed that since the wave velocity 5
3 ū is slower than (ū + c̄), see Fig. 3.2. Following the398

same analysis, it shows that the inflow discharge identifiability in the diffusive wave model would be higher than in399

the present 1D Saint-Venant model. However if considering a wave velocity value or another, the present analysis400
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remains qualitatively the same; while the quantitive conclusions would differ slightly. The present identifiability map401

has been arbitrarily plotted using the Saint-Venant waves velocities (recall, values valid if not considering the RHS).402

For a comparison between the diffusive wave model and the present Saint-Venant model, see e.g. [39] and references403

therein.404

Figure 3.2. The identifiability maps in (x, t) in the case: (Top, Left) OD1 (full observations);
(Bottom, Left) OD2; (Bottom, Right) OD3.
The estimated wave velocities are plotted in red (continuous line) for the 1D St-Venant model (u+ c),
and in green for the diffusive wave model (5

3 ū). The red dotted line represents outgoing wave velocity
(u− c) (on the Fig., from the reach r=6 at observation instant i=6). The “steady uniform flow misfit”
defined by (3.2) is represented in each rectangle by the colors.
(Top, Right). Discharge Q(x, ·) vs x at three observations times: 400s, 500s (=the peak time at
inflow), 600s.

405

3.2. Identification for various dta. In this section, assuming that both the river bathymetry and the friction law406

are given, few identifications of inflow discharge are performed with :407

• a fixed observation time step dtobs = 100s and various assimilation time steps dta, ranging from 1/10 to 1 dtobs408

- IDBasic case in Section 2.1. The parameter vector is k = (Q1, ..., Qp)
T with dta = (ti+1−ti) = ∀i ∈ [1..p−1].409

• Qin(t) represented in a reduced basis (Fourier series, see (2.3) - IDFourier case in Section 2.1. The parameter410

vector reads: k = (a0, a1, b1..., aNFS
, bNFS

)
T and the identification with VDA of NFS = 7 and NFS = 25411

Fourrier coefficients is tested.412

The inflow discharge and the gradient value are plotted in Fig. 3.3 Top, for IDBasic case with dta = dtobs/10 and413

dta = dtobs. In the case dta = dtobs/10 the result is excellent, and if dta = dtobs the accuracy remains good (excepted414

at peak time, t ≈ 500s) - convergence reached in 45 and 17 iterations respectively.The errors on the identified inflow415

discharge are plotted in Fig. 3.3. Both the 2-norm error and (1 − E), with E the Nash–Sutcliffe criteria, are the416

lowest for dta between 20 s and 50s = dtobs/2 (with (1− E) ∼ 0.0077). Roughly, the error is improved if dta < dtobs417

but dta not too small. Indeed, for dta << dtobs, typically dta = dtobs/10, over and under estimations of the discharge418

appear. Indeed, if dta is small, any change of Qin between two identification times, is not observed, Fig. 3.3 Left-top.419

The value obtained for dta = dtobs/2 is almost the optimal value. As a practical guide, a simple rule would be to set420

dta = dtobs
2 i.e. consider one intermediate point only between two observations.421
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For IDFourier case roughly the same accuracy and behaviors as in the previous case are obtained, see Fig. 3.3422

Bottom. Indeed the minimal error, (1− E) ∼ 0.005, is obtained with T/NFS ∼ dtobs/2 . Again, as a practical guide,423

a simple rule would be to set NFS such that T
NFS = dtobs

2 i.e. considering one intermediate point (and only one)424

between two observations, Fig. 3.3.425

The advantages of identifying Qin(t) as a Fourier series are the following: the control vector is smaller, the frequency426

imposed a-priori can be quite easily estimated, and the identified inflow discharge remains smooth (this circumvents427

the potential oscillations obtained in the case IDbasic with dta << dtobs for example).428

Figure 3.3. (Top) Discharge identification: IDbasic approach with dtobs = 100 s. (Left, top) Dis-
charge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s. (Right, top) Normalized
gradient ∇QJ with dta = dtobs and dta = dtobs/10 = 10 s. (Middle) Errors vs dta; dta = dtobs/2
is almost the optimal value. (Bottom) Discharge identification: IDFourier case (Fourier series recon-
struction) with dtobs = 100 s: (Bottom Left) Discharge identification with NFS = 7 and NFS = 25.
(Bottom Right) Errors vs T/NFS

429

3.3. Identification robustness vs observation sparsity. A VDA process is global in time. The previous numerical430

experiments demonstrate that refining too much the identification time grid dta compared to dtobs (typically dta =431

dtobs/10) deteriorates the identification accuracy. In other words, given an observation time grid, the identification432

of the time dependent inflow discharge cannot be obtained at much finer time scale. All these previous experiments433

have been performed with observations available on the whole domain (case OD1, see Section 3). In a real case (e.g.434

SWOT data of Garonne river test, see Section 2.4) the observations are not available for the whole domain, nor all435

at the same time. Thus in the present experiments, the robustness and accuracy of the discharge identification is436

investigated if considering real-like SWOT data hence much sparse observations.437

The inflow identification are performed with a pseudo-optimal assimilation time step dta = 25 s (still with dtobs =438

100 s) for the three cases OD1, OD2, OD3, see Fig. 3.1.439
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As discussed in Section 3.1, the identifiability maps (see Fig. 3.2) indicate that in the three cases the identification440

should be accurate. Indeed, the numerical results obtained by VDA confirm this a-priori analysis since the error is441

extremely low, typically E > 0.99, see Tab. 2. The identified inflows are not plotted since the results are similar to442

the previous case.443

444

OD 1 OD 2 OD 3

Nash-Sutcliffe coefficient (E) 0.993 0.994 0.991

Table 2. Academic test case, Nash-Sutcliffe coefficient (E) for dta = 25 s in function of the observa-
tions availability: cases OD1, OD2, OD3.

4. Discharge and roughness identification in the academic test case445

In the previous section, Qin(t) only was infered. In the present section both the time-dependent inflow discharge446

and the Strickler coefficient K (time-independent) are infered by the VDA process. Let us recall that K is defined447

by: K = αhβ . Then the control vector reads: k = (Qin,1, Qin,2, ..., Qin,p, α, β)
T in the IDbasic case and k =448

(a0, a1, b1..., aNFS
, bNFS

, α, β)
T in the IDFourier case. In the present experiments the bathymetry is given. The449

synthetic observations are generated from the same hydrograph (inflow discharge) as previously and an uniform450

coefficient K = 25 i.e. α = 25 and β = 0 in Eqn (2.2). First guesses are respectively chosen equal to Qin(t) =451

100m3.s−1 for all t, and to (α, β) = (23.5, 0.1) (hence considering K depending on h). The observations are available452

in the whole domain: OD1 scenario.453

4.1. Identifications in the IDbasic and IDFourier cases. The identified inflow discharge with a basic linear454

reconstruction (IDbasic case) is as accurate as in the previous case i.e. while identifying Qin only. The identified455

discharge are plotted in Fig. 4.1 Left top in the case dta = 10 s and dta = 100 s.456

For dta = 10 s, the identification of the roughness parameters α and β is accurate, see Fig. 4.1 Bottom; the457

minimization algorithm has converged in 64 iterations. For dta = 100 = dtobs, the minimization algorithm has more458

difficulties to converge, see Fig. 4.1 Top right. In the IDFourier case, the results are similar.459

In both cases (IDbasic and IDFourier), the identified quantities are accurate if the identification time step dta is460

small enough compared to dtobs, or if the Fourier mode number NFS is large enough. In such cases, the identification461

of Qin(t) is as accurate and robust as in the previous case (when Qin(t) only was identified).462

But if dta = dtobs or equivalently if NFS is small, then the minimization algorithm has more difficulties to converge,463

hence the VDA process provides less accurate quantities.464

The errors on the roughness coefficients are plotted in Fig. 4.3. Since the error made on the identified discharge465

are very similar than in the previous case they are not plotted. The value of dta (resp. NFS) such that dta = dtobs/2466

(resp. T/NFS = dtobs/2) are almost the optimal values. Thus the basic practical rule consisting to set the assimilation467

frequency equal to the double of the observation frequency is relevant.468

469

470

4.2. Sensitivity of identifications to first guesses and observation errors. The sensitivity of the identified471

quantities (Qin(t) and (α, β)) with respect to the first guess values Qin,FG and (α, β)FG is investigated: OD1 case472

(complete spatial observations), IDFourier case with NFS = 20. For each sensitivity map representing identification473

errors in the space of first guess values of α and Qin ( Fig. 4.4) the parameter β is fixed (β = 0). They show that the474

identification of inflow discharge Qin(t) and the roughness coefficients are accurate for a large value range of Qin,FG.475

However the accuracy is important for low values of Qin,FG. Thus it is preferable to over estimate the first guess476

(hence starting from high water levels) than under estimate it. The results are very similar if the fixed parameter is477

the discharge Qin or the roughness law parameter α, then the corresponding figures are not presented.478

Finally the impact of observation errors on the three identified quantities are presented in Fig. 4.5. A Gaussian noise479

N (0, σ) is added to the water elevation data Hobs. In the case σ = 0.1m (this corresponds to the expected error of the480

forthcoming SWOT instrument, cf. [46]), the error on the roughness law parameters (α, β) equals approximatively 5%481

and the Nash–Sutcliffe criteria E ≈ 0.5. In a bad observational context with σ = 0.5m, the error on the roughness law482

parameters (α, β) equals approximatively 10−25% and the Nash–Sutcliffe criteria E(Q) becomes negative. Therefore,483

the identification of the composite control parameter (Qin(t);K(h)) turns out to be quite sensitive to the observation484

errors but its inference remains accurate in the case of a SWOT-like accuracy (σ = 0.1m).485

486
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Figure 4.1. Discharge and roughness identification in the academic test case (IDbasic case). (Left,
top) Discharge identification with dta = dtobs = 100 s and dta = dtobs/10 = 10 s. (Right, top)
Function cost J ,||∇QJ ||,||∇αJ || and ||∇βJ || vs minimization iterations. (Left, bottom) Roughness law
coefficient α vs minimization iterations. (Right, bottom) Roughness law coefficient β vs minimization
iterations.

Figure 4.5. Error on the identified quantities with k = (a0, a1, b1..., aNFS
, bNFS

, α, β)
T vs the

observation error σ (standard deviation of the Gaussian noise). The vertical dashed line represents
the expected error of the SWOT mission, both in norm 2 and Nash-Sutcliffe criteria.

487
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Figure 4.2. Discharge and roughness identification in the academic test case (IDFourier case). (Left)
Discharge identification with NFS = 7 and NFS = 25. (Right) Function cost J ,||∇a0J ||,||∇anJ ||,
||∇bnJ ||,||∇αJ || and ||∇βJ || vs minimization iterations.

Figure 4.3. Roughness identification in the academic test case: errors e2 on the coefficients (α, β).
(Left) IDbasic case: errors vs dta. (Right) IDFourier case: errors vs T/NFS .

5. Garonne river test case488

The accuracy and the robustness of the VDA process, see sections 2.2 and 2.5, is investigated in a realistic data489

context. The test case is the Garonne river (portion downstream of Toulouse) described in Section 2.3.2. The490

considered hydrograph is presented on Fig. 5.2. The SWOT-like observations are generated by the model following491

the method presented in Section 2.4. For the VDA computations the first guess Qin,FG is chosen constant and equal492

to 268 m3/s (the mean value of the true hydrograph), see the horizontal dotted lines in the inflow discharge graphs,493

Fig. 5.2.494

As a first step and following Section 3.1, the identifiability maps are computed. Scenario 1 (Section 5.2) consists to495

consider a SWOT temporal sampling as defined in Section 2.4. The repeat period is 21 days and the simulation time496

is T = 80 days. Scenario 2 is based on a densified SWOT temporal sampling by a factor 100: the repeat period is 0.21497

day and the simulation time T = 0.8 day. This theoretical scenario would correspond to a combination of observations498

provided by different satellites. Also during the SWOT CalVal period (the first weeks after the launch), the satellite499

will be on a lower orbit and will offer a ∼ 1 day repeat period on some rivers.500

It has been shown in the previous section (academic test case) that the error made on the identified inflow discharge501

Qin(t) is similar if identifying Qin(t) only or the composite control vector (Qin(t), K(h)). Moreover still in terms of502

error on the identified inflow discharge Qin(t) only, the accuracy obtained from the true effective bathymetry or from503

the low Froude effective bathymetry are very similar. Obviously the corresponding identified value of K(h) differ504

between the two cases. This illustrates again the equifinality issue related to the bed properties, that is the pair505

(bathymetry, friction).506
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Figure 4.4. Sensitivity to the first guess: errors on the identified quantities vs αFG and Qin,FG (β
is fixed). (Left, top) Error e2(α). (Right, top) Error e2(β). (bottom) Error on Qin : Nash–Sutcliffe
criteria E.

Observe that the VDA process could be performed for the complete unknown parameter (Qin(t), K(h)) and Zb(x)507

(this has been done and its fine analysis is out of the scope of the present article). However, it may be not the best508

strategy to calibrate a river dynamic flow model since the equifinality issue on the bed properties (K,Zb). That509

is the reason why in the present study we do focus on the inversion with respect to Qin(t) (or equivalently with510

respect to (Qin(t), K(h))), and we investigate into details the reliability and accuracy of the obtained results. The511

eqbathymetryuifinality issue is complex; it is the main purpose of an on-going study and likely next article.512

5.1. Identifiability maps. The identifiability maps are computed from the observations following the method de-513

scribed in Section 3.1 for both scenarios, see Fig. 5.1. On the contrary to the academic test case, no observation is514

available at t = 0 hence the wave velocity (ū + c̄) propagating from t = 0 cannot be estimated. Fig. 5.1 Left shows515

that in the SWOT sampling case, the identifiability of Qin(t) is approximatively limited to the observation “day time”,516

hence preventing to infer in-between inflow variations (since no constraining information). The lack of constraining517

observation is accentuated here since a single quite short river portion is considered with its hydraulic propagation518

time Twave ∼ 3.4 h only, see Tab. 1, hence an extremely low identifiability index Iident ∼ 6.7 10−3.519

The next scenario (Scenario 2) is a 100 times greater revisit frequency: dtobs = 0.21 day. Keeping the same520

hydrograph but rescaled in time, the hydraulic propagation time Twave is the same (∼ 3.4 h) but the observation521

frequency equals 0.21 day, hence the identifiability index is 100 times greater: Iident ∼ 0.67. This rough analysis522

informs that almost the complete wave set traveling within the river portion should be captured by the sensor.523

In the identifiability maps Fig. Fig. 5.1 the inflow discharge identifiability is represented by the vertical dashed lines524

at x = 0: in red the characteristics feet provided from the “far” green observed reaches (hence an identifiability likely525

less accurate); in black the characteristics feet provided by the “close” blue observed reaches (hence an identifiability526

likely very accurate).527

Recall that this identifiability analysis is based on the wave velocities estimations only, while the dissipation due to528

the friction source term is not taken into account. However these maps indicate that in Scenario 2 a large proportion529

of inflow values should be accurately identifiable (see the vertical points at x = 0).530

The forthcoming VDA experiments confirm this a-priori analysis; the dashed vertical lines (red and black) on Fig.531

5.1are taken back on the identified discharge graphs on Fig. 5.3.532
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Figure 5.1. Identifiability maps in the Garonne river case: (Left) Scenario 1 (SWOT like, 21 days
repeat) (Right) Scenario 2 (100 times more frequent, 0.21 day repeat). The circles centered at t ≈ 0.45
days correspond to the inflow peak. .
In Scenario 1, the identifiability index Iident is so tiny that all the characteristics are almost horizontal
and the identifiable times at x = 0 corresponds roughly at the “observation day”.
In Scenario 2, the velocity waves (ū+ c̄) (dotted lines) are estimated at each reach from the available
observations (see sections 3.1 and 5.1). The rectangle heights are proportional to the local value (ū+c̄).
The dashed vertical lines at upstream represent the characteristic feet i.e. the sets of points which can
be identified in the model without the dissipative source term: in red the information coming from
the “far” green observed reaches (hence an identifiability likely less accurate); in black the information
coming from the close blue observed reaches (hence an identifiability likely very accurate). These
dashed vertical lines (red and black) are taken back from the identified discharge graphs Fig. 5.3.

533

5.2. Scenario 1: real SWOT temporal sampling. The Strickler coefficient K and the bed level zb are given. The534

latter is either the effective true bathymetry or the bathymetry estimated by the low-Froude equation presented in535

[18] and one (1) in-situ measurement. The numerical results presented below are those obtained with the effective536

bathymetry estimated from the low-Froude equation and the exact lowest wetted area at x = 40 km (the so-called537

reference point in Fig. 2.1). Next the inflow discharge is identified by VDA from the real SWOT space time sampling.538

Following the preliminary study based on the identifiability map, Qin(t) is decomposed as a Fourier series(IDFourier539

case) with NFS = 5 (Fig. 5.2 Left) and NFS = 10 (Fig. 5.2 Right). Then as expected, the identification is accurate540

in the vicinity of each observation (the vertical colored lines in Fig. 5.2) but inaccurate elsewhere. Indeed, norm 2541

of the identified discharge at observation times is eTobs2 ∼ 16.5% and e2 ∼ 42% if considering the whole hydrograph542

(more precisely 41.4% for NFS = 5 and 54.5% for NFS = 10).As expected increasing the identification frequency543

(case NFS = 10) does not improve the coarser approximation (NFS = 5) since the latter already corresponds to an544

adequate frequency compared to the observation mean frequency, see Fig. 5.2.545

As already discussed, the identifiability index is extremely small (Iident ∼ 6.7 10−3). This very small index value546

is due to the important spatiotemporal sparsity of the data and a short river portion (74 km). However the VDA547

process makes possible to infer quite accurately the inflow discharge roughly at observation day times, but the too548

small identifiability index prevents to constraint the inflow discharge between the observation times.549

All these results corroborate the a-priori analysis made from the identifiability map.550

Let us point out that in a complete river network, each observation (at a given location and a given time) is spread551

into the whole network model (at the various wave velocities) if the hydraulic propagation time is larger than the552

observation frequency (i.e. with a identifiability greater than 1). Then each satellite overpass can constraint the553

lowest frequency of the inflow hydrograph in the network.554
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Figure 5.2. Garonne river, Scenario 1. Discharge identification with Fourier series with: (Left)
NFS = 5, eTobs2 (Qestimatein ) = 17.1% . (Right) NFS = 10, eTobs2 (Qestimatein ) = 16.2% .
Vertical lines corresponds to the time observations (blue for Group 1, red for Group 2 and green for
Group 3). The horizontal dotted line corresponds to the first guess Qin = 268m3/s.

5.3. Scenario 2: densified SWOT temporal sampling by a factor 100. In the present case, the data sampling555

and the hydrograph are re-scaled / densified in time by a factor 100. The numerical inversions are strictly the same556

as the previous ones but the time scale and the values of NFS.557

The re-scaled hydrograph remains consistent with the domain length since the peak duration is higher than the558

response time of the whole river portion; recall Twave ∼ 3.4 hours. The identifiability index Iident ∼ 0.67.559

As indicated on the identifiability map Fig. 5.1, a majority of the inflow information is observed since it has time560

enough to travel throughout the domain. This suggests that the inflow values are in majority accurately identifiable561

but are not during some (a-priori short) time intervals. These more or less accurate time intervals are indicated as562

the black and red dots in Fig. 5.1 and Fig. 5.3.563

The VDA results are presented on Fig. 5.3, read e.g. the case NFS = 10, Left-Bottom. The values at the times564

corresponding to the black identifiability intervals are accurate (as expected). The norm 2 error at observation times565

equals ∼ 4.5%. On the contrary, the peak is partially captured only since it occurs during a red identifiability interval566

(see the red dots on Fig. 5.1 and Fig. 5.3). However, the identification is globally correct considering the quite low567

identifiability index Iident value of the scenario. Indeed the index is strictly lower than 1, hence suggesting some “blind”568

time intervals in terms of identifiability.569

As indicated in Fig. 5.3), the VDA process is performed for four values of NFS= NFS = 5, 10, 15 and 40. In570

the numerical method, the value of NFS has to be a-priori set. This can be easily done from the identifiability map571

analysis and the dtobs value. Indeed it has already been suggested that setting NFS such that: T/NFS ∼ dtobs/2572

(which corresponds here to NFS ∼ 8 ) should be quite optimal.573

In view to fully analysis the sensitivity with respect to the NFS value, the results obtained from for the four values574

above are compared. Moreover, to better understand the origin of the identification errors, the approximation of the575

exact inflow discharge Qtargetin (t) by the same Fourier series is plotted in each case, see the four curves “Exact FS with576

NFS=...” in Fig. 5.3. This makes possible to analyze the error origin from the Fourier series approximation and from577

the VDA process (with respect to the present index value ).578

The best results is obtained with NFS equals to 10 (the case 15 is good too), providing an error at observation579

times ∼ 4.2%, and ∼ 20% if considering the whole hydrograph, see Fig. 5.3. All errors are detailed in the title of Fig.580

5.3.581
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Figure 5.3. Garonne river, Scenario 2. Discharge identification with Fourier series with: (Left, top)
NFS = 5, e2(Qestimatein ) = 27.6% , eTobs2 (Qestimatein ) = 11.6% (Right, top) NFS = 10 e2(Qestimatein ) =
22.5% , eTobs2 (Qestimatein ) = 4.2% (Left, bottom) NFS = 15, e2(Qestimatein ) = 18.4% , eTobs2 (Qestimatein ) =
4.6% (Right, bottom) NFS = 40, e2(Qestimatein ) = 23.7% , eTobs2 (Qestimatein ) = 8.5% . The vertical
colored lines correspond to the observation times (blue for Group 1, red for Group 2 and green for
Group 3), see Fig. 2.4.
The horizontal colored dashed lines (red and black) at Q = 50 correspond to the characteristic feet,
lines taken back from the identifiability maps.
The horizontal dotted black line corresponds to the first guess Qin = 268 m3/s.

6. Conclusion582

583

The identifiability of inflow discharge and roughness coefficients have been investigated into details in the context584

of SWOT like data (sparse altimetric data of the river surface) and highly frequent revisiting. The bed level was either585

given or otherwise infered by a lower complexity model. The investigations have been led in for a single (relatively586

short) river reach, hence in a “high-resolution” context, and at the lowest spatiotemporal limit of the data-model587

inversion capability. The difficulty of the inverse problem (or equivalently the data-model inversion capability) has588

been analyzed in terms of the hydraulic propagation time Twave = L
mean(u+c) and the identifiability index Iident =589

Twave
dtobs

. Identifiability maps representing the complete information in the (x, t)-plane (the model wave propagation,590

the observations and the misfit with the Manning-Strikler’s law) have been proposed. Their analysis provides a591

comprehensive overview of the considered inverse problem. Typically in the SWOT data context, the identifiability592

map of the tested cases suggests that the observations sampling in relation with the characteristic time of the river593

makes possible to accurately infer the inflow discharge at the “observation day time” but prevents to infer accurately594

a “continuous” hydrograph, that is inflow discharge values between the observation times.595

The numerous numerical VDA experiments (performed both on academic test cases and on a 74 km portion of the596

Garonne river) have confirmed the preliminary analysis based on the identifiability maps. Moreover it has been shown597

that in the present case (a single river reach without any additional prior information on the river flow dynamics),598

the optimal assimilation time step should be set approximatively to the half of the observation time step (one point599

of identification between two satellite time revisits). From this basic guideline, reducing the control parameter Qin(t)600

in a Fourier series can be easily done by selecting the lowest identifiable frequency plus a few others. All these601
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numerical results have been analyses for various observation sampling densities hence different identifiability indices.602

In other respect, sensitivity analyses with respect to the observation errors and with respect to the first guesses values603

demonstrate the good robustness of the VDA inferences.604

It has been demonstrated that infering the roughness values (defined as a power law) simultaneously with the inflow605

discharge Qin(t) does not affect the accuracy of the identified discharge values. This robustness feature can be partially606

explained directly from the identifiability map too. Indeed K(h) is a spatially distributed coefficient (the x− axis on607

the map) while Qin(t) is a point-wise time-dependent coefficient (the y − axis on the map).608

Finally the present study completes the previous analyses led on this topic. It investigates the lowest spatiotemporal609

limit for a given single river reach. It demonstrates the limits of these forthcoming data inversion capability but also610

their great potential to constraint 1D river flow dynamic models and infer the discharge, including if considering a611

single relatively short river reach. This study constitutes an important stage before addressing the identifiability and612

inferences by VDA of multi-satellites, multi-sensors data. Let us point out that if considering a complete river network613

then the hydraulic propagation time is a-priori larger than if considering a single river reach of the network, then the614

identifiability index is more important. Indeed in this case each observation (given at one location and one instant)615

can be spread into the whole network following the wave characteristics. Then if the total hydraulic propagation time616

is larger than the observation frequency (that is the identifiability index larger than 1) then each satellite overpass617

can constraint “continuously” the inflow hydrograph of the network.618

The VDA process could have been performed for the complete unknown parameter set (Qin(t),K(h)) and Zb(x) (by619

employing the present computational software DassFlow). However without prior information, the computed optimal620

solution is not necessarily the correct one since many pairs (K,Zb) can provide the correct discharge values. In other621

words the equifinality issue on the bed properties may prevent a correct descriptive model to be predictive. This622

equifinality issue is a topic of further research, in the present context of sparse altimetric data too. In the future,623

similar numerical experiments should be performed for a complete river network and for longer time simulations, hence624

making increase the identifiability index of the considered data-model inversion capability.625
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7. Appendices639

7.1. River model geometry . The resolution of the Saint-Venant equation (1D shallow water) (2.1) requires the640

computation of wet surface S and perimeter Pe in function of water depth h and geometrical parameters. Then641

sequences of wet surface (Si)06i6I and perimeter (Pei)06i6I are introduced with I ∈ 0, .., Np where Np is the maximal642

number of triplets (Hi, wi, Yi)0≤i≤Np .643

For the notations, the reader should refer to Fig. 7.1.644

• The wet surfaces (Si)06i6I are defined by:645
{

S0 = (H0 − zb)w0

Si =
1

2
(wi−1 + wi) (Hi −Hi−1) ∀i ∈ J1, NpK

• The wet perimeters (Pei)06i6I are defined by:646




Pe0 = w0 + 2(H0 − zb)

Pei =

((
Wi

2
−
(
Wi−1

2
− y

i

))2

+ (Hi −Hi−1)
2

)1/2

︸ ︷︷ ︸
=Pe1i

+

((
Wi

2
−
(
Wi−1

2
+ y

i

))2

+ (Hi −Hi−1)
2

)1/2

︸ ︷︷ ︸
=Pe2i

∀i ∈ J1, NpK

647

with yi = Yi−1 − Yi, i ∈ J1, NpK.648

Let m ∈ N such that: Hm < h < Hm+1 ; or equivalently,
∑m
i=1 Si < S <

∑m+1
i=1 Si.649

Thanks to the sequences (Si)06i6I and (Pei)06i6I , it is possible to define the following geometric functions:650

• Function Pe(h):651
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Pe(h) =





0 if h = 0
2h+ w0 if 0 < h 6 H0 − zb
(2h+ w0) +

m∑

i=1

Pei + Pe′m if h > H0−zb

652

with:653

Pe′m =

((
Wm+1

2 −
(
Wm

2 − ym+1

))2

+ (Hm+1 −Hm)
2

)1/2 (
(h+zb)−Hm

Hm+1−Hm

)
+

((
Wm+1

2 −
(
Wm

2 + ym+1

))2

+ (Hm+1 −Hm)
2

)1/2 (
(h+zb)−Hm

Hm+1−Hm

)

• Function S(h):654

S(h) =





0 if h = 0
hw0 if 0 < h 6 H0 − zb
m∑

k=0

si + s′m if h > H0−zb

655

with:656

s′m =
1

2

(
2wm +

((
Pe2

1(m+1) − (Hm+1 −Hm)2
) 1

2

+
(
Pe2

2(m+1) − (Hm+1 −Hm)2
) 1

2

)(
(h+ zb)−Hm

Hm+1 −Hm

))
((h+zb)−Hm)

• Function h(S):657

h(S) =





0 if S = 0
S

w0
if S 6 s0

Hm − zb + h′m if S > s0
658

with:659

h′m = −
(

wm −X
wm+1 − wm

)
(Hm+1 −Hm) , where X =

√
w2
m + 2

(
wm+1 − wm
Hm+1 −Hm

)
(S − sm)

660

If m is such that wm+1 = wm, so the relation is simplify by: h′m = (s−sm)
wm

661

• Function w(h):662

w(h) =





0 if h = 0
w0 if 0 < h 6 H0 − zb
wm+α1(m+1)((h+ zb)−Hm) + α2(m+1)((h+ zb)−Hm) if h > H0−zb

663

With α1i and α2i the slope of trapezium i so:664

α1i, α2i =

(wi
2
−
(wi−1

2
± yi

))

Hi −Hi−1
665

Figure 7.1. Notation used for the geometric functions.

666



ACCEPTED MANUSCRIPT

AC

 

ON THE ASSIMILATION OF ALTIMETRIC DATA IN 1D SAINT-VENANT RIVER FLOW MODELS 23

7.2. Finite volume scheme. The Saint-Venant equation (1D shallow water) (2.1) are computationally solved by the667

following first order finite volume scheme. The conservative part of the system is written following the form proposed668

in [54]. The Riemann solver is the classical HLL scheme; the source term is discretized by a classically splitting669

approach, see e.g. [53]. The resulting numerical scheme is well-balanced in the sense it satisfies the water at rest670

property (also called C-property in the literature). The computational code has been widely assessed on classical671

benchmarks (transcritical flow with and without chocks, low Froude flows and of course C-property). The present672

scheme has been compared with respect to other schemes (the classical Preissmann see e.g. [13] but also an original673

low-Froude scheme).674

7.2.1. First order scheme. Eqn (2.1) are rewritten in conservative form as follows:675

(7.1)





∂S

∂t
+
∂Q

∂x
= 0 (7.1.1)

∂Q

∂t
+

∂

∂x

(
Q2

S
+ P

)
= g

∫ h

0

(h− z)∂w̃
∂x

dz − gS ∂zb
∂x
− gSSf (7.1.2)

676

where P is a “pressure term” as proposed by [54], next used by [24]. It is defined by:677

(7.2) P (x, S̃, t) = g

∫ h(x,t)

0

(h(x, t)− z)w̃(x, z, t)dz

678

Then (2.1) is re-written as follows:679

(7.3)
∂U

∂t
+
∂F(U)

∂x
= S(U)

680

with U =

[
S
Q

]
, F(U) =




Q
Q2

S
+ P


 , S(U) =




0

g

∫ h

0

(h− z)∂w̃
∂x

dz − gS ∂zb
∂x
− gSSf


 and P = g

∫ h

0

(h− z)w̃dz

681

The Jacobian matrix of F reads:682

JF =

[
0 1

c2 − u2 2u

]
since c =

√
∂P

∂S
= gh and u =

Q

S

683

The eigenvalues of JF are: λ1 = u + c and λ2 = u − c; their associated eigenvectors are: r1 = (1, u + c)T and684

r2 = (1, u− c)T .685

To solve the homogeneous form of (7.3), the classical scheme based on the Euler time scheme is used:686

(7.4) Un+1
i = Un

i −∆tn
Fni+1/2 − Fni−1/2

∆xi
687

The numerical flux Fnj are computed by the standard HLL formula, such as derived in [25], see also e.g. [53] and688

references therein.689

690

7.2.2. Pressure term discretization. The pressure term P = g
∫ h

0
(h − z)w̃dz has to be correctly discretized to691

obtain the convergence of the HLL scheme. Thanks to the particular geometry, it is possible to compute the pressure692

term piecewise. This computational step is CPU time consuming if the number of trapezium is high (recall 150 for693

the For the Garonne river case).694

Let Pni be the discrete pressure term with i the cross section number; let j be the trapezium layer number. Let us695

denotes: hni ≡ h , Hj,i ≡ Hj , zbi ≡ zb , α1j,i ≡ α1i , α2j,i ≡ α2i , wj,i ≡ wj and hj = (Hj − zb) with h−1 = 0. Then,696

• If h(x, t) = 0, Pni = 0.697

• If 0 < h(x, t) ≤ H0,698

Pni =
1

2
gw0,i(h

n
i )2
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Figure 7.2. Notations. (Left, top) Notations for the river cross sections in (yz-view). (Right, top)
Variational notations for the river cross sections in (yz-view). (Left, bottom) Notations for the river
cross sections in (xy-view). (Right, bottom) Effective geometry considered for each cross section:
superimposition of m trapeziums. For the Garonne river case, m = 150 (yz-view).

• Else,699

Pni = g
m∑

j=0

(
wj−1

(
h(hj − hj−1) +

h2
j−1−h2

j

2

))
+gwm

(
h(h− hm) +

h2
m−h2

2

)

+g(α1j + α2j)
(
h3
j−1−h3

j

3 + (h+ hj−1)
h2
j−h2

j−1

2 + hhj−1(hj−1 − hj)
)

+g(α1(m+1) + α2(m+1))
(
h3
m−h3

3 + (h+ hm)
h2−h2

m

2 + hhm(hm − h)
)

7.2.3. Source term discretization. In order to solve the non-homogeneous problem (7.3), a classical splitting700

method is used, see e.g. [53].701

Let us denote Ūn+1
i = [S̄n+1

i , Q̄n+1
i ]T the solution of the homogeneous problem (7.3) at point xi and time tn+1 ; let702

us denote Un+1
i = [Sn+1

i , Qn+1
i ]T the solution of the non-homogeneous problem at xi and tn+1. Then the complete703

numerical scheme to solve (7.3) reads:704

(7.5)





Ūn+1
i = Un

i −∆tn
Fni+1/2 − Fni−1/2

∆xi
Un+1
i = Ūn+1

i + ∆tnS(Ūn+1
i )

705
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