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December 17, 2018

Abstract

Transversal structures (also known as regular edge labelings) are combinatorial struc-
tures defined over 4-connected plane triangulations with quadrangular outer-face. They
have been intensively studied and used for many applications (drawing algorithm, random
generation, enumeration. . . ). In this paper we introduce and study a generalization of
these objects for the toroidal case. Contrary to what happens in the plane, the set of
toroidal transversal structures of a given toroidal triangulation is partitioned into sev-
eral distributive lattices. We exhibit a subset of toroidal transversal structures, called
balanced, and show that it forms a single distributive lattice. Then, using the minimal
element of the lattice, we are able to enumerate bijectively essentially 4-connected toroidal
triangulations.

1 Introduction

A graph embedded on a surface is called a map on this surface if all its faces are homeomorphic
to open disks. Maps are considered up to homeomorphism. A map is a triangulation if all
its faces have size three. Given a graph embedded on a surface, a contractible loop is an edge
enclosing a region homeomorphic to an open disk. Two edges of an embedded graph are called
homotopic multiple edges if they have the same extremities and their union encloses a region
homeomorphic to an open disk. In this paper, we restrict ourselves to graphs embedded on
surfaces that do not have contractible loops nor homotopic multiple edges. Note that this is
a weaker assumption, than the graph being simple, i.e., not having loops nor multiple edges.
In this paper we distinguish cycles from closed walk as cycles have no repeated vertices. A
contractible cycle is a cycle enclosing a region homeomorphic to an open disk. A triangle
(resp. quadrangle) of a map is a closed walk of length three (resp. four) that delimits on one
side a region homeomorphic to an open disk. This region is called the interior of the triangle
(resp. quadrangle). Note that a triangle is not necessarily a face of the map as its interior
may be not empty. Note also that a triangle is not necessarily a cycle since non-contractible
loops are allowed. A unicellular map is a map with only one face, which corresponds to the
natural generalization of planar trees when going to higher genus, see [CMS09, Cha11].

In this paper we consider finite maps. We denote by n be the number of vertices and
m the number of edges of a graph. Given a graph embedded on a surface, we use f for
the number of faces. Euler’s formula says that any map on an orientable surface of genus g
satisfies n−m+ f = 2− 2g. In particular, the plane is the surface of genus 0, the torus the
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surface of genus 1, the double torus the surface of genus 2, etc. By Euler’s formula, a toroidal
triangulation with n vertices has exactly 3n edges and 2n faces.

The universal cover of the torus is a surjective mapping p from the plane to the torus that
is locally a homeomorphism. If the torus is represented by a hexagon (or parallelogram) in
the plane whose opposite sides are pairwise identified, then the universal cover of the torus is
obtained by replicating the hexagon (or parallelogram) to tile the plane.

A graph is k-connected if it has at least k + 1 vertices and if it stays connected after
removing any k − 1 vertices. Extending the notion of essentially 2-connectedness defined in
[MR98], we say that a toroidal map G is essentially k-connected if its universal cover G∞

is k-connected (note that this is different from G being k-connected). This paper is focused
on the study of essentially 4-connected toroidal triangulations via generalizing transversal
structures to the toroidal case.

Transversal structures are originally defined on 4-connected planar triangulations with
four vertices on the outer face. They have been introduced by Kant et He [KH97] (under the
name regular edge labelings) for graph drawing applications of planar maps [KH97, Fus09].
Deep combinatorial properties of these objects have been studied later by Fusy [Fus09] with
numerous other applications like encoding, enumeration, random generation, etc. Indeed, in
the planar case, transversal structures are strongly related to a more general object called
α-orientations by Felsner [Fel04]. Consider a graph G, with vertex set V , and a function
α : V → N. An orientation of G is an α-orientation if, for every vertex v ∈ V , its outdegree
d+(v) equals α(v). For a fix planar map G and function α, the set of α-orientations of G
carries a structure of distributive lattice (see [Fel04] and older related results [Pro93, dM94])
In the planar case, there is a bijection between transversal structure of a planar map and
4-orientations of the corresponding angle map. Thus the set of transversal structures of a
given planar map also carries a structure of distributive lattice whose minimal element plays
a crucial role for bijective purpose.

In the toroidal case, things are more complicated since the bijection between transversal
structures and 4-orientations is not valid anymore. Moreover the set of α-orientations of a
given toroidal map is now partitioned into several distributive lattices (see [Pro93, GKL16])
contrarily to the planar case where there is only one lattice and thus only one minimal element.
Similar issues appear in the study of Schnyder woods and corresponding 3-orientations of
toroidal triangulations. In a series of papers [GL14, GKL16, DGBL17] (see also the HDR
manuscript of the second author [Lév17] which presents these three papers in a unified way),
these problems are solved by highlighting a particular global property, called “balanced”
in [Lév17], that a 3-orientation may have.

By following the same guidelines here, we are able to identify, in Section 2, a similar “bal-
anced” property for 4-orientations of the angle map. These so-called balanced 4-orientations
form the core object of study of this paper. Whereas not all 4-orientations correspond to
transversal structures, we show in Section 3 that all balanced ones correspond to transver-
sal structures. The existence of balanced transversal structures for essentially 4-connected
toroidal triangulations is proved in Section 4 by edge contraction. The following theorem is
obtained:

Theorem 1 A toroidal triangulation admits a balanced transversal structure if and only if it
is essentially 4-connected.

The set of 4-orientations of the angle map of a given essentially 4-connected toroidal
triangulation is partitioned into distributive lattices but all the balanced 4-orientations are
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contained in the same lattice, as shown in Section 5. The minimal element of this “balanced
lattice” has some important properties that are used in Section 6 to obtain a bijection between
essentially 4-connected toroidal triangulations and some toroidal unicellular maps. Then this
bijection is used in Section 7 to enumerate essentially 4-connected toroidal triangulations:

Theorem 2 The generating function associated with the number Th(n) of essentially 4-
connected toroidal triangulations on n vertices, rooted on any half-edge, is:

Th(z) =
∑
n≥0
|Th(n)|zn =

zA(z)

7zA(z)2 − 21zA(z) + 9z + 1

where A(z) is the generating function of (leaf-rooted) ternary trees satisfying A(z) =
1 + zA(z)3.

2 Angle map, transversal structure, balanced property and
universal cover

2.1 Angle map and balanced 4-orientations

Consider a toroidal triangulation G. The angle map A(G) of G is the bipartite map obtained
from a simultaneous embedding of vertices of G and G∗ such that vertices of G∗ are embedded
inside faces of G and vice-versa, and for each angle of a vertex v incident to a face v∗ there
is an edge between v and v∗. Hence, A(G) is a bipartite map with one part consisting of
primal-vertices and the other part consisting of dual-vertices. Each dual-vertex has degree
three and each face of A(G) is a quadrangle that consists of two primal-vertices and two
dual-vertices.

Figure 1 gives an example of a toroidal triangulation and its angle map, primal-vertices
are black and dual-vertices are white (this serves as a convention for the entire paper).

Figure 1: A toroidal triangulation and its angle map.

An orientation of the edges of A(G) is called a 4-orientation if every primal-vertex has
outdegree exactly 4 and every dual-vertex has outdegree exactly 1. Euler’s formula says that
for a toroidal triangulation we have 2n = f , so the number of edges of the angle map is
3f = 4n+ f . Thus Euler’s formula is “compatible” with existence of 4-orientations for angle
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maps of toroidal triangulations (4n outgoing edges for primal-vertices and f outgoing edges
for dual-vertices.

Consider an orientation of the edges of A(G) and a cycle C of G together with a direction
of traversal. We define γ(C) by:

γ(C) = # edges of A(G) leaving C on its right−# edges of A(G) leaving C on its left.

Then we can define balanced orientations:

Definition 1 (Balanced 4-orientation)
A 4-orientation of A(G) is balanced if every non-contractible cycle C of G satisfies γ(C) = 0.

Figure 2 gives two examples of 4-orientations of the same angle map of a toroidal trian-
gulation. On the left example, the vertical loop of the triangulation, with upward direction
of traversal, has γ = 2, thus the orientation is not balanced. On the right example, one can
check that γ = 0 for any non-contractible cycle (note that we prove latter that it suffices to
check that γ equals 0 for a vertical cycle and a horizontal cycle to be balanced, see Lemma 14).

Non-balanced Balanced

Figure 2: Two different 4-orientations of the angle map of a toroidal triangulation, exactly
one of which is balanced. One is obtained from the other by flipping the magenta cycle.

Balanced 4-orientations are the main ingredient of this paper. Among all, we show that
an essentially 4-connected toroidal triangulation admits a balanced 4-orientation of its angle
map, and we exhibit the structure of distributive lattice of the set of all these balanced
orientations.

In the next section we show how 4-orientations are related to transversal structures.

2.2 Balanced transversal structures

Transversal structures have been defined originally in the planar case (see [KH97, Fus09]) and
we propose the following generalization to the toroidal case.

First we define the following local rule:

Definition 2 (Transversal structure local property)
Given a map G, a vertex v and an orientation and coloring of the edges incident to v with
the colors blue and red, we say that v satisfies the transversal structure local property (or

4



local property for short) if the edges around v form in counterclockwise order a non-empty
interval of outgoing edges of color blue, a non-empty interval of outgoing edges of color red,
a non-empty interval of incoming edges of color blue, a non-empty interval of incoming edges
of color red (see Figure 3).

Figure 3: The (transversal structure) local property.

Then the definition of toroidal transversal structure is the following:

Definition 3 (Toroidal transversal structure)
Given a toroidal map G, a toroidal transversal structure of G is an orientation and coloring
of the edges of G with the colors blue and red where every vertex satisfies the transversal
structure local property.

See Figure 4 for an example of a toroidal transversal structure of the triangulation of
Figure 1.

Figure 4: Example of a toroidal transversal structure.

From a toroidal transversal structure of a toroidal triangulation G, one can deduce a 4-
orientation of its angle map A(G) by the following rule applied around each primal-vertex
(see Figure 5): an edge e of A(G) is oriented toward its primal-vertex if the two primal edges
around e share the same color otherwise e is oriented toward its dual-vertex. The fact that
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primal-vertices of A(G) gets outdegree 4 is clear by the definition of transversal structure.
The fact that dual-vertices gets outdegree 1 is due to the property that, by the local rule,
all (triangular) faces of G looks like one of Figure 6 where the four cases are symmetric by
rotation of the order (outgoing blue, outgoing red, incoming blue, incoming red).

Figure 5: Orientation of the angle map corresponding to a transversal structure.

Figure 6: The four possible faces in a transversal structure and the corresponding orientation
of the angle map.

The 4-orientation on the right of Figure 2 is the one obtained from Figure 4 by the rule
of Figure 5.

In the plane, there is a bijection between transversal structures of a map and 4-orientations
of its angle map (see [Fus09]). This is not true in the toroidal case. For example, there is no
transversal structure associated with the (non-balanced) 4-orientation of the left of Figure 2.

Like it has been done in [GKL16, Theorems 3.7] (see also [Lév17, Section 4.2]) for toroidal
Schnyder woods, it is possible to characterize which 4-orientations of the angle map of a
toroidal triangulation corresponds a transversal structure. This is done in Section 3. A
consequence of such a characterization (see Corollary 1) is that if a 4-orientation is balanced,
then it corresponds to a transversal structure.

So the balanced property is a sufficient condition to corresponds to a transversal structure.
Note that it is not a necessary condition. Figure 7 gives an example of a transversal structure
of a toroidal triangulation whose corresponding 4-orientation of its angle map is not balanced.
The horizontal cycle (with direction of traversal from right to left) has γ = 8.

Note also that in the plane, transversal structures can be defined by omitting the orienta-
tion of the edges in the local property since there is a bijection with 4-orientations of the angle
map. Again, this is not the case in the torus. Figure 8 gives an example of a blue/red color-
ing of the edges of a toroidal triangulation satisfying the local rule of transversal structure,
without the orientation of the edges. It is not possible to orient the edges so this coloring
becomes a toroidal transversal structure. The corresponding orientation of the angle map is
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Figure 7: Example of a toroidal transversal structure whose corresponding 4-orientation of
angle map is not balanced.

still a 4-orientation. Note that by gluing two copies of this example, one obtains Figure 7
that becomes orientable.

Figure 8: Example of a blue/red coloring of the edges of a toroidal triangulation satisfying
the local rule of transversal structure, without the orientation of the edges, and that is not a
transversal structure.

We give the following definition of balanced for toroidal transversal structure:

Definition 4 (Balanced toroidal transversal structure)
A toroidal transversal structure is balanced if its corresponding 4-orientation of angle map is
balanced.

Figure 4 gives an example of a balanced toroidal transversal structure. The corresponding
4-orientation of the angle map is the balanced 4-orientation of the right of Figure 2.

In section 4 we prove the existence of balanced toroidal transversal structure for essentially
4-connected toroidal triangulations. This implies the existence of balanced 4-orientations for
their angle maps.

2.3 Transversal structures in the universal cover

Consider a toroidal map G and its universal cover G∞. Note that G does not have contractible
loops nor homotopic multiple edges if and only if G∞ is simple.

We need the following lemma from [GKL16]:
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Lemma 1 ([GKL16, Lemma 2.8]) Suppose that for a finite set of vertices X of G∞, the
graph G∞ \X is not connected. Then G∞ \X has a finite connected component.

Suppose now thatG is a toroidal triangulation given with a transversal structure. Consider
the natural extension of the transversal structure of G to G∞, where an edge of G∞ receive the
orientation and color of the corresponding edge in G. Let G∞B , G∞R be the directed subgraphs
of G∞ induced by the edges of color blue and red, respectively. The graphs G∞−B and G∞−R
are the graphs obtained from G∞B and G∞R by reversing all their edges. Similarly to what
happens for Schnyder woods (see [Lév17, Lemma 6]) we have the following property:

Lemma 2 The graphs G∞B ∪G∞R and G∞B ∪G∞−R contain no directed cycle.

Proof. Let us prove the property for G∞B ∪G∞R , the proof is similar for G∞B ∪G∞−R. Suppose
by contradiction that there is a directed cycle in G∞B ∪G∞R . Let C be such a cycle containing
the minimum number of faces in the finite map D with border C. Suppose without loss
of generality that C turns around D counterclockwisely. By the transversal structure local
property, every vertex of D has at least one outgoing edge of color red in D. So there
is a cycle of color red in D and this cycle is C by minimality of C. Every vertex of D
has at least one incoming edge of color blue in D. So, again by minimality of C, the cy-
cle C is a cycle of color blue. This contradicts the fact that edges of G∞ have a unique color. �

For a vertex v of G∞, and i ∈ {B,R,−B,−R} we define Pi(v) the subgraph of G∞

obtained by keeping all the edges that are on an oriented path of G∞i starting at v. Then we
have the following lemma:

Lemma 3 For every vertex v and i, j ∈ {B,R,−B,−R}, i 6= j, the two subgraphs Pi(v) and
Pj(v) of G∞ have v as only common vertex.

Proof. If Pi(v) and Pj(v) intersect on two vertices, then G∞B ∪G∞R or G∞B ∪G∞−R contains a
directed cycle, contradicting Lemma 2. �

Now we can prove that the existence of a transversal structure for a toroidal triangulation
implies the 4-connectedness of its universal cover:

Lemma 4 If a toroidal triangulation admits a toroidal transversal structure, then it is es-
sentially 4-connected.

Proof. Suppose by contradiction that there exists three vertices x, y, z of G∞ such that
G′ = G∞ \ {x, y, z} is not connected. Then, by Lemma 1, the graph G′ has a finite connected
component R. Let v be a vertex of R. By Lemma 2, for i ∈ {B,R,−B,−R}, i 6= j, the
infinite and acyclic graph Pi(v) does not entirely lie in R so it intersects one of x, y, z. So
for two distinct i, j, the two graphs Pi(v) and Pj(v) intersect at a vertex distinct from v, a
contradiction to Lemma 3. �

In Section 4, we prove the converse of Lemma 4 (see Theorem 1).
A separating triangle of a map is a triangle whose interior is not empty. We have the

following equivalence:
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Lemma 5 A toroidal triangulation is essentially 4-connected if and only if its universal cover
has no separating triangle.

Proof. (=⇒) Consider an essentially 4-connected toroidal triangulation G. So G∞ is 4-
connected. If G∞ has a separating triangle, then, the three vertices of the triangle form a
contradiction to the 4-connectedness of G∞. So G∞ has no separating triangle.

(⇐=) Consider a toroidal triangulation G such that G∞ has no separating triangle.
Suppose by contradiction that G∞ is not 4-connected. Then there exists a set of 3 vertices
X = {x, y, z} such that G∞ \X is not connected. By Lemma 1, the graph G∞ \X has a finite
connected component R. Let F be the face of G∞ \R that “cuts” the region R from the rest
of G∞ \X. If F has length 1 or 2 then G∞ is not simple, a contradiction. If F has size 3,
then F is a separating triangle of G∞, a contradiction. So F has size at least 4. Then there
exists a vertex v in F \X. There is no edges between v and R and thus in G∞ the face inci-
dent to v and R has length strictly more than 3, a contradiction of G being a triangulation. �

We say that a quadrangle is maximal (by inclusion) if its interior is not strictly contained
in the interior of another quadrangle.

Lemma 6 Consider an essentially 4-connected toroidal triangulation G and an edge e of G.
Then there is a unique maximal quadrangle of G whose interior contains e.

Proof. Since G is a toroidal triangulation, e is clearly contained in the interior of the
quadrangle bordering its two incident faces. So e is contained in a maximal quadrangle.

Suppose by contradiction that there exist two distinct maximal quadrangles Q,Q′ such
that their interiors contain e. Let R,R′ denote the interior of Q,Q′ respectively. The two
region R,R′ are distinct, both contain the two faces incident to e plus some other faces.
If there is an edge in R (resp. R′) connecting two opposite vertices of Q (resp. Q′), then
G∞ contains a separating triangle, a contradiction of G being essentially 4-connected and
Lemma 5. Then since there is no homotopic multiple edges in G, there is at least one or two
vertices of Q (resp Q′) in the interior of Q′ (resp. Q). Thus the border of the union of R and
R′ has size less or equal to four, a contradiction to the maximality of Q,Q′ or of G being an
essentially 4-connected triangulation. �

3 Characterization of orientations corresponding to transver-
sal structures

3.1 Transversal structure labeling

We need the following equivalent definition of toroidal transversal structures:

Definition 5 (Toroidal transversal structure labeling)
Given a toroidal map G, a toroidal transversal structure labeling (or TTS-labeling for short)
of G is a labeling of the half-edges of G with integers 0, 1, 2, 3 (considered modulo 4) such that
each edge is labeled with two integers that differ exactly by (2 mod 4) and around each vertex
the labeling form four non-empty intervals of 0, 1, 2, 3 in counterclockwise order.
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Consider a toroidal map G. The mapping of Figure 9, where an outgoing half-edge blue
is labeled 0, an outgoing half-edge red is labeled 1, an incoming half-edge blue is labeled 2,
and an incoming half-edge red is labeled 3, shows how to see a toroidal transversal structure
of G as a TTS-labeling of G and vice-versa. The two objects are indeed the same.

1 320

Figure 9: Mapping between TTS-labelings and transversal structures.

Figure 10 shows the TTS-labeling corresponding to the transversal structure of Figure 4.
This labeling is also represented on the corresponding orientation of its angle map.
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Figure 10: Labeling of the half-edges of a transversal structure and in the angle map.

We say that a 4-orientation of A(G) admits a TTS-labeling if there is a labeling of the
angles of the primal-vertices of A(G) such that this labeling corresponds to a transversal
structure of G (as on Figure 10).

The goal of this section is to characterize which 4-orientations admit TTS-labelings. For
that purpose we have to introduce some more formalism, similarly to what is done for Schnyder
woods (see [GKL16, Lév17]).

3.2 A bit of homology

We need a bit of surface homology of general maps which we discuss now.
Consider a map G = (V,E), on an orientable surface of genus g, given with an arbitrary

orientation of its edges. This fixed arbitrary orientation is implicit in all the paper and is
used to handle flows. A flow φ on G is a vector in ZE . For any e ∈ E, we denote by φe the
coordinate e of φ.

A walk W of G is a sequence of edges with a direction of traversal such that the ending
point of an edge is the starting point of the next edge. A walk is closed if the start and end
vertices coincide. A walk has a characteristic flow φ(W ) defined by:

φ(W )e = #times W traverses e forward−#times W traverses e backward.
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This definition naturally extends to sets of walks. From now on we consider that a set of
walks and its characteristic flow are the same object and by abuse of notation we can write
W instead of φ(W ). We do the same for oriented subgraphs, i.e., subgraphs that can be seen
as a set of walks of unit length.

A facial walk is a closed walk bounding a face. Let F be the set of counterclockwise
facial walks and let F = <φ(F)> be the subgroup of ZE generated by F . Two flows φ, φ′ are
homologous if φ − φ′ ∈ F. They are weakly homologous if φ − φ′ ∈ F or φ + φ′ ∈ F. We say
that a flow φ is 0-homologous if it is homologous to the zero flow, i.e., φ ∈ F.

Let W be the set of closed walks and let W = <φ(W)> be the subgroup of ZE generated
by W. The group H(G) = W/F is the first homology group of G. It is well known that H(G)
only depends on the genus of the map, and is actually isomorphic to Z2g.

A set {B1, . . . , B2g} of (closed) walks of G is said to be a basis for the homology if the
equivalence classes of their characteristic vectors ([φ(B1)], . . . , [φ(B2g)]) generate H(G). Then
for any closed walk W of G, we have W =

∑
F∈F λFF +

∑
1≤i≤2g µiBi for some λ ∈ ZF , µ ∈

Z2g. Moreover one of the λF can be set to zero (and then all the other coefficients are unique).
For any map, there exists a set of cycles that forms a basis for the homology and it is

computationally easy to build. A possible way to do this is by considering a spanning tree
T of G, and a spanning tree T ∗ of G∗ that contains no edges dual to T . By Euler’s formula,
there are exactly 2g edges in G that are not in T nor dual to edges of T ∗. Each of these 2g
edges forms a unique cycle with T . It is not hard to see that this set of cycles, given with any
direction of traversal, forms a basis for the homology. Moreover, note that the intersection of
any pair of these cycles is either a single vertex or a common path.

The edges of the dual map G∗ of G are oriented such that the dual e∗ of an edge e of
G goes from the face on the right of e to the face on the left of e. Let F∗ be the set of
counterclockwise facial walks of G∗. Consider {B∗1 , . . . , B∗2g} a set of closed walks of G∗ that
form a basis for the homology. Let p and d be flows of G and G∗, respectively. We define the
following:

β(p, d) =
∑
e∈G

pede∗ .

Note that β is a bilinear function. We need the following lemma from [GKL16]:

Lemma 7 ([GKL16, Lemma 3.1]) Given two flows φ, φ′ of G, the following properties are
equivalent to each other:

1. The two flows φ, φ′ are homologous.

2. For any closed walk W of G∗ we have β(φ,W ) = β(φ′,W ).

3. For any F ∈ F∗, we have β(φ, F ) = β(φ′, F ), and, for any 1 ≤ i ≤ 2g, we have
β(φ,B∗i ) = β(φ′, B∗i ).

3.3 The angle-dual-completion

Consider a toroidal triangulation G. The angle-dual-completion Â(G) of G is the map ob-
tained from simultaneously embedding A(G) and G∗ and subdividing each edge of G∗ by
adding a vertex at its intersection with the corresponding primal-edge of G (see Figure 11).

In Â(G) there are three types of vertices called primal-, dual- and edge-vertices, represented,
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respectively, in black, white, and gray on the figures. There are two types of edges called
angle- and dual-edges. Each angle-edge is between a primal- and dual-vertex. Each dual-
edge is between a dual- and an edge-vertex. Since G is a triangulation, each dual-vertex
is incident to three angle-edges and three dual-edges. Each edge-vertex is incident to two

dual-edges. Each face of Â(G) represents a half-edge of G and is a quadrangle incident to one
primal-vertex, two dual-vertices and one edge-vertex.

Given an orientation of the angle map A(G), this orientation naturally extends to an

orientation of the angle-dual-completion Â(G) where angle-edges get the orientation they
have in A(G) and dual-edges are oriented from the edge-vertex to the dual-vertex. A 4-

orientation of Â(G) is an orientation of its edges that corresponds to a 4-orientation of A(G),
i.e., primal-vertices have outdegree exactly 4, dual-vertices have out-degree exactly 1 and
edge-vertices have outdegree exactly 2.

A TTS-labeling of G can be represented on Â(G) by putting labels into faces of Â(G)
(see Figure 11). When crossing an angle-edge that is incoming for a primal-vertex, the label
does not change. When crossing an angle-edge that is outgoing for a primal-vertex, the label
changes by ±1 depending on the orientation of this angle-edge: from left to right (+1 mod 4)
or right to left (−1 mod 4). When crossing a dual-edge the label changes by ±2, and the
orientation is not relevant since −2 mod 4 = +2 mod 4.
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Figure 11: Orientation and labeling of the angle-dual-completion corresponding to Figure 10.

Let Out be the set of edges of Â(G) which are going from a primal-vertex to a dual-vertex.

We call these edges out-edges of Â(G). Let Dual be the set of dual-edges of Â(G). For φ a flow

of the dual of the angle-dual-completion Â(G)
∗
, we define δ(φ) = β(Out, φ) + 2β(Dual, φ).

More intuitively, if W is a walk of Â(G)
∗
, then:

δ(W ) = #out-edges crossing W from left to right
−#out-edges crossing W from right to left
+ 2×#dual-edges crossing W from left to right
− 2×#dual-edges crossing W from right to left

The bilinearity of β implies the linearity of δ.
The following lemma gives a necessary and sufficient condition for a 4-orientation of the

angle map to admit a TTS-labeling.
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Lemma 8 A 4-orientation of A(G) admits a TTS-labeling if and only if any closed walk W

of Â(G)
∗

satisfies δ(W ) = 0 mod 4.

Proof. (=⇒) Consider a TTS-labeling ` of A(G). The definition of δ is such that δ modulo 4

counts the variation of the labels when going from one face of Â(G) to another face of Â(G).

Thus for any walk W of Â(G)
∗

from a face F to a face F ′, the value of δ(W ) mod 4 is equal
to `(F ′)− `(F ) mod 4. Thus if W is a closed walk then δ(W ) = 0 mod 4.

(⇐=) Consider a 4-orientation of Â(G) such that any closed walk W of Â(G)
∗

satisfies

δ(W ) = 0 mod 4. Pick any face F0 of Â(G) and label it 0. Consider any face F of Â(G) and

a path P of Â(G)
∗

from F0 to F . Label F with the value δ(P ) mod 4. Note that the label
of F is independent from the choice of P as for any two paths P1, P2 going from F0 to F , we
have δ(P1) = δ(P2) mod 4 since δ(P1 − P2) = 0 mod 4 as P1 − P2 is a closed walk.

Consider a primal-vertex v of Â(G). By assumption d+(v) = 4 so the labels around v
form in counterclockwise order four non-empty intervals of 0, 1, 2, 3. Moreover, the labels
of the two faces incident to an edge-vertex differ by (2 mod 4). So the obtained labeling
corresponds to a TTS-labeling of G. �

In the next section we study properties of δ with respect to homology in order to simplify

the condition of Lemma 8 that concerns any closed walk of Â(G)
∗
. We also replace the

condition on δ to a condition on γ that is simpler to handle.

3.4 Characterization theorem

Consider a toroidal triangulation G. Let F̂∗ be the set of counterclockwise facial walks of the

angle-dual-completion Â(G)
∗
.

We have the following lemmas:

Lemma 9 In a 4-orientation of Â(G), any F ∈ F̂∗ satisfies δ(F ) = 0 mod 4.

Proof. If F corresponds to a primal-vertex v of Â(G), then v has outdegree exactly 4. So
δ(F ) = 4 = 0 mod 4.

If F corresponds to a dual-vertex v of Â(G), then v is incident to three angle-edges, exactly
two of which are incoming (and thus in Out), and incident to three incoming dual-edges. So
δ(F ) = −2× 1− 3× 2 = −8 = 0 mod 4.

If F corresponds to an edge-vertex v of Â(G), then v is incident to two outgoing
dual-edges. So δ(F ) = 2× 2 = 4 = 0 mod 4. �

Lemma 10 In a 4-orientation of Â(G), if {B1, B2} is a pair of cycles of Â(G)
∗
, given with

a direction of traversal, that forms a basis for the homology, then for any closed walk W of

Â(G)
∗

homologous to µ1B1 + µ2B2, µ ∈ Z2 we have δ(W ) = µ1δ(B1) + µ2δ(B2) mod 4.

Proof. We have W =
∑

F∈F̂∗ λFF + µ1B1 + µ2B2 for some λ ∈ Zf , µ ∈ Z2. Then by
linearity of δ and Lemma 9, the lemma follows. �
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Lemma 10 can be used to simplify the condition of Lemma 8 and show that if {B1, B2}
is a pair of cycles of Â(G)

∗
that forms a basis for the homology, then a 4-orientation of Â(G)

admits a TTS-labeling if and only if δ(Bi) = 0 mod 4, for i ∈ {1, 2}. We prefer to formulate
such a result with function γ that is simpler to handle (see Theorem 3).

Let C be a cycle of G with a direction of traversal. Let WL(C) be the closed walk of

Â(G)
∗

just on the left of C and going in the same direction as C. Note that since the faces of

Â(G)
∗

have exactly one incident vertex that is a primal-vertex, the walk WL(C) is in fact a

cycle of Â(G)
∗
. Similarly, let WR(C) be the cycle of Â(G)

∗
just on the right of C and going

in the same direction as C.

Lemma 11 Consider a 4-orientation of A(G) and a cycle C of G, then we have:

γ(C) = δ(WL(C)) + δ(WR(C))

δ(WL(C)) = 0 mod 4 ⇐⇒ γ(C) = 0 mod 8.

Proof. Let xR (resp. xL) be the number of edges of A(G) leaving C on its right (resp.
left). So γ(C) = xR − xL. Let k be the number of vertices of C. Since we are considering a
4-orientation of A(G), we have xR + xL = 4k. Moreover, an edge of A(G) leaving C on its
right (resp. left) is counting +1 (resp. −1) for δ(WR(C)) (resp. δ(WL(C))). For each edge of

C there is a corresponding edge-vertex in Â(G), that is incident to two dual-edges of Â(G),
one that is crossing δ(WL(C)) from right to left, counting −2, and one crossing δ(WR(C))
from left to right, counting +2. So δ(WL(C)) = −2k − xL and δ(WR(C)) = 2k + xR.

Combining these equalities, one obtain: γ(C) = δ(WL(C)) + δ(WR(C)),
γ(C) = 2δ(WL(C)) + 8k, δ(WL(C)) = γ(C)/2 − 4k. Then clearly, δ(WL(C)) = 0 mod 4
implies γ(C) = 0 mod 8, and γ(C) = 0 mod 8 implies δ(WL(C)) = 0 mod 4. �

Finally, we have the following theorem, which characterizes the 4-orientations that admit
TTS-labelings:

Theorem 3 Consider a toroidal triangulation G. Let {B1, B2} be a pair of cycles of G,
given with a direction of traversal, that forms a basis for the homology. A 4-orientation of
A(G) admits a toroidal transversal structure labeling if and only if γ(B1) = 0 mod 8 and
γ(B2) = 0 mod 8.

Proof. (=⇒) By Lemma 8, we have δ(W ) = 0 mod 4 for any closed walk W of Â(G)
∗
. So

we have δ(WL(B1)), δ(WL(B2)), are both equal to 0 mod 4. Thus, by Lemma 11, we have
γ(Bi) = 0 mod 8, for i ∈ {1, 2}.

(⇐=) Suppose that γ(Bi) = 0 mod 4, for i ∈ {1, 2}. By Lemma 11, we have
δ(WL(Bi)) = 0 mod 4, for i ∈ {1, 2}. Moreover {WL(B1),WL(B2)} forms a basis for the

homology. So by Lemma 10, δ(W ) = 0 mod 4 for any closed walk W of Â(G)
∗
. So the

orientation admits a TTS-labeling by Lemma 8. �

The 4-orientation of the toroidal triangulation on the left of Figure 2 is an example where
some non-contractible cycles have value γ not equal to 0 mod 8. The vertical loop of the
triangulation, with upward direction of traversal, has γ = 2. Thus by Theorem 3, this
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orientation does not correspond to a transversal structure. Whereas, on the right example,
one can check that γ = 0 for a vertical cycle and a horizontal one, thus this orientation
corresponds to a transversal structure (represented on Figure 4).

A consequence of Theorem 3 is that any balanced 4-orientation of the angle graph A(G) of
a toroidal triangulation G admits a TTS-labeling and thus is the 4-orientation corresponding
to a transversal structure of G.

Corollary 1 Any balanced 4-orientation of A(G) is the 4-orientation corresponding to a
(balanced) transversal structure of G.

Note again that there are transversal structures whose corresponding 4-orientations are
not balanced, thus for which γ = 0 mod 8 for every non-contractible cycles, but not exactly
0 for some of them. Such an example is given on Figure 7.

4 Existence of balanced transversal structures

In this section we prove existence of balanced transversal structures for essentially 4-connected
triangulations by contracting edges until we obtain a triangulation with just one vertex. This
is done by preserving the property that the triangulation is essentially 4-connected. The
toroidal triangulation on one vertex is represented on Figure 12 with a balanced transversal
structure and the corresponding angle map. Then the graph can be decontracted step by step
to obtain a balanced transversal structures of the original triangulation.

Figure 12: Example of a balanced transversal structure of the toroidal triangulation on one
vertex.

4.1 Contraction preserving “essentially 4-connectedness”

Given a toroidal triangulation G, the contraction of a non-loop-edge e of G is the operation
consisting of continuously contracting e until merging its two ends. We note G/e the obtained
map. On Figure 13 the contraction of an edge e is represented. Note that only one edge of
each multiple edges that is created is preserved (edge ewx and ewy on the figure).

Note that the contraction operation is also defined when some vertices are identified:
x = u and y = v (the case represented on Figure 14), or x = v and y = u (corresponding to
the symmetric case with a diagonal in the other direction).

In [Moh96] it is proved that in a toroidal triangulation (with no contractible loop nor
homotopic multiple edges) with at least two vertices, one can find an edge whose contraction
preserves the fact that the map is a toroidal triangulation (with no contractible loop nor
homotopic multiple edges). Here we also need to show that we can preserve the fact of being
essentially 4-connected during contraction. We say that a non-loop edge e of an essentially 4-
connected toroidal triangulation G is contractible if G/e is an essentially 4-connected toroidal
triangulation. We have the following lemma:
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Figure 13: The contraction operation for triangulations
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Figure 14: The contraction operation when some vertices are identified.

Lemma 12 An essentially 4-connected toroidal triangulation with at least two vertices has a
contractible edge.

Proof. For k ≥ 3, a separating k-walk is a closed walk of size k that delimits on one side a
region homeomorphic to an open disk containing at least one vertex. This region is called the
interior of the separating k-walk. A separating 3-walk is a separating triangle and we call a
separating 4-walk a separating quadrangle.

Let G be an essentially 4-connected toroidal triangulation with at least two vertices. By
Lemma 5, the map G has no contractible loop, no homotopic multiple edges and no separating
triangle. Consider a non-loop edge e of G. The contracted graph G/e is an essentially 4-
connected toroidal triangulation if and only if G/e has no contractible loop, no homotopic
multiple edges and no separating triangle.

Since G has no homotopic multiple edges, the contraction of e cannot create a contractible
loop. Since G has no separating triangle, the only way to create a pair of homotopic multiple
edges in G/e is if e appears twice on a separating quadrangle such that each extremity
of e is incident to a non-contractible loop as depicted on Figure 15.a (where the dashed
region represents the interior of the separating quadrangle). There are two ways to create a
separating triangle in G/e: either e appears once on a separating quadrangle as depicted on
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Figure 15.b, where some vertices may be identified but not edges, or e appears twice on a
separating 5-walk such that one extremity of e is incident to a non-contractible loop and the
other extremity is incident to edges distinct from e forming a non-contractible cycle of size
two as depicted on Figure 15.c.

Case a

e

Case b

e

Case c

e

G G/e

Figure 15: Contraction of an edge e creating a pair of homotopic multiple edges or a separating
triangle.

We consider two cases whether there are separating quadrangles in G or not.

• G has some separating quadrangles:

An inner chord of a separating quadrangle Q is an edge between its vertices that lie
in the interior of the separating quadrangle. We claim that a separating quadrangle
Q of G has no inner chord. Suppose by contradiction that such a chord exists. Since
there is no pair of homotopic multiple edges, this chord is between “opposite” vertices
of Q. Thus it partitions the interior of Q into two triangles. These two triangles are
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not separating by assumption on G and thus the quadrangle Q is not separating either,
a contradiction.

Let Q be a maximal separating quadrangle. Suppose by contradiction that there exists
a separating quadrangle Q′ of G distinct from Q whose interior R′ intersects R and
is not included in R. By maximality of Q, we also have R is not included in R′. As
observed previously, Q and Q′ have no inner chord. So there is at least one or two
vertices of Q (resp Q′) in the interior of Q′ (resp. Q). Thus the border of the union of
R and R′ has size less or equal to four, a contradiction to the maximality of Q or of G
being an essentially 4-connected triangulation. So a separating quadrangle of G whose
interior intersects R has its interior included in R.

Let G′ be the map obtained from G by keeping all the vertices and edges in R, including
Q. The vertices and edges appearing several times on Q are duplicated so G′ is a planar
map. Then G′ is a 4-connected planar map in which every inner face is a triangle
and the outer face is a quadrangle. Let a, b, c, d denote the outer vertices of G′ in
counterclockwise order. We denote also a, b, c, d the corresponding vertices of G. Note
that in G some of these vertices might be identified. We consider two cases, whether,
in G′, there exists an inner vertex incident to at least three outer vertices or not.

– In G′, there exists an inner vertex v that is incident to at least three outer vertices:

Without loss of generality, we may assume that v is incident to a, b, c in G′ with
edges ea, eb, ec respectively. We prove that eb is contractible in G.

Suppose by contradiction that eb belongs to a separating quadrangle Q′ of G. Then
Q′ is distinct from Q and its interior R′ of Q′ intersects R. Thus by the above
remark, R′ is included in R. Then Q′ has an inner chord ea or ec, a contradiction.

Suppose that eb appears twice on a separating 5-walk W as depicted on Figure 15.c.
Then, one of the extremity of eb is incident to a non-contractible loop ` of W and
this extremity cannot lie inside R so it is b. So v is incident to two edges e1, e2,
distinct from eb, so that the 5-walk W is the sequence of edges `, eb, e1, e2, eb.
Then, in G′, the edges e1, e2 are incident to two distinct vertices of {a, c, d} that
are identified in G so that e1, e2 form a non-contractible cycle of size two of G.

Suppose, by contradiction, that e1, e2 are incident to “consecutive” vertices of Q,
then without loss of generality, we can assume that e1, e2 are incident to a and
d that are identified in G. If b, c are also identified in G, then we are in the
situation of Figure 16.a, with W represented in magenta. Then, the interior of the
separating 5-walk W is partitioned into triangles whose interiors are empty since
G is essentially 4-connected. So the interior of the separating 5-walk W contains
no vertices, a contradiction. If b, c are not identified, then we are in the situation
of Figure 16.b. Then the two loops of the figure plus e form a quadrangle whose
interior strictly contains the interior of Q, a contradiction to the maximality of Q.

So, e1, e2 are incident to “opposite” vertices of Q. These two vertices are a and c
and they are identified in G. Then we are in the situation of Figure 16.c . Then,
the interior of the separating 5-walk W is partitioned into triangles whose interior
are empty since G is essentially 4-connected. So the interior of the separating
5-walk W contains no vertices, a contradiction.

To conclude, eb does not belong to a separating quadrangle, nor appears twice on
a separating 5-walk, so eb is contractible in G.
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Figure 16: Cases of Lemma 12.

– In G′, all inner vertices are incident to at most two outer vertices:

Kant and He proved [KH97, Lemma 3.1] that G′ contains an internal edge e such
that G′/e is 4-connected. Let us show e is contractible in G.

Suppose by contradiction that e belongs to a separating quadrangle Q′ of G. Then
the interior R′ of Q′ intersects R and thus is included in R by above remark. But
then G′/e is not 4-connected, a contradiction.

Suppose by contradiction that e′ appears twice on a separating 5-walk as depicted
on Figure 15.c. Then, in G, one extremity u of e′ is incident to a non-contractible
loop and the other extremity v of e′ is incident to two edges e1, e2, distinct from
e′, forming a non-contractible cycle of size two. Thus u is not an inner vertex of
G′ and the two extremities of e1, e2 also. So v is incident to three outer vertices of
G′, a contradiction.

To conclude, e does not belong to a separating quadrangle, nor appears twice on
a separating 5-walk, so e is contractible in G.

• G has no separating quadrangle:

Consider a non-loop edge e of G. If e is contractible we are done, so we can assume
that e is not contractible. Then, since there is no separating quadrangle, we have e that
appears twice on a separating 5-walk W as depicted on Figure 15.c. More precisely,
one extremity u of e is incident to a non-contractible loop ` and the other extremity v
of e is incident to two edges e1, e2, distinct from e, forming a non-contractible cycle of
size two of G. Let R be the interior of the separating 5-walk W . We consider two cases
whether v has some neighbors in the strict interior of R or not.

Suppose by contradiction that v has no neighbors in the strict interior of R. Then either
v has some incident edges inside R or not. Suppose first that v has some incident edges
inside R. Then, since v has no neighbors in the strict interior of R, we have that v is
incident to u with an edge in the strict interior of R, as depicted on Figure 17.a. Then
since there is no separating triangle, nor separating quadrangle, the region R contains
no vertices, a contradiction. Suppose now that v has no incident edge inside R. Then,
Since G is a triangulation, vertex u must be incident twice to the third vertex w of the
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5-walk w, as depicted on Figure 17.b. Again since there is no separating triangle, the
region R contains no vertices, a contradiction.

u

e

v w

e

v

u

x
e

v

u

Case a Case b Case c

Figure 17: Cases of Lemma 12.

So v has a neighbor x in the strict interior of R. Let e′ be the edge between v, x. If e′

appears twice on a separating 5-walk W , then x is incident twice to u to form a non-
contractible cycle of size two and v is incident to a non-contractible loop `′, as depicted
on Figure 17.c. Then e, `, `′ forms a separating quadrangle, a contradiction. So e′ is
contractible.

�

4.2 Balanced properties and homology

In Section 3, we have proved some properties of γ (or δ) with respect to homology. The
obtained equalities where conditioned by a “modulo”. In the next lemma we prove some
properties of γ with respect to a basis for the homology with exact equality to obtain a
simple condition to prove that a 4-orientation is balanced (see Lemma 14).

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).

Lemma 13 Consider a 4-orientation of A(G), a non-contractible cycle C of G, given with a
direction of traversal, and a basis for the homology {B1, B2} of G, such that B1, B2 are non-
contractible cycles whose intersection is a single vertex or a common path. If C is homologous
to k1B1 + k2B2, then γ(C) = k1 γ(B1) + k2 γ(B2).

Proof. Let v be a vertex in the intersection of B1, B2 such that, if this intersection is a
common path, then v is one of the extremities of this path and let u be the other extremity.
Consider a drawing of G∞ obtained by replicating a flat representation of G to tile the plane.
Let v0 be a copy of v in G∞. Consider the walk W starting from v0 and following k1 times
the edges corresponding to B1 and then k2 times the edges corresponding to B2 (we are going
backward if ki is negative). This walk ends at a copy v1 of v. Since C is non-contractible we
have k1 or k2 not equal to 0 and thus v1 is distinct from v0. Let W∞ be the infinite walk
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obtained by replicating W (forward and backward) from v0. Note that there might be some
repetition of vertices in W∞ if the intersection of B1, B2 is a path. But in that case, by the
choice of B1, B2 (i.e., whose intersection is a single vertex or a common path), we have that
W∞ is almost a path, except maybe at all the transitions from “k1B1” to “k2B2”, or at all
the transitions from “k2B2” to “k1B1”, where it can go back and forth a path corresponding
to the intersection of B1 and B2. The existence or not of such “back and forth” parts depends
on the signs of k1, k2 and the way B1, B2 are going through their common path. Figure 19
gives an example of this construction with (k1, k2) = (1, 1) and (k1, k2) = (1,−1) when B1, B2

intersects on a path and are oriented the same way along this path as on Figure 18.

v

B2

u
B1

Figure 18: Intersection of the basis.

v0

v1 v1

v0

(k1, k2) = (1, 1) (k1, k2) = (1,−1)

Figure 19: Replicating “k1B1” and “k2B2” in the universal cover.

We “simplify” W∞ by removing all the parts that consists of going back and forth along
a path (if any) and call B∞ the obtained walk that is now without repetition of vertices. By
the choice of v, we have that B∞ goes through copies of v. If v0, v1 are no more a vertex along
B∞, because of a simplification at the transition from “k2B2” to “k1B1”, then we replace v0
and v1 by the next copies of v along W∞, i.e., at the transition from “k1B1” to “k2B2”.

Since C is homologous to k1B1+k2B2, we can find an infinite path C∞, that corresponds to
copies of C replicated, that does not intersect B∞ and situated on the right side of B∞. Now
we can find a copy B′∞ of B∞, such that C∞ lies between B∞ and B′∞ without intersecting
them. Choose two copies v′0, v

′
1 of v0, v1 on B′∞ such that the vectors v0v1 and v′0v

′
1 are equal.

Let R0 be the region bounded by B∞, B′∞. Let R1 (resp. R2) be the subregion of R0
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delimited by B∞ and C∞ (resp. by C∞ and B′∞). We consider R0, R1, R2 as cylinders, where
part of the lines (v0, v

′
0), (v1, v

′
1) are identified. Let B,B′, C ′ be the cycles of R0 corresponding

to B∞, B′∞, C∞ respectively.
Let x (resp. y) be the number of edges of A(G)∞ leaving B (resp. B′) in R0. Let x′ (resp.

y′) be the number of edges of A(G)∞ leaving C ′ on its right (resp. left) side in R0. We have
C ′ corresponds to exactly one copy of C, so γ(C) = x′− y′. Similarly, we have B and B′ that
almost corresponds to k1 copies of B1 followed by k2 copies of B2, except the fact that we
may have removed a back and forth part (if any). In any case we have the following:

Claim 1 k1 γ(B1) + k2 γ(B2) = x− y

Proof. We prove the case where the common intersection ofB1, B2 is a path (if the intersection
is a single vertex, the proof is even simpler). We assume, without loss of generality, by
eventually reversing one of B1 or B2, that B1, B2 are oriented the same way along their
intersection, so we are in the situation of Figure 18.

Figure 20 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1, 1).
Then, one can check that each outgoing edge of the angle graph is counted exactly the
same number of time positively and negatively. So everything compensates and we obtain
k1 γ(B1) + k2 γ(B2) + y − x = 0.
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u
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B
−

γ(B1) + γ(B2) + (y − x) = 0

Figure 20: Case (k1, k2) = (1, 1).

Figure 21 shows how to compute k1 γ(B1) + k2 γ(B2) + y − x when (k1, k2) = (1,−1). As
above, most of the things compensate but, in the end, we obtain k1 γ(B1)+k2 γ(B2)+y−x =
d+A(G)(u) − d+A(G)(v), as depicted on the figure. Since the number of outgoing edges of A(G)

around each vertex is equal to 4, we have again the conclusion k1 γ(B1)+k2 γ(B2)+y−x = 0.
One can easily be convinced that when |k1| ≥ 1 and |k2| ≥ 1 then the same arguments

apply. The only difference is that the red or green part of the figures in the universal cover
would be longer (with repetitions of B1 and B2). This parts being very “clean”, they do not
affect the way we compute the equality. Finally, if one of k1 or k2 is equal to zero, the analysis
is simpler and the conclusion still holds. ♦

For i ∈ {1, 2}, let Hi be the cylinder map made of all the vertices and edges of G∞ that
are in the cylinder region Ri. Let k (resp. k′) be the length of B (resp. C ′). Let n1,m1, f1
be respectively the number of vertices, edges and faces of H1.

The number of edges of A(G)∞ in H1 is equal to 3f1. Since we are considering a
4-orientation of A(G), these edges are decomposed into: the outgoing edges from inner
vertices of H1 (primal-vertices have outdegree 4 in A(G)∞, so there are 4(n1 − k − k′)
such edges), the outgoing edges from outer vertices of H1 (there are x + y′ such edges),
and the outgoing edges from faces of H1 (faces have outdegree 1 in A(G)∞, so there are
f1 such edges). Finally, we have 3f1 = 4(n1 − k − k′) + x + y′ + f1. Combining this with
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Figure 21: Case (k1, k2) = (1,−1).

Euler’s formula, n1 − m1 + f1 = 0, and the fact that all the faces of H1 are triangles, i.e.,
2m1 = 3f1 + k + k′, one obtains that x + y′ = 2(k + k′). Similarly, by considering H2, one
obtain that x′+y = 2(k+k′). Thus finally x+y′ = x′+y and thus γ(C) = k1 γ(B1)+k2 γ(B2)
by Claim 1. �

Lemma 13 implies the following:

Lemma 14 In a 4-orientation of A(G), if for two non-contractible not weakly homologous
cycles C,C ′ of G, we have γ(C) = γ(C ′) = 0, then the 4-orientation of A(G) is balanced.

Proof. Consider two non-contractible not weakly homologous cycles C,C ′ of G such that
γ(C) = γ(C ′) = 0. Consider an homology-basis {B1, B2} of G, such that B1, B2 are non-
contractible cycles whose intersection is a single vertex or a path (see Section 3.2 for discussion
on existence of such a basis). Let k1, k2, k

′
1, k
′
2 ∈ Z, such that C (resp. C ′) is homologous

to k1B1 + k2B2 (resp. k′1B1 + k′2B2). Since C is non-contractible we have (k1, k2) 6= (0, 0).
By eventually exchanging B1, B2, we can assume, without loss of generality, that k1 6= 0.
By Lemma 13, we have k1γ(B1) + k2γ(B2) = γ(C) = 0 = γ(C ′) = k′1γ(B1) + k′2γ(B2). So
γ(B1) = (−k2/k1)γ(B2) and thus (−k2k′1/k1 + k′2)γ(B2) = 0. So k′2 = k2k

′
1/k1 or γ(B2) = 0.

Suppose by contradiction, that γ(B2) 6= 0. Then (k′1, k
′
2) =

k′1
k1

(k1, k2), and C ′ is homologous

to
k′1
k1
C. Since C and C ′ are both non-contractible cycles, it is not possible that one is

homologous to a multiple of the other, with a multiple different from −1, 1. So C,C ′ are
weakly homologous, a contradiction. So γ(B2) = 0 and thus γ(B1) = 0. Then by Lemma 13,
any non-contractible cycle of G, have γ equal to 0. Thus the 4-orientation is balanced �

4.3 Decontraction preserving “balance”

The goal of this section is to prove the following lemma:

Lemma 15 If G is a toroidal triangulation given with a non-loop edge e whose extremities
are of degree at least four and such that G/e admits a balanced transversal structure, then G
admits a balanced transversal structure.
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Proof. Let G′ = G/e and consider a balanced transversal structure G′. We show how to
extend the balanced transversal structure of G′ to a balanced transversal structure of G. Let
u, v be the two extremities of e and x, y the two vertices of G such that the two faces incident
to e are A = u, v, x and B = v, u, y in clockwise order (see Figure 13). Note that u and v
are distinct by definition of edge contraction but that x and y are not necessarily distinct,
nor distinct from u and v. Let w be the vertex of G′ resulting from the contraction of e. Let
ewx, ewy be the two edges of G′ represented on Figure 13 (these edges are identified and form
a loop on Figure 14).

There are different cases to consider, corresponding to the different possible orientations
and colorings of the edges ewx and ewy in G′. By symmetry, there are just three cases to
consider for Figure 13: edges ewx and ewy may be in consecutive, same or opposite intervals,
with respect to the four intervals of the local property around w. When ewx, ewy are identified
as in Figure 14, these “two” edges are necessarily in opposite intervals, and there is just one
case to consider. So only the four cases represented on the left side of Figure 22 by case x.0
for x ∈ {a, b, c, d} have to be considered.

In each case x.0, we prove that one can color and orient the edges of G to obtain a
balanced transversal structure of G. For that purpose, just the edges of G that are labeled
on Figures 13 and 14 have to be specified, all the other edges of G keep the orientation and
coloring that they have in the balanced transversal structure of G′. For each case x.0, with
x ∈ {a, b, c, d}, the orientation and coloring of the labeled edges of G are represented on the
right side of Figure 22 by case x.i, i ≥ 1. For the first two cases x ∈ {a, b}, we might have
to choose between cases x.1 and x.2, to orient and color G, depending on a case analysis
explained below. For the other cases, x ∈ {c, d}, there is just one coloring and orientation of
G to consider: case x.1.

The sector ]e1, e2[ of a vertex w, for e1 and e2 two edges incident to w, is the counter-
clockwise sector of w between e1 and e2, excluding the edges e1 and e2.

Let us consider the different possible orientations and colorings of edges ewx and ewy.

• ewx and ewy are not identified and in consecutive intervals:

Without loss of generality, we might assume that we are in case a.0 of Figure 22, i.e.,
ewx (resp. ewy) is a blue (resp. red) edge entering w.

Since all vertices of G have degree at least 4, we have that v is incident to at least one
edge in the sector ]evx, evy[ of v. So w is incident to at least one edge in the sector
]ewx, ewy[ of w. Such an edge can be blue or red in the transversal structure of G′.
Depending on if there is such a blue or red edge we apply coloring a.1 or a.2 to G, as
explain below.

Without loss of generality, we can assume that there is a blue edge incident to w in
the sector ]ewx, ewy[. By the local rule, this edge is entering w. Moreover the edge
incident to x and just after ewx in clockwise order around x is entering x in color red.
So we are in the situation depicted on the left of Figure 23. Apply the coloring a.1 to
G as depicted on the right of Figure 23. One can easily check that the local property
is satisfied around every vertex of G (for that purpose one just as to check the local
property around u, v, x, y). Thus we obtain a transversal structure of G.

It remains to prove that the obtained transversal structure is balanced. For that purpose
consider two non-contractible not weakly homologous cycles (B′1, B

′
2) of G′. Since the

transversal structure of G′ is balanced, we have γ(B′1) = γ(B′2) = 0 by definition of
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a.0 a.1 a.2

b.0 b.1 b.2

c.0 c.1

d.0 d.1

Figure 22: Decontraction rules of the transversal structure.

w

x y y

u

v

x

Figure 23: Decontraction of case a.0 when there is a blue edge entering w by below.
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balanced property. IfB′i does not intersect w, then it is not affected by the decontraction,
let Bi = B′i, so that Bi is a cycle of G with same homology and same value γ as B′i. If
B′i intersects w, then one can consider where B′i is entering and leaving the contracted
region and replace B′i by a cycle Bi of G with the same homology and same value γ
as B′i. This property illustrated on Figure 24, on the left part we consider an example
of a cycle B′i and on the right part we give a corresponding cycle Bi having the same
homology and γ as B′i. To be completely convinced that this transformation works,
one may consider all the different possibility to enter and leave the contracted region
and check that one can find a corresponding cycle of G with same γ. Finally, by this
method, we obtain two non-contractible not weakly homologous cycles B1, B2 of G with
γ(B1) = γ(B2) = 0, so by Lemma 14, the obtained transversal structure is balanced.

Figure 24: Decontraction of case a.0 preserving γ.

• ewx and ewy are not identified and in the same interval:

Without loss of generality, we might assume that we are in case b.0 of Figure 22, i.e.,
ewx and ewy are blue edges entering w. Depending on if the outgoing blue interval of w
is above or below w we apply coloring b.1 or b.2 to G, as explain below.

Without loss of generality, we can assume that the outgoing blue edges incident to w
are above w. Since all vertices of G have degree at least 4, we have that v is incident
to at least one edge in the sector ]evx, evy[ of v. So w is incident to at least one edge
in the sector ]ewx, ewy[ of w. By the local rule, we are in the situation depicted on the
left of Figure 25. Apply the coloring b.1 to G as depicted on the right of Figure 25.
One can easily check that the local property is satisfied around every vertex of G (for
that purpose one just as to check the local property around u, v, x, y). Thus we obtain
a transversal structure of G.

Similarly as the previous case the balanced property is preserved (see Figure 26 for an
example). So we obtain a balanced transversal structure of G.

• ewx and ewy are not identified and in opposite intervals:

Without loss of generality, we might assume that we are in case c.0 of Figure 22, i.e.,
ewx (resp. ewy) is entering (resp. leaving) w in color blue. We apply coloring c.1 to
G. One can easily check that the local property is satisfied around every vertex of G
thus we obtain a transversal structure of G. Similarly as before the balanced property
is preserved and we obtain a balanced transversal structure of G.

• ewx and ewy are identified:
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w

x y

v

u

x y

Figure 25: Decontraction of case b.0 when there is a blue edge leaving w by above.

Figure 26: Decontraction of case b.0 preserving γ.

Without loss of generality, we might assume that we are in case d.0 of Figure 22. We
apply coloring d.1 to G. One can easily check that the local property is satisfied around
every vertex of G thus we obtain a transversal structure of G. Similarly as before the
balanced property is preserved and we obtain a balanced transversal structure of G.

For each different possible orientations and colorings of edges ewx and ewy we are able to
extend the balanced transversal structure of G′ to G and thus obtain the result. �

4.4 Existence theorem

We are now able to prove the existence of balanced transversal structure, i.e. Theorem 1.

Proof of Theorem 1.
(=⇒) Clear by Lemma 4.
(⇐=) Let G be an essentially 4-connected toroidal triangulation. By Lemma 12, it can

be contracted to a map on one vertex by keeping the map an essentially 4-connected toroidal
triangulation. Since during the contraction process, the universal cover is 4-connected,
all the vertices have degree at least 4. The toroidal triangulation on one vertex admits a
transversal structure. One such example is given on Figure 12 where one can check that all
non-contractible cycles (the three loops) have value γ = 0, and so the transversal structure
is balanced. Then, by Lemma 15 applied successively, one can decontract this balanced
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transversal structure to obtain a balanced transversal structure of G. �

5 Distributive lattice of balanced 4-orientations

5.1 Transformations between balanced 4-orientations

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).
In [GKL16, Theorem 4.7], it is proved that the set of homologous orientations of a given
map on an orientable surface carries a structure of distributive lattice. We want to use such
a result for the set of balanced 4-orientations of A(G). For that purpose we prove in this
section that balanced 4-orientations are homologous to each other, i.e., the set of edges that
have to be reversed to transform one balanced 4-orientation into another is a 0-homologous
oriented subgraph.

If D,D′ are two orientations of A(G), let D \D′ denote the subgraph of D induced by the
edges that are not oriented as in D′. We have the following:

Lemma 16 Let D be a balanced 4-orientation of A(G). An orientation D′ of A(G) is a
balanced 4-orientation if and only if D,D′ are homologous (i.e., D \D′ is 0-homologous).

Proof. Let T = D \D′. Let Out (resp. Out′) be the set of edges of D (resp. D′) which are
going from a primal-vertex to a dual-vertex. Note that an edge of T is either in Out or in
Out′, so φ(T ) = φ(Out) − φ(Out′). Consider two cycles B1, B2 of G, given with a direction
of traversal, that form a basis for the homology. We also denote by D,D′ the orientation

of Â(G) corresponding to D,D′. Then we denote γD, δD, γD′ , δD′ , the function γ and δ
computed in D and D′ respectively (see terminology of Section 3).

(=⇒) Suppose D′ is a balanced 4-orientation of A(G). Since D,D′ are both 4-orientations
of A(G), they have the same outdegree for every vertex of A(G). So we have that T is

Eulerian. Let F̂∗ be the set of counterclockwise facial walks of Â(G)
∗
, so for any F ∈ F̂∗,

we have β(T, F ) = 0. Moreover, for i ∈ {1, 2}, consider the region Ri between WL(Bi) and
WR(Bi) containing Bi. Since T is Eulerian, it is going in and out of Ri the same number of
times. So β(T,WL(Bi)−WR(Bi)) = 0 and by linearity of function β we obtain β(T,WL(Bi)) =
β(T,WR(Bi)). Since D,D′ are balanced, we have γD(Bi) = γD′(Bi) = 0. So by Lemma 11,
δD(WL(Bi)) + δD(WR(Bi)) = δD′(WL(Bi)) + δD′(WR(Bi)). Thus β(T,WL(Bi) +WR(Bi)) =
β(Out−Out′,WL(Bi)+WR(Bi)) = δD(WL(Bi))+δD(WR(Bi))−δD′(WL(Bi))−δD′(WR(Bi)) =
0. By linearity of function β we obtain β(T,WL(Bi) = −β(T,WR(Bi)). By combining this
with the above equality, we obtain β(T,WL(Bi)) = β(T,WR(Bi)) = 0 for i ∈ {1, 2}. Since

{WL(B1),WL(B2)} form a basis for the homology of Â(G)
∗
, we obtain, by Lemma 7, that T

is 0-homologous and so D,D′ are homologous to each other.
(⇐=) Suppose that D,D′ are homologous, i.e., T is 0-homologous. Then T is in

particular Eulerian, so D′ as the same outdegrees as D. So D′ is a 4-orientation of
A(G). By Lemma 7, for i ∈ {1, 2}, we have β(T,WL(Bi)) = β(T,WR(Bi)) = 0. Thus
δD(WL(Bi)) = β(Out,WL(Bi))+2β(Dual,WL(Bi)) = β(Out′,WL(Bi))+2β(Dual,WL(Bi)) =
δD′(WL(Bi)) and δD(WR(Bi)) = β(Out,WR(Bi)) + 2β(Dual,WR(Bi)) = β(Out′,WR(Bi)) +
2β(Dual,WR(Bi)) = δD′(WR(Bi)). So by Lemma 11, γD(Bi) = δD(WL(Bi))+δD(WR(Bi)) =
δD′(WL(Bi)) + δD′(WR(Bi)) = γD′(Bi). Since D is balanced, we have γD(Bi) = 0 and so

28



γD′(Bi) = 0. Then, by Lemma 14, we have D′ is a balanced 4-orientation of A(G). �

5.2 Distributive lattice of homologous orientations

Consider a partial order ≤ on a set S. Given two elements x, y of S, let m(x, y) (resp.
M(x, y)) be the set of elements z of S such that z ≤ x and z ≤ y (resp. z ≥ x and z ≥ y). If
m(x, y) (resp. M(x, y)) is not empty and admits a unique maximal (resp. minimal) element,
we say that x and y admit a meet (resp. a join), noted x ∨ y (resp. x ∧ y). Then (S,≤) is
a lattice if any pair of elements of S admits a meet and a join. Thus in particular a lattice
has a unique maximal (resp. minimal) element. A lattice is distributive if the two operators
∨ and ∧ are distributive on each other.

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G).
By Theorem 1, G admits a balanced transversal structure, thus A(G) admits a balanced 4-
orientation. Let D0 be a particular balanced 4-orientation of A(G). Let B(A(G), D0) be the
set of all the orientations of A(G) homologous toD0. A general result of [GKL16, Theorem 4.7]
concerning the lattice structure of homologous orientations implies that B(A(G), D0) carries
a structure of a distributive lattice.

Note that by Lemma 16, the set B(A(G), D0) is exactly the set of all balanced 4-
orientations of A(G). Thus we can simplify the notations and denote B(A(G)) the set
B(A(G), D0) as it does not depend on the choice of D0.

We give below some terminology and results from [GKL16] adapted to our settings in order
to describe the lattice properly. We need to define an order on B(A(G)) for that purpose. Fix
an arbitrary face f0 of A(G) and let F0 be its counterclockwise facial walk. Note that fixing
a face f0 of A(G) corresponds to fixing an edge e0 of G. Let F be the set of counterclockwise
facial walks of A(G) and F ′ = F \ {F0}. Note that φ(F0) = −

∑
F∈F ′ φ(F ). Since the char-

acteristic flows of F ′ are linearly independent, any oriented subgraph of A(G) has at most
one representation as a combination of characteristic flows of F ′. Moreover the 0-homologous
oriented subgraphs of A(G) are precisely the oriented subgraph that have such a represen-
tation. We say that a 0-homologous oriented subgraph T of A(G) is counterclockwise (resp.
clockwise) with respect to f0 if its characteristic flow can be written as a combination with
positive (resp. negative) coefficients of characteristic flows of F ′, i.e., φ(T ) =

∑
F∈F ′ λFφ(F ),

with λ ∈ N|F ′| (resp. −λ ∈ N|F ′|). Given two orientations D,D′, of A(G) we set D ≤f0 D′ if
and only if D \D′ is counterclockwise. Then we have the following theorem:

Theorem 4 ([GKL16]) (B(A(G)),≤f0) is a distributive lattice.

To define the elementary flips that generates the lattice. We start by reducing the graph
A(G). We call an edge of A(G) rigid with respect to B(A(G)) if it has the same orientation
in all elements of B(A(G)). Rigid edges do not play a role for the structure of B(A(G)). We
delete them from A(G) and call the obtained embedded graph the reduced angle graph, noted

Ã(G). Note that, this graph is embedded but it is not necessarily a map, as some faces may
not be homeomorphic to open disks. Note that if all the edges are rigid, then |B(A(G))| = 1

and Ã(G) has no edges. We have the following lemma concerning rigid edges:

Lemma 17 ([GKL16, Lemma 4.8]) Given an edge e of A(G), the following are equivalent:

1. e is non-rigid
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2. e is contained in a 0-homologous oriented subgraph of D0

3. e is contained in a 0-homologous oriented subgraph of any element of B(A(G))

By Lemma 17, one can build Ã(G) by keeping only the edges that are contained in a

0-homologous oriented subgraph of D0. Note that this implies that all the edges of Ã(G)

are incident to two distinct faces of Ã(G). Denote by F̃ the set of oriented subgraphs of

Ã(G) corresponding to the boundaries of faces of Ã(G) considered counterclockwise. Note
that any F̃ ∈ F̃ is 0-homologous and so its characteristic flow has a unique way to be written
as a combination of characteristic flows of F ′. Moreover this combination can be written
φ(F̃ ) =

∑
F∈X

F̃
φ(F ), for X

F̃
⊆ F ′. Let f̃0 be the face of Ã(G) containing f0 and F̃0 be

the element of F̃ corresponding to the boundary of f̃0. Let F̃ ′ = F̃ \ {F̃0}. The elements of
F̃ ′ are precisely the elementary flips which suffice to generate the entire distributive lattice
(B(A(G)),≤f0), i.e., the Hasse diagram H of the lattice has vertex set B(A(G)) and there is

an oriented edge from D1 to D2 in H (with D1 ≤f0 D2) if and only if D1 \D2 ∈ F̃ ′.
Moreover, we have:

Lemma 18 ([GKL16, Proposition 4.13]) For every element F̃ ∈ F̃ , there exists D in
B(A(G)) such that F̃ is an oriented subgraph of D.

By Lemma 18, for every element F̃ ∈ F̃ ′ there exists D in B(A(G)) such that F̃ is an
oriented subgraph of D. Thus there exists D′ such that F̃ = D \D′ and D,D′ are linked in
H. Thus F̃ ′ is a minimal set that generates the lattice.

Let Dmax (resp. Dmin) be the maximal (resp. minimal) element of the lattice
(B(A(G)),≤f0). Then we have the following lemmas:

Lemma 19 ([GKL16, Proposition 4.14]) F̃0 (resp. −F̃0) is an oriented subgraph of
Dmax (resp. Dmin).

Lemma 20 ([GKL16, Proposition 4.15]) Dmax (resp. Dmin) contains no counterclock-
wise (resp. clockwise) non-empty 0-homologous oriented subgraph with respect to f0.

Note that in the definition of counterclockwise (resp. clockwise) non-empty 0-homologous
oriented subgraph, used in Lemma 20, the sum is taken over elements of F ′ and thus does
not use F0. In particular, Dmax (resp. Dmin) may contain regions whose boundary is oriented
counterclockwise (resp. clockwise) according to the interior of the region but then such a
region contains f0 in its interior.

Note that, assuming that an element of B(A(G)) is given, there is a generic method to
compute in linear time the minimal balanced element Dmin of (B(A(G)),≤f0) (see [DGBL17,
last paragraph of Section 8]. This minimal element plays the role of a canonical orientation
and is particularly interesting for bijection purpose as shown in Section 6.

5.3 Faces of the reduced angle graph

Previous section is about the general situation of the lattice structure of homologous orien-
tations and is more or less a copy/paste from [GKL16] of the terminology and results that
we need here. Now we study in more detail this lattice with respect to the balanced property
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as done in [DGBL17, Section 10] for Schnyder woods and 3-orientations (see also [Lév17,
Section 8.4]).

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G). We
consider the terminology of the previous section and assume that there exists a balanced
4-orientation D0 of A(G).

We say that a walk W of A(G) is a 4-disk if it is a face of A(G) (see the left of Figure 27).
We say that a walk W of A(G) is a 8-disk if it has size 8, encloses a region R homeomorphic
to an open disk and the dual-vertices of W have their edge not on W that is inside R (see
the right of Figure 27). Finally, we say that a walk W of A(G) is a {4, 8}-disk if it is either
a 4-disk or a 8-disk.

Face of
A(G)

4-disk 8-disk

Figure 27: The {4, 8}-disks of A(G).

Suppose that A(G) is given with a 4-orientation. For an edge e0 of A(G) we define the
left walk (resp. right walk) from e0 as the sequence of edges W = (ei)i≥0 of A(G) obtained
by the following: if ei is entering a primal-vertex v, then ei+1 is the first outgoing edge while
going clockwise (resp. counterclockwise ) around v from ei, and if ei is entering a dual-vertex
v∗, then ei+1 is the only outgoing edge of v∗. A closed left/right walk is a left/right walk
that is repeating periodically on itself, i.e., a finite sequence of edges W = (ei)0≤i≤2k−1, with
k > 0, such that its repetition is a left/right walk. We have the following lemma concerning
closed left/right walks in balanced 4-orientations:

Lemma 21 In a balanced 4-orientation of A(G), a closed left (resp. right) walk W of A(G)
encloses a region homeomorphic to an open disk on its left (resp. right) side. Moreover, the
border of this region is a {4, 8}-disk.

Proof. Consider a closed left walk W = (ei)0≤i≤2k−1 of A(G), with k > 0. Without loss of
generality, we may assume that all the ei are distinct, i.e., there is no strict subwalk of W
that is also a closed left walk. Note that W cannot cross itself otherwise it is not a left walk.
However W may have repeated vertices but in that case it intersects itself tangentially on the
right side.

Suppose by contradiction that there is an oriented subwalk W ′ of W , that forms a cycle
C enclosing a region R on its right side that is homeomorphic to an open disk. Let v be
the starting and ending vertex of W ′. Note that we do not consider that W ′ is a strict
subwalk of W , so we might have W ′ = W . Consider the graph H obtained from A(G)
by keeping all the vertices and edges that lie in the region R, including W ′. Since W can
intersect itself only tangentially on the right side, we have that H is a bipartite planar map
whose outer face boundary is W ′. The inner faces of H are quadrangles. Let 2k′ be the
length of W ′. Let n′,m′, f ′ be the number of vertices, edges and faces of H. By Euler’s
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formula, n′ −m′ + f ′ = 2. All the inner faces have size 4 and the outer face has size 2k′, so
2m′ = 4(f ′−1)+ 2k′. Combining the two equalities gives m′ = 2n′−k′−2. Let n′p (resp. n′d)
be the number of inner primal-vertices (resp. inner dual-vertices) of H. So n′ = 2k′+n′p +n′d
and thus m′ = 2n′p + 2n′d + 3k′ − 2. Since W ′ is a subwalk of a left walk, all primal-vertices
of H, except v (if it is a primal-vertex), have their incident outer edges in H. Since W ′

is following oriented edges, if v is a primal vertex, it has at least one outgoing edge in H.
Since we are considering a 4-orientation of A(G), we have m′ ≥ 4(k′ − 1) + 1 + 4n′p + n′d. By
counting the edges of H incident to dual-vertices, we have m′ ≥ 2k′ + 3n′d. Combining the
three (in)equalities of m′, gives 2(2n′p+2n′d+3k′−2) ≥ (4(k′−1)+1+4n′p+n′d)+(2k′+3n′d),
a contradiction. So there is no oriented subwalk of W , that forms a cycle enclosing an open
disk on its right side.

We now claim the following:

Claim 2 The left side of W encloses a region homeomorphic to an open disk

Proof. We consider two cases depending on the fact that W is a cycle (i.e., with no repetition
of vertices) or not.

• W is a cycle

Suppose by contradiction that W is a non-contractible cycle. For each dual-vertex of
W , there is an edge of G between its neighbors in W . This edge might be either on the
left or right side of W . Consider the cycle C of G made of all these edges. Since we
are considering a balanced 4-orientation of A(G), we have γ(C) = 0 and thus there is
exactly 2k outgoing edges of A(G) that are incident to the left side of C. There is no
incident outgoing edge of A(G) on the left side of W . So the outgoing edges that are on
the left side of C are exactly the 2k edges of W . So C is completely on the right side of
W and all the edges of W are outgoing for primal-vertices. Thus all dual-vertices have
an outgoing edge on the left side of W , a contradiction. Thus W is a contractible cycle.

As explained above, the contractible cycle W does not enclose a region homeomorphic
to an open disk on its right side. So W encloses a region homeomorphic to an open disk
on its left side, as claimed.

• W is not a cycle

Since W cannot cross itself nor intersect itself tangentially on the left side, it has to
intersect tangentially on the right side. Such an intersection on a vertex v is depicted on
Figure 28.(a). The edges of W incident to v are noted as on the figure, a, b, c, d, where
W is going periodically through a, b, c, d in this order. The (green) subwalk of W from
a to b does not enclose a region homeomorphic to an open disk on its right side. So we
are not in the case depicted on Figure 28.(b). Moreover if this (green) subwalk encloses
a region homeomorphic to an open disk on its left side, then this region contains the
(red) subwalk of W from c to d, see Figure 28.(c). Since W cannot cross itself, this
(red) subwalk necessarily encloses a region homeomorphic to an open disk on its right
side, a contradiction. So the (green) subwalk of W starting from a has to form a non-
contractible curve before reaching b. Similarly for the (red) subwalk starting from c
and reaching d. Since W is a left-walk and cannot cross itself, we are, without loss of
generality, in the situation of Figure 28.(d) (with possibly more tangent intersections
on the right side). In any case, the left side of W encloses a region homeomorphic to
an open disk.
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Figure 28: Case analysis for the proof of Claim 2.

♦

By Claim 2, the left side of W encloses a region R homeomorphic to an open disk. Consider
the graphH obtained from A(G) by keeping only the vertices and edges that lie in R, including
W . The vertices of W appearing several times on the border of R are duplicated, so H is a
bipartite planar map. The inner faces of H are quadrangles. As above, let n′,m′, f ′ be the
number of vertices, edges and faces of H and n′p (resp. n′d) its number of inner primal-vertices
(resp. inner dual-vertices). So as above, one obtain the first equality m′ = 2n′p+2n′d+3k−2.
There is no incident outgoing edge of A(G) on the left side of W . So all inner edges of H
are outgoing for inner vertices of H. Since we are considering a 4-orientation of A(G), we
have m′ = 2k + 4n′p + n′d. Outer dual-vertices of H might be of degree 2 or 3 in H. Let x
be the number of outer dual-vertices of H of degree 3 in H, so by counting the edges of H
incident to dual-vertices we have m′ = 2k + x + 3n′d. Combining the three equalities of m′,
gives 2(2n′p+2n′d+3k−2) = (2k+4n′p+n′d)+(2k+x+3n′d), so x = 2k−4. Since k ≥ x ≥ 0,
the only possible values are (k, x) ∈ {(2, 0), (3, 2), (4, 4)}.

If (k, x) = (2, 0), then W has size four, its two dual-vertices are of degree 2 in H so they
have their edge not on W that is outside R. If W is not a face of A(G), then there are two
distinct edges between the primal-vertices of W inside R, forming a pair of homotopic multiple
edges, a contradiction. So W is a face of A(G) and thus a 4-disk. If (k, x) = (3, 2), then
W has size six, with two dual-vertices of degree 3 in H and G∞ has a separating triangle, a
contradiction to Lemma 5. If (k, x) = (4, 4), then W has size eight, with its four dual-vertices
of degree 3 in H. So W is a 8-disk.
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The proof is similar for closed right walks. �

The boundary of a face of Ã(G) may be composed of several closed walks. Let us call

quasi-contractible the faces of Ã(G) that are homeomorphic to an open disk or to an open
disk with punctures. Note that such a face may have several boundaries (if there is some
punctures), but exactly one of these boundaries encloses the face. Let us call outer facial
walk this special boundary. Then we have the following:

Lemma 22 All the faces of Ã(G) are quasi-contractible and their outer facial walk is a {4, 8}-
disk.

Proof. Consider a face f̃ of Ã(G). Let F̃ be the element of F̃ corresponding to the boundary
of f̃ . By Lemma 18, there exists D ∈ B(A(G)) such that F̃ is an oriented subgraph of D.

All the faces of A(G) form a 4-disk. Thus either f̃ is a face of A(G) and we are done or
f̃ contains in its interior at least one edge of A(G). Start from such edge e0 and consider the
left-walk W = (ei)i≥0 of D from e0. Suppose that for i ≥ 0, edge ei is entering a vertex v that

is on the border of f̃ . Recall that by definition F̃ is oriented counterclockwise according to
its interior, so either ei+1 is in the interior of f̃ or ei+1 is on the border of f̃ . Thus W cannot
leave f̃ and its border.

Since A(G) has a finite number of edges, some edges are used several times in W .
Consider a minimal subsequence W ′ = ek, . . . , e` such that no edge appears twice and
ek = e`+1. Thus W ends periodically on W ′ that is a closed left walk. By Lemma 21, W ′

encloses a region R homeomorphic to an open disk on its left side. Moreover, the border of
this region is a {4, 8}-disk. Thus W ′ is a 0-homologous oriented subgraph of D. So all its
edges are non-rigid by Lemma 17. So all the edges of W ′ are part of the border of f̃ . Since
F̃ is oriented counterclockwise according to its interior, the region R contains f̃ . So f̃ is
quasi-contractible and W ′ is its outer facial walk and a {4, 8}-disk. �

A simple counting argument gives the following lemma (see Figure 29):

Figure 29: Orientation of inner edges incident to a 8-disk.

Lemma 23 In a 4-orientation of A(G), the edges that are in the interior of a 8-disk and
incident to it are entering it.

Proof. Consider a 8-disk W of A(G). Consider the graph H obtained from A(G) by keeping
only the vertices and edges that lie in W and its interior. The vertices of W appearing several
times on W are duplicated, so H is a bipartite planar map. Let x be the number of inner-
edges of H that are incident to its outer-face and directed toward the interior. We want to
prove that x = 0.
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Let n′,m′, f ′ be the number of vertices, edges and faces of H. By Euler’s formula, n′−m′+
f ′ = 2. All the inner faces have size 4 and the outer face has size 8, so 2m′ = 4(f ′ − 1) + 8.
Combining the two equalities gives m′ = 2n′ − 6. Let n′p (resp. n′d) be the number of
inner primal-vertices (resp. inner dual-vertices) of H. So n′ = n′p + n′d + 8 and thus m′ =
2n′p+2n′d+10. Since we are considering a 4-orientation of A(G), we have m′ = 4n′p+n′d+x+8.
By counting the edges of H incident to dual-vertices we have m′ = 3n′d + 12. Combining the
three equalities of m′, gives 2(2n′p + 2n′d + 10) = (4n′p + n′d + x+ 8) + (3n′d + 12), so x = 0.

�

We say that a {4, 8}-disk of A(G) is maximal (by inclusion) if its interior is not strictly
contained in the interior of another {4, 8}-disk of A(G).

Lemma 24 There is a unique maximal {4, 8}-disk of A(G) containing f0 and it is oriented
counterclockwise (resp. clockwise) in Dmax (resp. Dmin).

Proof. By Lemma 22, f̃0 is quasi-contractible and its outer facial walk is a {4, 8}-disk.
So there is a {4, 8}-disk containing f0. Let W be a maximal {4, 8}-disk containing f0. By
Lemma 23, if W is a 8-disk, then, for any 4-orientation of A(G), the edges of A(G) that are
in the interior of W and incident to it are entering it. If W is a 4-disk, then there is no edge
of A(G) in the interior of W . So all the edges in the interior of W and incident to it are rigid

edges, i.e., these edges are not in Ã(G). So there is a face f̃ of Ã(G) containing all the faces
FW of A(G) that are in the interior of W and incident to it. Note that there might be some
punctures in f̃ , so f̃ does not necessarily contain all the faces of A(G) that are in the interior
of W . By Lemma 22, f̃ is quasi-contractible and its outer facial walk is a {4, 8}-disk. By
maximality of W , the {4, 8}-disk W is the only {4, 8}-disk of A(G) containing the faces FW .
So the outer facial walk of f̃ is W and all the edges of W are non-rigid, i.e., these edges are

in Ã(G).
Suppose by contradiction that there exists another maximal {4, 8}-disk W ′ containing f0

that is distinct from W . As for W , all the edges of W ′ are in Ã(G). The interiors of W and
W ′ have to be distinct, not included one into each other, but intersecting. Then at least one
edge of W ′ has to be in the interior of W and incident to it, a contradiction to the fact that

these edges are not in Ã(G). So W is the unique maximal {4, 8}-disk containing f0.
We now prove the second part of the lemma for Dmax (the proof is similar for Dmin). Let

F̃ be the element of F̃ corresponding to the boundary of f̃ . We consider two cases depending
on the fact that f̃ is equal to f̃0 or not, i.e., f̃ = f̃0 or f̃ has some punctures, one of which
contains f̃0.

• f̃ = f̃0: By Lemma 19, we have F̃ = F̃0 is an oriented subgraph of Dmax and thus W
is oriented counterclockwise with respect to its interior.

• f̃ 6= f̃0: By Lemma 18, there exists an element of B(A(G)) for which F̃ is an oriented
subgraph. Let D be such an element, chosen such that F̃ is not an oriented subgraph
of any orientation, distinct from D, that is on oriented paths from D to Dmax in the
Hasse diagram of (B(A(G)),≤f0). The {4, 8}-disk W is oriented counterclockwise in D.

Recall that f̃ has at least one puncture containing f̃0.

Let D′ be the orientation obtained from D by reversing all the edges of f̃ that are
not on its outer facial walk, i.e., obtained by reversing the border of all the punctures.
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So the {4, 8}-disk W is still oriented counterclockwise in D′. We claim that D,D′

are such that D ≤f0 D′. Indeed, let T = D \ D′ and X denote the set of all the

elements of F ′ that corresponds to faces of A(G) that are not in the punctures of f̃ .
Then we have φ(T ) =

∑
F∈X φ(F ) and X is a subset of F ′. So D ≤f0 D′. Consider

D′ = D0, . . . , Dk = Dmax, with k ≥ 0, the elements of B(A(G)) on an oriented path
from D′ to Dmax in the Hasse diagram of (B(A(G)),≤f0).

Suppose by contradiction that the {4, 8}-disk W is not oriented counterclockwise in
Dmax. Let 1 ≤ i ≤ k be the minimal integer such that the {4, 8}-disk W is not oriented
counterclockwise in Di. Thus the {4, 8}-disk W is oriented counterclockwise in Di−1 but
not in Di. Since Di−1 and Di are linked in the Hasse diagram, we have Di−1 \Di ∈ F̃ ′.
Let F̃ ′ ∈ F̃ ′ be such that F̃ ′ = Di−1 \Di. By assumption on D we have F̃ ′ is distinct
from F̃ . Moreover, since W is oriented counterclockwise in Di−1, we have that F̃ ′ is
distinct from all the elements of F̃ ′ corresponding to faces that are incident to W and
not in its interior. So F̃ ′ is disjoint from W and W has the same orientation in Di−1
and Di, a contradiction. So W is oriented counterclockwise in Dmax.

�

5.4 Example of a balanced lattice

Consider the essentially 4-connected toroidal triangulation G of Figure 1 and its angle map
A(G). One example of a balanced 4-orientation of A(G) is given on the right of Figure 2,
we call it D0 in this section. By Lemma 17, an edge of A(G) is non-rigid if and only if if is
contained in a 0-homologous oriented subgraph of D0. So with this rule, one can build the

reduced angle graph Ã(G) depicted on Figure 30. One can check that Lemma 22 is satisfied
since the faces are made of one 8-disk and some 4-disks. We choose arbitrarily a special face

f0 of Ã(G) as depicted on the figure.

0f

Figure 30: The reduced angle graph of the triangulation of Figure 1.

The set of all orientations of A(G) that are homologous to D0 is exactly the set B(A(G))
of all balanced 4-orientations of A(G) by Lemma 16. Moreover, we have that (B(A(G)),≤f0)
is a distributive lattice by Theorem 4. The Hasse diagram of this lattice is represented on
the left of Figure 31. Each node of the diagram is a balanced 4-orientation of A(G) and black
edges are the edges of the diagram.
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The orientation on the left of Figure 2 is not in the diagram since it is not balanced. The
orientation D0, on the right of Figure 2, is the second one starting from the top. The other
orientations of the diagram are obtained from D0 by flipping oriented faces of the reduced

angle graph Ã(G), except f0.
When a face of the reduced angle graph is oriented this is represented by a circle. The

circle is black when it corresponds to the face containing f0. The circle is magenta if the

boundary of the corresponding face of Ã(G) is oriented counterclockwise and cyan otherwise.

For the face of Ã(G) that is a 8-disk, we represent the circle around the unique vertex that is
in the interior of this 8-disk.

An edge in the Hasse diagram from D to D′ (with D ≤ D′) corresponds to a face of Ã(G)
oriented counterclockwise in D whose edges are reversed to form a face oriented clockwise in
D′, i.e., a magenta circle replaced by a cyan circle. The outdegree of a node is its number of

magenta circle and its indegree is its number of cyan circle. By Lemma 18, all the faces of Ã(G)
have a circle at least once. The special face is not allowed to be flipped and, by Lemma 19,
it is oriented counterclockwise in the maximal element of the lattice and clockwise in the
minimal element. By Lemma 20, the maximal (resp. minimal) element contains no other

faces of Ã(G) oriented counterclockwise (resp. clockwise), indeed it contains only cyan (resp.
magenta) circles and one black. One can play with the black circle and see which are the
orientations of the lattice that are in correspondence by flipping the face f0.

All the 4-orientations of the diagram are balanced so they correspond to transversal struc-
tures by Corollary 1. These transversal structures are represented on the right of Figure 31.
The lattice may have been defined directly on the transversal structures using the same trans-
formations as in the planar case (see [Fus09, Figure 6 and Theorem 2]). But we prefer to
present this by considering α-orientations here since it is a more general framework that also
enables to use directly results from [GKL16] without re-proving the lattice structure.

6 Bijection with unicellular mobiles

6.1 From essentially 4-connected toroidal triangulations to mobiles

Consider an essentially 4-connected toroidal triangulation G and its angle map A(G). In order
to use the lattice structure on the (non-empty) set B(A(G)) we need to choose a particular
face of A(G), i.e., a particular edge of G. This choice has to be done appropriately so that
the minimal element of the lattice have some interesting properties for the bijection. For that
purpose, we have to consider quadrangles of G. We choose a half-edge h0 of G that is in
the interior and incident to a maximal quadrangle of G. We call h0 the root half-edge of G.
The vertex v0 of G incident to h0 is called the root vertex. The face f0 of A(G) containing
h0 is called the root face. Consider the order ≤f0 define on B(A(G)) in Section 5.2. By
Theorem 4, (B(A(G)),≤f0) forms a distributive lattice. Thus we can consider the minimal
balanced 4-orientation Dmin of B(A(G)) with respect to f0. Since there is no ambiguity, we
may also say that Dmin is minimal with respect to h0.

By Corollary 1, Dmin corresponds to a transversal structure of G and admits a TTS-
labeling (see Section 3.1). By convention, the transversal structure of G associated with
Dmin that we consider is the one where h0 is an outgoing half-edge of color blue, i.e., in the
TTS-labeling the half-edge is labeled 0.

Let us associate to any 4-orientation D of A(G) a particular graph M embedded on the
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Figure 31: The Hasse diagram of the distributive lattice of the balanced 4-orientations of the
angle map of an essentially 4-connected toroidal triangulation.
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torus, called mobile associated with D. The vertex set of M is the same as G. Its edge set is
composed of some edges of G plus some half-edges that are incident to only one vertex. We
sometimes call the edges of M full-edges to avoid confusion with half-edges of M . Moreover
we see the full-edges of M as two half-edges of M that meet at the middle of the edge. Then
the set of half-edges of M is defined by the following rule: a half-edge h of G, incident to
a vertex v of G, is an half-edge of M if and only if the edge of D just after h in clockwise
order around v is outgoing (see Figure 32). If G is rooted on a particular half-edge h0, then
the extended mobile M+ is obtained from M by adding the root half-edge h0 if not already
in M . If the two half-edges of the same edge of G are in M (resp. M+), then they meet in
order to form a full-edge of M (resp. M+). The half-edges of M (resp. M+) that are not
part of a full-edge of M (resp. M+) are called stems and they are presented by an arrow on
the figures.

Figure 32: Rule for half-edges of the mobile.

A balanced transversal structure of K7 is given on Figure 33 with the corresponding
balanced 4-orientation of its angle map that is minimal with respect to the barred half-edge.
The extended mobile associated with this orientation is represented twice, once with the angle
map and once alone as a hexagon whose opposite sides are identified to form a toroidal map.
The vertices are labeled from 1 to 7, and the root half-edge is represented in magenta on the
figures.
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Figure 33: Balanced transversal structure of K7, given with the corresponding balanced 4-
orientation of its angle map, that is minimal with respect to the barred half-edge, and the
corresponding extended mobile, represented as a hexagon whose opposite sides are identified.

Note that the mobile can be computed directly from the transversal structure by con-
sidering the following set of half-edges for M : an half-edge h of G, incident to a vertex v
of G, is a half-edge of M if and only if it is the last edge of an interval (outgoing blue,
outgoing red, incoming blue, incoming red) of v in clockwise order around v. This point of
view corresponds more to the planar study of transversal structure from [Fus09]. But the
rule of Figure 32 corresponds to a more general framework to construct so-called “mobile”

39



(related to the labeled mobiles introduced in [BFG04]) that can be applied to any orientation
(see [BF12a, BF12b, BC11]) and not only to transversal structure.

Part of the TTS-labeling of Dmin can be represented on the mobile M by keeping only
the labels that are on half-edges of M . By the mobile rule, one can note that a mobile-
labeling satisfies the following properties: the four labels that appear around each vertex are
exactly 0, 1, 2, 3 in counterclockwise order and the two labels that appear on each edge differ
exactly by (2 mod 4) (see Figure 34 where the TTS-labeling is represented on the transversal
structure and on the corresponding mobile).
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Figure 34: TTS-labeling represented on the mobile.

We say that an edge e of G is covered by M (resp. M+) if there is at least one half-edge
of e in M (resp. M+). We say that a vertex v of G is covered by M (resp. M+) if there is
at least one half-edge incident to v in M (resp. M+).

The main result of this section is the following theorem:

Theorem 5 Consider an essentially 4-connected toroidal triangulation G, and a root half-
edge h0 of G that is in the interior and incident to a maximal quadrangle of G. Then the
extended mobile M+ associated with the minimal balanced 4-orientation of A(G) with respect
to h0 is a toroidal unicellular map covering all the vertices and edges of G. Moreover, either
h0 is a stem of M+ or its removal creates two connected components, one of which is a tree.

Proof. Consider the minimal balanced 4-orientation Dmin of A(G) with respect to h0, the
associated mobile M and the extended mobile M+. We consider the superposition of Dmin

and M+ (see the middle of Figure 33).
Let us first prove that M has a unique face. Consider a particular face F of M . Note

that this face is not necessarily homeomorphic to an open disk (it can be homeomorphic to
a torus, a cylinder, a disk, with punctures) so the border of F can be made of several closed
walk of M . By definition of the mobile M , each occurrence of a vertex v on the border of F
has an incident edge e of Dmin that is outgoing in the interior of F and such that there is no
other edge of Dmin incident to v between e and the border of F while going counterclockwise
around v from e (see rule of Figure 32).

Similarly as in the proof of Lemma 22, start from any edge e0 of Dmin inside F and consider
the right-walk W = (ei)i≥0 of Dmin. By previous paragraph, each time a vertex of the border
of F is reached by W , the “right” outgoing edge puts W back inside F , so W cannot leave F .
Since A(G) has a finite number of edges, some edges are used several times in W . Consider
a minimal subsequence W ′ = ek, . . . , e` such that no edge appears twice and ek = e`+1. Thus
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W ends periodically on the sequence of edges ek, . . . , e`. So, by Lemma 21, the right side of
W ′ encloses a region R homeomorphic to an open disk and W ′ is a {4, 8}-disk. Let f0 be
the root face of A(G), i.e., the face of A(G) containing h0. By Lemma 20, Dmin contains
no clockwise non-empty 0-homologous oriented subgraph with respect to f0 (see definition in
Section 5.2). Since W ′ is going clockwise around R according to the interior of R, we have
that R contains f0.

The edges of G “around” a {4, 8}-disk of A(G) form a quadrangle as depicted by the bold
black edges of Figure 35. Let Q be the quadrangle of G “around” the {4, 8}-disk W ′. Recall
that the root half-edge h0 is in the interior and incident to a maximal quadrangle. Thus the
interior of this maximal quadrangle contains Q and h0 is one of the thin black half-edges of
Figure 35.

4-disk 8-disk

Figure 35: The quadrangle of G around a {4, 8}-disk of A(G).

Lemma 23 shows that all the edges of A(G) that are in the interior of a 8-disk of A(G)
and incident to it are entering it. Thus the orientation of the {4, 8}-disk W ′ and of the edges
in its interior and incident to it are as depicted on Figure 36. Then by the definition of the
mobile M (see rule of Figure 32), there is no half-edge of M in the interior of Q and incident
to Q. Thus h0 is not in M . So h0 is in the strict interior of F and F is the unique face of M .
Moreover M+ has strictly one more half-edge than M .

4-disk 8-disk

Figure 36: Orientation of the {4, 8}-disk.

The number of half-edges of M is equal to 4n (one half-edge for each outgoing edge of the
4-orientation Dmin of A(G)). Thus the number of half-edges of M+ is equal to 4n + 1. The
toroidal triangulation G has exactly 3n edges. So M+ has at least n+1 full-edges. Since M+

is a graph embedded on the torus with n vertices, if it has strictly more than n + 1 edges,
then it does not have a unique face. So M+ has exactly n + 1 edges and it is a unicellular
map covering all the vertices. The number of distinct edges of G covered by M+ is exactly
(4n+ 1)− (n+ 1) = 3n. So M+ is covering all the edges of G.
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Since there is no half-edge of M in the interior of Q and incident to Q. We have that
either W ′ is a 4-disk and h0 is a stem of M+ or W ′ is a 8-disk and the removal of h0 from
M+ creates two connected components, one of which is a tree. �

By Lemma 6, there is a unique maximal quadrangle containing the root half-edge, that
we call the root quadrangle.

The example of K7 of Figure 33, is an example where the {4, 8}-disk inside the root
quadrangle is a 4-disk. There is no vertices in the strict interior of the root quadrangle and
the root half-edge h0 of M+ (in magenta) is not part of a full-edge of M+.

When the root quadrangle has some vertices in its interior, then the {4, 8}-disk inside the
root quadrangle is in fact a 8-disk and the part of the mobile M inside this root quadrangle
is a tree (exactly like in the planar case, see [Fus09]). In M+ this tree is connected to the
“toroidal” part of M that is external to the root quadrangle with the addition of the half-edge
h0 added to M+.

Figure 37 is an example of an essentially 4-connected toroidal triangulation with some
nested quadrangles. The barred half-edge is the root half-edge. It is chosen inside a non empty
root quadrangle. There are also non empty quadrangles outside the root quadrangle. The
triangulation is given with a balanced transversal structure whose corresponding orientation
of the angle graph (not represented) is the minimal balanced 4-orientation with respect to the
barred half-edge. The corresponding extended mobile is given. One can see that Theorem 5
is satisfied, i.e., the extended mobile is a unicellular map covering all the vertices and edges.
The magenta half-edge, corresponds to the root half-edge and links the two connected part
of the mobile, one of which is a tree.

A toroidal unicellular map on n vertices has exactly n+ 1 edges. Since the total number
of edges of a triangulation on n vertices is 3n, a consequence of Theorem 5 is that the
extended mobile M+ has exactly n vertices, n+ 1 edges and 2n− 1 stems. In total, M+ has
2(n+ 1) + 2n− 1 = 4n+ 1 half-edges. So the root half-edge is not part of the mobile M and
is added to M to obtain M+. So all the vertices of M+ have degree 4, except the root vertex
that has degree 5.

6.2 Recovering the original triangulation

This section is dedicated to showing how to recover the original triangulation from the ex-
tended mobile. The recovering process is described by the following theorem.

Theorem 6 Consider an essentially 4-connected toroidal triangulation G, and a root half-
edge h0 of G, incident to a vertex v0, such that h0 is in the interior and incident to a maximal
quadrangle of G. From the extended mobile M+ associated with the minimal balanced 4-
orientation of A(G) with respect to h0, one can reattach all the stems of M+ to obtain G
by starting from the angle of v0 just after h0 in clockwise order around v0 and walking along
the face of M+ in counterclockwise order (according to the interior of this face): each time a
stem is met, it is reattached in order to create a triangular face on its left side.

Theorem 6 is illustrated on Figure 38 to recover K7 from the extended mobile of Figure 33.
We have represented only the first and last two steps of the method. One can also play with
the extended mobile of Figure 37 to recover the corresponding triangulation.

In fact in this section we define a method, more general than the one described in Theo-
rem 6, that is useful for Sections 7.
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Figure 37: Example of a balanced transversal structure of an essentially 4-connected toroidal
triangulation with some nested quadrangles and the corresponding extended mobile.

LetMr(n) denote the set of toroidal unicellular maps with exactly n vertices, n+ 1 edges
and 2n− 1 stems such that all vertices have degree 4, except one vertex (called root vertex)
that has degree 5, moreover the root vertex has a marked incident half-edge (called the root
half-edge) that is either a stem or whose removal creates two connected components, one of
which is a tree. Note that the extended mobile M+ given by Theorem 5 is an element of
Mr(n).

We use the classical closure procedure (see [Fus09]) to reattach step by step all the stems
of an element M+ of Mr(n). Let M0 = M+, and, for 1 ≤ k ≤ 2n − 1, let Mk be the
map obtained from Mk−1 by reattaching one of its stem (we explicit below which stem is
reattached and how). The special face of M0 is its only face. For 1 ≤ k ≤ 2n− 1, the special
face of Mk is the face on the right of the stem of Mk−1 that is reattached to obtain Mk. For
0 ≤ k ≤ 2n−1, the border of the special face of Mk consists of a sequence of edges and stems.
We define an admissible triple as a sequence (e1, e2, s), appearing in counterclockwise order
along the border of the special face of Mk, such that e1 = {u, v} and e2 = {v, w} are edges of
Mk and s is a stem attached to w. The closure of the admissible triple consists in attaching
s to u, so that it creates an edge {w, u} and so that it creates a triangular face (u, v, w) on
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Figure 38: Recovering K7 from the extended mobile.

its left side (when oriented from w to u). The complete closure of U consists in closing a
sequence of admissible triples, i.e., for 1 ≤ k ≤ 2n − 1, the map Mk is obtained from Mk−1
by closing any admissible triple.

Note that, for 0 ≤ k ≤ 2n − 1, the special face of Mk contains all the stems of Mk. The
closure of a stem reduces the number of edges on the border of the special face and the number
of stems by 1. At the beginning, the unicellular map M0 has n + 1 edges and 2n− 1 stems.
So along the border of its special face, there are 2n+ 2 edges and 2n− 1 stems. Thus there
is exactly three more edges than stems on the border of the special face of M0 and this is
preserved while closing stems. So at each step there is necessarily at least one admissible triple
and the sequence Mk is well defined. Since the difference of three is preserved, the special face
of M2n−2 is a quadrangle with exactly one stem. So the reattachment of the last stem creates
two faces that have length three and at the end M2n−1 is a toroidal triangulation. Note that
at a given step there might be several admissible triples but their closure are independent and
the order in which they are performed does not modify the obtained triangulation M2n−1.

We now apply the closure method to our particular case. Consider an essentially 4-
connected toroidal triangulation G, a root half-edge h0 of G that is in the interior and incident
to a maximal quadrangle of G, and the extended mobile M+ associated with the minimal
balanced 4-orientation of A(G) with respect to h0. Recall that M+ is an element of Mr(n)
so we can apply on M+ the complete closure procedure described above. We use the same
notation as before, i.e., let M0 = M+ and for 1 ≤ k ≤ 2n− 1, the map Mk is obtained from
Mk−1 by closing any admissible triple. The following lemma shows that the triangulation
obtained by this method is G:

Lemma 25 The complete closure of M+ is G, i.e., M2n−1 = G.
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Proof. We prove by induction on k that every face of Mk is a face of G, except for the
special face. This is true for k = 0 since M0 = M+ has only one face, the special face. Let
0 ≤ k ≤ 2n−2, and suppose by induction that every non-special face of Mk is a face of G. Let
(e1, e2, s) be the admissible triple of Mk such that its closure leads to Mk+1, with e1 = {u, v}
and e2 = {v, w}. The closure of this triple leads to a triangular face (u, v, w) of Mk+1. This
face is the only “new” non-special face while going from Mk to Mk+1.

Suppose, by contradiction, that this face (u, v, w) is not a face of G. Let av (resp. aw)
be the angle of Mk at the special face, between e1 and e2 (resp. e2 and s). Since G is a
triangulation, and (u, v, w) is not a face of G, there exists at least one stem of Mk that should
be attached to av or aw to form a proper edge of G. Let s′ be such a stem that is the nearest
from s. In G the edges corresponding so s and s′ should be incident to the same triangular
face T . Let x be the vertex incident to s′. Let z ∈ {v, w} such that s′ should be reattached
to z. If z = v, then s should be reattached to x to form a triangular face of G. If z = w,
then s should be reattached to a common neighbor of w and x located on the border of the
special face of Mk in counterclockwise order between w and x. So in both cases s should be
reattached to a vertex y located on the border of the special face of Mk in counterclockwise
order between w and x (with possibly y = x). To summarize s goes from w to y and s′ from x
to z, and z, w, y, x appear in counterclockwise around T with z = w or y = x. The two half-
edges h, h′ of T that are in the same edges with s, s′ are not in M+. By the mobile rule (see
Figure 32), the two half-edges h, h′ that are not in M+ corresponds in the orientation of A(G)
to two distinct outgoing edges for the dual-vertex corresponding to T . This contradicts the
fact that the considered orientation of A(G) is a 4-orientation and that dual-vertices should
have outdegree 1.

So for 0 ≤ k ≤ 2n− 2, all the non-special faces of Mk are faces of G. In particular every
face of M2n−1 except one is a face of G. Then clearly the (triangular) special face of M2n−1
is also a face of G, hence M2n−1 = G. �

Lemma 25 shows that one can recover the original triangulation from M+ with any se-
quence of admissible triples that are closed successively. This does not explain how to find
the admissible triples efficiently. In fact the root half-edge h0 can be used to find a particular
admissible triple of Mk. We define the root angle a0 of G as the angle of v0 just after h0
in clockwise order around v0. This definition of a0 naturally extends to M+ or when some
admissible triples are reattached.

Lemma 26 For 0 ≤ k ≤ 2n − 2, let s be the first stem met while walking counterclockwise
from a0 in the special face of Mk. Then before s, at least two edges are met and the last two
of these edges form an admissible triple with s.

Proof. Since s is the first stem met, there are only edges that are met before s. Suppose
by contradiction that there is only zero or one edge met before s. Then the reattachment of
s to form the corresponding edge of G is necessarily such that the triangular face T that is
formed on the left side of the stem contains the root half-edge h0 on its border. Let h be the
half-edge of T that is in the same edge with s and not in M+. Then the two half-edges h, h0
that are not in M corresponds in the orientation of A(G) to two distinct outgoing edges for
the dual-vertex corresponding to T . This contradicts the fact that the considered orientation
of A(G) is a 4-orientation and that dual-vertices should have outdegree 1. �
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Lemma 26 shows that one can reattach all the stems by walking once along the face of
M+ in counterclockwise order starting from a0. Thus we obtain Theorem 6.

Note that M+ is such that the complete closure procedure described here never wraps
over the root angle, i.e., when a stem is reattached, the root angle is always in the face that
is on its right side. The property of never wrapping over the root angle is called safe here.
Note that sometimes this property is called “balanced” in the literature and here the word
“balanced” is already used with a completely different meaning. Let Mr,s(n) denote the set
of elements ofMr(n) that are safe. So the extended mobile given by Theorem 5 is an element
of Mr,s(n).

We exhibit in Section 6.4 a bijection between appropriately rooted essentially 4-connected
toroidal triangulations and a particular subset of Mr,s(n).

The possibility to close admissible triples in any order to recover the original triangulation
is interesting compared to the simpler method of Theorem 6 since it enables to recover the
triangulation even if the root half-edge is not given. Indeed, when the root angle is not
given, then one can simply start from any angle of M+, walk twice around the face of M+ in
counterclockwise order and reattach all the admissible triples that are encountered along this
walk. Walking twice ensures that at least one complete round is done from the root angle.
Since only admissible triples are considered, we are sure that no unwanted reattachment is
done during the process and that the final map is G. This enables us to reconstruct G in
linear time even if the root angle is not known. This property will also be used in Section 7
for enumeration purpose.

6.3 Asymptotically optimal encoding

A 4-connected planar triangulation on n vertices, can be encoded with a binary word of length
∼ n log2(

27
4 ) ≈ 2.7549n (see [Fus07, Theorem 4.2]). This is asymptotically optimal since, by

results of Tutte, the number Pn of 4-connected planar triangulations on n vertices satisfies
log2(Pn) ∼ n log2(

27
4 ). The results of previous sections allow us to generalize this optimal

encoding to the toroidal case.
A ternary tree is a plane tree, rooted at a leaf, such that every inner vertex has degree

exactly four. A ternary tree T on n inner vertices can easily be encoded using a binary word
on 3n bits by the following: walk in counterclockwise order around T from the root angle,
write a “1” when an inner vertex is discovered for the first time, and a “0” when a leaf is
traversed. A ternary tree on n inner vertices has n inner vertices and 2n + 2 leaves. So we
obtain a binary word of length 3n + 2 with n bits 1. Using [BGH03, Lemma 7], this word
can then be encoded with a binary word of length log2

(
3n+2
n

)
+ o(n) ∼ n log2(

27
4 ) ≈ 2.7549n

bits.
Consider an essentially 4-connected toroidal triangulation G, a root half-edge h0 of G that

is in the interior and incident to a maximal quadrangle of G, and the extended mobile M+

associated with the minimal balanced 4-orientation of A(G) with respect to h0. By Theorem 6
one can retrieve the triangulation G from M+. Hence to encode G, one just has to encode
M+. The extended mobile M+ is a toroidal unicellular map with n vertices, n + 1 edges,
2n− 1 stems. All its vertices have degree 4, except the root vertex that has degree 5. Either
h0 is a stem of M+ or its removal creates two connected components, one of which is a tree.

Let k ≥ 0 be the number of (inner) vertices of the tree part attached to h0, with k = 0 if
h0 is a stem. We remove the half-edge h0 from M+, and obtain : a toroidal component G1,
that we root at the angle where h0 is attached, and a tree component T2, that we root at the
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half-edge opposite to h0. So G1 is a toroidal unicellular map with n − k vertices, n − k + 1
edges, 2n− 2k − 2 stems. And T2 is a planar tree with k vertices, k − 1 edges, 2k + 2 stems.
Moreover, all the vertices of G1 and T2 have degree 4. Now we choose two edges e1, e2 of G1,
such that G1 \ {e1, e2} is acyclic. We transform G1 into a planar tree T1 by cutting e1, e2 and
transforming each of e1, e2 into two special stems of T1. We root T1 on a stem by keeping the
information of where are the special stems, which pairs should be reattached together, and
where is the angle attached to h0. This information can be stored with O(log(n)) bits. One
can recover G1 from T1 by reattaching the special stems in order to form non-contractible
cycles and changing the root. Thus we are left to encode two ternary trees T1 and T2 with
n− k and k inner vertices, respectively.

By applying the ternary tree encoding method on T1 and T2 we obtain the following
theorem :

Theorem 7 Any essentially 4-connected toroidal triangulation on n vertices, can be encoded
with a binary word of length ∼ n log2(

27
4 ) ≈ 2.7549n and this is asymptotically optimal.

The optimality of Theorem 7 is due to the fact that the number of essentially 4-connected
toroidal triangulations is at least the number of 4-connected planar triangulations.

Here is a remark on the complexity of the encoding part. All the encoding and decoding
process is linear as soon as a balanced transversal structure is given. But even if the proof
of Theorem 1 is constructive and gives a polynomial algorithm to find a balanced transversal
structure, the obtained algorithm is not linear. The difficulty is to be able to find contractible
edges, and contract all the graph to a single vertex, in linear time. Currently this has to be
done by Lemma 12 that does not give linear complexity. So the question to be able to find
in linear time a balanced transversal structure of an essentially 4-connected triangulation is
an interesting and open problem.

In the plane, the proof of the existence of such objects is usually done quite easily by
using a so-called shelling order (or canonical order). This method consists in starting from
the outer face and removing the vertices one by one. It leads to simple linear time algorithms.
We do not see how to generalize this kind of method here since the toroidal objects that we
considered are too homogeneous and there is no special face (and thus no particular starting
point) playing the role of the outer face.

6.4 Bijective consequences

Consider an essentially 4-connected toroidal triangulation G, a root half-edge h0 of G that is
in the interior and incident to a maximal quadrangle, and the extended mobile M+ associated
with the minimal balanced 4-orientation of A(G) with respect to h0. Theorems 5 and 6 show
that M+ gives a toroidal unicellular map with stems from which one can recover the original
triangulation. Thus there is a bijection between essentially 4-connected toroidal triangulations
rooted from an appropriate half-edge and their corresponding set of extended mobiles. The
goal of this section is to describe exactly the set of these extended mobiles.

Recall from Section 6.2 that the obtained extended mobiles are elements ofMr,s(n). One
may hope that there is a bijection between essentially 4-connected toroidal triangulations
appropriately rooted and Mr,s(n). This is the classic behavior in the planar case since there
is a unique lattice associated with the set of α-orientations of a planar map (for a fixed α). But
here, things are different since the set of 4-orientations of the angle map is now partitioned
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into several lattices and there might be several minimal elements, some of which behave
well with respect to the mobile rule. Indeed, there exists examples of minimal non-balanced
4-orientations of angle maps of essentially 4-connected toroidal triangulations appropriately
rooted such that the corresponding extended mobile is in Mr,s(n). The balanced property
is the property that defines uniquely our considered minimal element and thus we have to
translate this property on the set of mobiles.

Note that there are two types of toroidal unicellular maps. Two cycles of a unicellular
map may intersect either on a single vertex (square case) or on a path (hexagon case). We call
such maps square unicellular maps or hexagon unicellular maps, respectively. The square can
be seen as a particular case of the hexagon where one side has length zero and thus the two
corners of the hexagon are identified. In the square case (resp. hexagon case), the unicellular
map has exactly 2 (resp. 3) distinct cycles that are moreover non-contractible and not weakly
homologous to each other.

Recall that given a cycle C of G with a direction of traversal, we have γ(C) equals the
number of edges of A(G) leaving C on its right minus the number of edges of A(G) leaving
C on its left. Recall that the root angle of G is the angle just after the root half-edge in
clockwise order. In each angle of the extended mobile M+, except the root angle, there is an
outgoing edge of A(G) (see rule of Figure 32). So for a cycle C of the extended mobile, one
can compute γ(C) by considering the angles of M+ on the left and right side of C, except the
root angle. Then, since we are considering balanced 4-orientations of the angle map, for any
(non-contractible) cycle C of the extended mobile obtained by Theorem 5, we have γ(C) = 0.

Consider an element M+ ofMr(n). We say that an unicellular map ofMr(n) is balanced
if every cycle of the unicellular map has the same number of angles on the left and right sides,
with the special rule that the root angle does not count. Let Mr,s,b(n) denote the subset of
elements of Mr,s(n) that are balanced.

Let us recall, for the sake of clarity, the complete definition of Mr,s,b(n) that is the set of
toroidal unicellular maps with exactly n vertices, n+ 1 edges and 2n− 1 stems such that:

• “r” for root: All vertices have degree 4, except one vertex (called root vertex) that
has degree 5, moreover the root vertex has a marked incident half-edge (called the root
half-edge) that is either a stem or whose removal creates two connected components,
one of which is a tree.

• “s” for safe: When the stems of admissible triples are reattached (in any order), the
angle just after the root half-edge in clockwise order (called the root angle) is always in
the face that is on the right side of the stems.

• “b” for balanced: Every (non-contractible) cycle of the map has the same number of
angles on its left and right sides, with the special rule that the root angle does not
count.

Let Tr(n) be the set of essentially 4-connected toroidal triangulations on n vertices rooted
at a half-edge that is in the interior and incident to a maximal quadrangle.

We have the following bijection:

Theorem 8 There is a bijection between Tr(n) and Mr,s,b(n).

Proof. Consider the mapping g that associates to an element of Tr(n), the extended mobile
M+ obtained by Theorem 5. By the above discussion the image of g is in Mr,s,b(n) and g is
injective since one can recover the original triangulation from its image by Theorem 6.
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Conversely, given an element M+ of Mr,s,b(n) with root angle a0 (just after the root
half-edge in clockwise order around the root vertex), one can build a toroidal map G by the
complete closure procedure described in Section 6.2. The number of stems and edges of M+

implies that all faces of G are triangles. We explain later why G has no contractible loop nor
multiple edges and that it is essentially 4-connected.

While making the complete closure, one can create a 4-orientation D of A(G) with the
following method. For each half-edge h of M+ distinct from h0, such that h is incident to
vertex v, add to D an outgoing half-edge incident to v and just after h in clockwise order
around v. Note that this is done not only for stems of M+ but for all the half-edges of M+,
including those that are part of full-edges of M+, except h0.

Consider the moment when an admissible triple (e1, e2, s) of Mk is closed in order to obtain
Mk+1, with 0 ≤ k ≤ 2n− 2. Let e1 = (u, v), e2 = (v, w) and s is a stem attached to w. When
the stem s is reattached to u to form a triangular face T on its left side, it is reattached to u
in order to leave the half-edge of D leaving u (if any) on the right side (see Figure 39). Note
that if the angle at u is the root angle, then there is no half-edge of D leaving u. By doing so
we maintain the property that for all the angles of the face containing the root angle (called
the special face in Section 6.2), there is an outgoing half-edge of D, except for the root angle.

u

v w

u

v w

Figure 39: Reattachment of a stem.

In order to describe the edges of D completely, we consider two cases whether s is the last
stem that is reattached or not.

• s is not the last reattached stem

By the safe property, s has the root angle on its right side when it is reattached. So the
angle at v (resp. w) between e1, e2 (resp. e2, s) in clockwise order is not the root angle.
So inside the triangle T , we can reattached the two half-edges of D incident to v, w to
the dual-vertex f of A(G) corresponding to T and add an additional edge to D from f
to u (see Figure 40).

u

v w

u

v w

Figure 40: Reattachment of a stem and orientation of the angle map.

• s is the last reattached stem

By the safe property, the root angle is in the face on the right side of s. Thus we are
in one of the three case of Figure 41 depending on the position of the root half-edge
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according to s (the root half-edge is represented in magenta). In each case we reattached
the four depicted half-edges of D and add two additional edges to D that are outgoing
for dual-vertices of D as described on Figure 41.

w

u

v w

u

v

w

u

v w

u

v

w

u

v w

u

v

Figure 41: The three possible cases for the reattachment of the last stem.

By doing so we are sure to reattach all the half-edges of D to dual-vertices of A(G). In the
end, all primal-vertices have outdegree 4 and all dual-vertices have outdegree 1. So we have
defined a 4-orientation D of A(G) on which the mobile rule (see Figure 32) plus the addition
of the root half-edge gives M+. Since we are considering a 4-orientation of A(G), the map
G has no contractible loop nor multiple edges and it is essentially 4-connected, otherwise,
there will be a contradiction in a region homeomorphic to an open disk by a simple counting
argument. It remains to show that G is appropriately rooted and that D corresponds to the
minimal balanced 4-orientation with respect to this root, then g will be surjective.

Since M+ is balanced it has at least two non-contractible and not weakly homologous
cycles C1, C2 with the same number of angles on their respective left and right sides, with
the special rule that the root angle does not count. All these angles corresponds to exactly
one outgoing edge of D by construction of D. So the orientation D of A(G) satisfies γ(C1) =
γ(C2) = 0. So by Lemma 14, the 4-orientation D is balanced.

Suppose by contradiction that D is not minimal with respect to h0. Let f0 be the face of
A(G) containing h0. We use the terminology and notations of Section 5.2. Then in the Hasse
diagram of the lattice (B(A(G)),≤f0), there is an element below D: Let D′ be a balanced 4-

orientation of A(G) such that D′ ≤f0 D. By Section 5.2, we have D′\D ∈ F̃ ′. Let F̃ = D′\D.

So F̃ is the counterclockwise facial walk of a face of Ã(G) not containing f0. So this facial
walk is oriented counterclockwise (resp. clockwise) according to its interior in D′ (resp. D).
By Lemma 22, F̃ is quasi-contractible and its outer facial walk is a {4, 8}-disk W . Then, by
Lemma 23, if W is a 8-disk, the edges that are in the interior of W and incident to it are
entering it. So in D, the orientation of W and of the edges in its interior and incident to
it are as depicted on Figure 36. Then, by definition of the mobile (see Figure 32), there is
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no half-edge of M+ in the interior of W and incident to vertices of W . If W is a {4}-disk,
then the unique edge of G inside W is not covered by M+. If W is a {8}-disk, then either
there are some edges of G inside W that are not covered by M+, or M+ is made of several
connected components. In any cases, this contradicts the fact that M+ is an element of
Mr,s,b(n) from which G is obtained by applying the complete closure procedure. So D is
minimal with respect to h0, and thus it is the minimal balanced 4-orientation with respect
to h0

Suppose by contradiction that h0 is not “in the interior and incident” to a maximal
quadrangle. Then by Lemma 6, there is a unique maximal quadrangle Q whose interior
contains h0. Since h0 is not “in the interior and incident” to Q, it is in the strict interior of
Q. The quadrangle Q corresponds to a {4, 8}-disk W of A(G) (see Figure 35). Note that
W is a maximal {4, 8}-disk containing h0. So, by Lemma 24, in D, the {4, 8}-disk W is
oriented clockwise with respect to its interior. It is not possible that W is a 4-disk since then
h0 is not in the strict interior of Q but incident to it. So W is a 8-disk. By Lemma 23, the
edges that are in the interior of W and incident to it are entering it. Then the orientation
of W and of the edges in its interior and incident to it are as depicted on Figure 36. Then
by the definition of the mobile (see rule of Figure 32), there is no half-edge of M+ in the
interior of Q and incident to Q. So either there are some edges of G that are not covered
by M+, or M+ is made of several connected components. In both cases, this contradicts
the fact that M+ is an element of Mr,s,b(n) from which G is obtained by applying the com-
plete closure procedure. So h0 is in the interior and incident to a maximal quadrangle of G. �

7 Counting essentially 4-connected toroidal triangulations

Let Th(n) be the set of essentially 4-connected toroidal triangulations on n vertices, rooted
at any half-edge. In this section we show how to count Th(n) (see Theorem 9). The first
values of |Th(n)|, for n ≥ 0, are 0, 1, 6, 40, 268, 1801, 12120 (sequence A289208 in OEIS [Slo]).
Figure 42 illustrates the six elements of Th(2).

Figure 42: The six elements of Th(2): two different underlying graphs, each with three possible
roots represented by an outgoing half-edge.

7.1 Decomposition into planar and toroidal parts

Consider an element of Th(n). Recall that by Lemma 6, there is a unique maximal quadrangle
containing the root half-edge, that we call the root quadrangle. We define the corners of a
quadrangle of a map as the four angles that appear in the interior of this quadrangle when its
interior is removed (if non empty). We define Th,c(n) as the set of elements of Th(n) with a
marked corner of the root quadrangle. The elements of Th,c are decomposed into the toroidal
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part that is outside the root quadrangle and the planar part that is in the interior of the root
quadrangle.

We first need the following lemma, which shows that removing the interior of the root
quadrangle does not change the connectivity of the remaining part. Even if the statement
has nothing to do with transversal structures, the proof is using them as in Section 2.3.

Lemma 27 If G is an essentially 4-connected toroidal triangulations given with a maximal
quadrangle Q, then the map G′ obtained by removing all the vertices and edges that lie in the
interior of Q is an essentially 4-connected toroidal map.

Proof. Let G be an essentially 4-connected toroidal triangulations given with a maximal
quadrangle Q and G′ obtained by removing all the vertices and edges that lie in the interior
of Q.

Consider a root half-edge h0 of G that is in the interior and incident to Q. Consider
the minimal balanced 4-orientation Dmin of A(G) with respect to h0. By Corollary 1, this
4-orientation corresponds to a transversal structure of G. Consider the {4, 8}-disk W of A(G)
that is inside the maximal quadrangle Q. By Lemma 24, in Dmin, the {4, 8}-disk W is oriented
clockwise with respect to its interior. Lemma 23 shows that all the edges of A(G) that are in
the interior of a 8-disk of A(G) and incident to it are entering it. So the transversal structure
of G represented on the maximal quadrangle Q is as depicted on one of the three cases of
Figure 43 (where the outer edges represent the quadrangle Q).

Figure 43: Transversal structure on the maximal quadrangle Q.

Recall that from Section 2.3, that for a vertex v of G∞ and i ∈ {B,R,−B,−R}, i 6= j, the
subgraph Pi(v) of G∞ is obtained by keeping all the edges that are on an oriented path of G∞i
starting at v. By Lemma 2, the subgraphs Pi(v) are acyclic. Let P ′i (v) be defined similarly
but in G′∞. So P ′i (v) is a subgraph of Pi(v), thus it is also acyclic. Note that removing the
interior of the quadrangle Q on the three cases of Figure 43, does not change the fact that
around every vertex there are edges that are outgoing blue, outgoing red, incoming blue and
incoming red. So the P ′i (v) are infinite.

As in the proof of Lemma 4, suppose by contradiction that there exists three vertices
x, y, z of G′∞ such that G′′ = G′∞ \ {x, y, z} is not connected. Then, by Lemma 1, the graph
G′′ has a finite connected component R. Let v be a vertex of R. For i ∈ {B,R,−B,−R},
i 6= j, the infinite and acyclic graph P ′i (v) does not lie in R so it intersects one of x, y, z. So
for two distinct i, j, the two graphs P ′i (v) and P ′j(v) intersect in a vertex distinct from v.
Thus the two graphs Pi(v) and Pj(v) intersect in a vertex distinct from v, a contradiction to
Lemma 3. �
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Let T tc (n) be the set of essentially 4-connected toroidal maps on n vertices, where all faces
are triangles, except one that is a maximal quadrangle, and, with a marked corner of this
quadrangle. In particular we have |T tc (0)| = 0 and |T tc (1)| = 1.

Let T ph,c(n) be the set of 4-connected planar maps on n inner vertices, where all faces are
triangles, except the outer-face that is a quadrangle, with a marked corner of this quadrangle,
and rooted at an inner half-edge. Note that here, n counts the number of inner vertices, so
there are n + 4 vertices in an element of T ph,c(n). In particular we have |T ph,c(0)| = 4 and

|T ph,c(1)| = 8.
Then we have the following bijection:

Lemma 28 There is a bijection between Th(n)×{1, 2, 3, 4} and
⋃

1≤k≤n(T ph,c(n−k)×T tc (k)).

Proof. By Lemma 6, there is a bijection between Th(n) × {1, 2, 3, 4} and Th,c(n). By
Lemma 27, there is a bijection between Th,c(n) and

⋃
1≤k≤n(T ph,c(n − k) × T tc (k)). The

composition of these two bijections gives the result. �

By Lemma 28, the enumeration of the elements of Th is reduced to the enumeration of
their planar part T ph,c and their toroidal part T tc .

Recall from Section 6.3, that a ternary tree is a plane tree, rooted at a leaf, such that
every inner vertex has degree exactly four. For n ≥ 1, let A(n) denote the set of ternary trees
with n inner vertices. By convention we consider that the tree composed of a single vertex is
the unique element of A(0). The associated generating function satisfies:

A(z) =
∑
n

|A(n)|zn = 1 + zA(z)3. (1)

The enumeration of T ph,c is given by the following lemma:

Lemma 29

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)
and the associate generating function satisfies:

T ph,c(z) =
∑
n≥0
|T ph,c(n)|zn = 4A(z)2.

Proof. [Fus09, Theorem 3] is a bijection between the set P(n) of (unrooted) plane tree such
that every inner vertex has degree exactly four and the set T p(n) of (unrooted) 4-connected
planar maps on n inner vertices, where all faces are triangles, except the outer-face that is a
quadrangle.

Let T ph (n) be the set of elements of T p(n) rooted at an inner half-edge. Let Po(n) be the
elements of P(n) with one oriented edge. In the bijection of [Fus09, Theorem 3], each inner
edge of the map corresponds to an edge of the corresponding tree. So rooting the elements
of T p(n) on a particular inner half-edge, corresponds to orienting an edge of the tree. Thus
we have a bijection between T ph (n) and Po(n).

Cutting an element of Po(n) at the oriented edge creates bijectively a couple of ternary
trees with respectively k and n− k inner vertices, with 0 ≤ k ≤ n. Hence:

Po(z) =
∑
n

|Po(n)|zn = A(z)2.
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As shown in [GX06, p 11], the coefficients of A(z)2 admit a simple expression:

|Po(n)| = 1

n+ 1

(
3n+ 1

n

)
.

An element of T ph,c(n) is obtained from an element of T ph (n) by marking one corner of

the outer face. There are four such choice so T ph,c(n) = 4T ph (n) = 4Po(n) and we obtain the
lemma. �

7.2 Bijection with square and hexagonal unicellular maps

Given an element M+ ofMr,s,b(n) (see Section 6.4 for the definition), we define the unrooted
mobile M associated with M+ as the toroidal unicellular map obtained from M+ by removing
the root half-edge and the tree part attached to the root half-edge (if any). Figure 44 gives
the unrooted mobile associated with the extended mobile of Figure 37.

Figure 44: The unrooted mobile obtained from the extended mobile of Figure 37.

LetMb(n) denote the set of (non-rooted) toroidal unicellular maps with exactly n vertices,
n+ 1 edges and 2n− 2 stems such that all vertices have degree 4, and every cycle of the map
has the same number of angles on its left and right sides (balanced property).

Consider an element M+ of Mr,s,b(n). Let k ≥ 0 be the number of vertices in the tree
part attached to the root half-edge (if any), with k = 0 if the root half-edge is a stem. Then
one can see that the unrooted mobile M associated with M+ is an element of Mb(n− k).

Consider an element M ofMb(n). A mobile-labeling of M is a labeling ` of the half-edges
of M with integers 0, 1, 2, 3 such that the labels that appear around each vertex are exactly
0, 1, 2, 3 in counterclockwise order and the two labels that appear on each edge differ exactly
by (2 mod 4), see right of Figure 34 for an example. Let G be the graph obtained from M
by closing all its admissible triples. Since, M has 2n− 2 stems, we have that G is a “toroidal
triangulation minus one edge”, i.e., a toroidal map whose all faces are triangles except one
that is a quadrangle. The extension of ` to G is the labeling of all the half-edges of G obtained
from ` by keeping the property that the two labels that appear on each edge differs exactly
by 2 mod 4. Next lemma shows that the quadrangle of G is labeled as on Figure 45 in the
extension of the mobile-labeling.
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Figure 45: Labeling of the remaining quadrangle after extending a mobile-labeling.

Each angle of M corresponds to consecutive angles of G (reattaching a stem into an
angle, splits this angle in two). Conversely, to each angle of G we can associate the unique
corresponding angle of M from which it comes from. Then we have the following:

Lemma 30 Consider an element M of Mb(n) given with a particular angle α. Then M
admits a unique mobile-labeling, noted `(α), such that the angle α is between half-edges labeled
0 and 1. Moreover, after closing the admissible triples of M to obtain G, the extension of `(α)
to G is such that the quadrangle Q of G is labeled as on Figure 45. And the four angles of M
that corresponds to the angles of Q are incident to half-edges with exactly the same labels in
M and in Q.

Proof. The toroidal unicellular map M has n vertices, n + 1 edges and 2n − 2 stems such
that all vertices have degree 4, and every cycle of the map has the same number of angles on
its left and right sides.

Let h be the half-edge of M that is incident to α and just after α in clockwise order
around its incident vertex. Let `(α) be the labeling of the half-edges of M with integers
0, 1, 2, 3 obtained by the following: Label h with 0 and then extend the labeling to all the
half-edges of M by keeping the property that the labels that appear around each vertex are
exactly 0, 1, 2, 3 in counterclockwise order and the two labels that appear on each edge differ
exactly by (2 mod 4). This is possible and consistent since every cycle of the map has the
same number of angles on its left and right sides. Indeed, given a cycle C of length k, there
are 2k angles on each sides, so the modification of the labels while starting from a half-edge
of C, walking along C and going back to the starting half-edge is the following: the number
of edges of C times (2 mod 4), i.e., (2k mod 4), plus the number of angles on the right side
of C, i.e., (2k mod 4), so (4k mod 4) = 0 in total. Thus, this definition of the mobile-labeling
`(α) is consistent and moreover it is the unique such labeling. So we have the first part of
the lemma.

Let M0 = M . For 1 ≤ k ≤ 2n − 2, let Mk be the map obtained from Mk−1 by closing
an admissible triple of Mk−1. Extend the labeling `(α) while closing admissible triples by
keeping the property that the two labels that appear on each edge differs exactly by 2 mod 4.
We prove by induction on k, that each map Mk, for 0 ≤ k ≤ 2n − 2, satisfies the following:
each angle of the special face of Mk is between half-edges whose labels are distinct (and
precisely the same as for the corresponding angle of Mk−1 if k ≥ 1), moreover the labels that
appear in counterclockwise order around each vertex of Mk form four non-empty intervals of
0, 1, 2, 3. Indeed, M0 satisfies the property and suppose that for 1 ≤ k ≤ 2n − 2, we have
Mk−1 that satisfies the property. Consider the admissible triple (e1, e2, s) of Mk−1 that is
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closed to obtain Mk. Let e1 = {u, v} and e2 = {v, w} with s is a stem attached to w. Let
i ∈ {0, 1, 2, 3} such that s is labeled i. Then since Mk−1 satisfies the property on the labels
we have that:

• the half-edge of e2 incident to w is labeled (i+ 1) mod 4

• the half-edge of e2 incident to v is labeled (i+ 3) mod 4

• the half-edge of e1 incident to v is labeled i

• the half-edge hu of e1 incident to u is labeled (i+ 2) mod 4

• the half-edge h′u incident to u and just after hu in counterclockwise order around u is
labeled (i+ 3) mod 4

When the admissible triple is closed, a half-edge hs, opposite to s is created and receive the
label (i + 2) mod 4. So the half-edges hu, hs, h

′
u appear consecutively in counterclockwise

order around u. Moreover they are labeled (i + 2) mod 4, (i + 2) mod 4 and (i + 3) mod 4
respectively. So all the induction properties are preserved. Finally, M2n−2 satisfies the
property and its special face, that is a quadrangle, is labeled as on Figure 45 and the four
angles of M that corresponds to the angles of Q are incident to half-edges with exactly the
same labels in M and in Q. �

Recall that there are two types of toroidal unicellular maps. Two distinct cycles of a
toroidal unicellular map may intersect either on a single vertex (square case) or on a path
(hexagon case). In a square (resp. hexagon) unicellular map, there are exactly 2 (resp. 3)
distinct cycles. A vertex of a toroidal unicellular map is called special if is contained in all
the cycles of the map. Note that there is exactly one special vertex in a square unicellular
map, and exactly two special vertices in a hexagon unicellular map.

Let Ms
b(n) (resp. Mh

b (n)) denote the set of elements of Mb(n) that are square (resp.
hexagon) unicellular maps. Moreover we denote the sets Mb,a(n),Ms

b,a(n),Mh
b,a(n) the sets

of elements of Mb(n),Ms
b(n),Mh

b (n), respectively, that are rooted at an angle of a special
vertex.

We have the following bijection:

Lemma 31 There is a bijection between T tc (n)× {1, 2} and (M s
b,a(n)× {1, 2}) ∪ (Mh

b,a(n)×
{0}).

Proof. We define a bijective function from T tc (n)×{1, 2} to (Ms
b,a(n)×{1, 2})∪ (Mh

b,a(n)×
{0}). This function is defined via three intermediate functions a, g′ and r defined below.

Let a (for “add”) be the mapping defined on the elements G of T tc (n) that adds to G a
diagonal e0 in the interior of the (maximal) quadrangle Q of G, incident to the marked corner
α of Q, and returns the obtained map Z rooted at the half-edge h0 of e0 incident to α. Let
T ′r (n) be the subset of Tr(n) (see definition in Section 6.4) such that the two faces incident
to the root half-edge form a maximal quadrangle. We claim the following:

Claim 3 a is a bijection from T tc (n) to T ′r (n).
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Proof. Let G be an element of T tc (n) and Z its image by a. Consider the notations of
the definition of a. Since G is essentially 4-connected, the added edge e0 cannot create a
contractible loop in Z. If adding e0 creates a pair of homotopic multiple edges in Z with an
edge e′0, then there are two edges of the quadrangle Q of G plus edge e′0 that form a separating
triangle of G∞ contradicting the 4-connectedness of G∞. So the obtained map Z is a toroidal
triangulation with no contractible loop nor homotopic multiple edges. Moreover since Q is a
maximal quadrangle, the edge e0 cannot create a separating triangle of Z∞. So by Lemma 5,
the toroidal triangulation Z is essentially 4-connected. Moreover Z has the particularity that
the two faces incident to the root half-edge h0 form a maximal quadrangle of Z. So Z is is in
T ′r (n).

Let a be the mapping defined on the elements Z of T ′r (n) that removes from Z the edge
containing the root half-edge and mark the obtained quadrangle at the corner incident to h0.
Then clearly a ◦ a = Id.

Conversely, let Z be an element of T ′r (n) and consider its image G by a. We have Z is
an essentially 4-connected toroidal triangulation on n vertices rooted at a half-edge that is in
the interior and incident to a maximal quadrangle, and such that the two faces incident to
the root half-edge form a maximal quadrangle. So G is a toroidal map on n vertices, where
all faces are triangles, except one that is a maximal quadrangle and with a marked corner
of this quadrangle. The map G is obtained from Z by removing the interior of a maximal
quadrangle so, by Lemma 27, G is essentially 4-connected. So G is in T tc (n).

We clearly have a ◦ a = Id. So a is a bijection from T tc (n) to T ′r (n). ♦

Let g′ be the restriction of the bijection g, defined in the proof of Theorem 8, to the
elements of T ′r (n). Let M′r,s,b(n) be the subset of Mr,s,b(n) (see definition in Section 6.4)
such that the root half-edge is a stem. We claim the following:

Claim 4 g′ is a bijection from T ′r (n) to M′r,s,b(n).

Proof. Let Z be an element of T ′r (n) and M+ ∈ Mr,s,b(n) its image by g. By definition of
T ′r (n), the two faces incident to the root half-edge h0 form a maximal quadrangle Q. In the
minimal balanced 4-orientation of A(Z) with respect to h0, the 4-disk W inside Q is oriented
clockwise by Lemma 24 (see left of Figure 36). Then by the definition of the mobile (see rule
of Figure 32), there is no half-edge of M+ in the interior of Q except h0. So h0 is a stem of
M+. So M+ is in M′r,s,b(n).

Let g′ be the restriction of g−1 to the elements of M′r,s,b(n). Since g is a bijection, we

have g′ ◦ g′ = Id.
Conversely, let M+ be an element of M′r,s,b(n) and consider its image Z by g−1. By the

proof of Theorem 8, the complete closure procedure on M+ gives an essentially 4-connected
toroidal triangulation Z of Tr(n) rooted at h0 and such that h0 is in the interior and incident to
a maximal quadrangle Q′. Moreover, M+ is the extended mobile associated with the minimal
balanced 4-orientation Dmin of A(Z) with respect to h0. The quadrangle Q′ corresponds to
a {4, 8}-disk W of A(Z) (see Figure 35). Note that W is a maximal {4, 8}-disk containing
h0. So, by Lemma 24, W is oriented clockwise with respect to its interior in Dmin. Then,
by Lemma 23, the orientation of W and of the edges in its interior and incident to it are as
depicted on Figure 36. Then by the definition of the mobile (see rule of Figure 32), there
is no half-edge of M+, distinct from h0, in the interior of Q′ and incident to Q′. Since M+

is covering all the edges of Z, we have that Q′ has no edges in its interior, except the one
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containing h0. So Q′ is the quadrangle formed by the two faces incident to h0. So the two
faces incident to h0 form a maximal quadrangle and so Z is an element of T ′r (n).

Since g is a bijection, we have g′ ◦ g′ = Id. So g′ is a bijection from T ′r (n) toM′r,s,b(n). ♦

Let r (for “remove”) be the mapping defined on the elements (M+, x) ofM′r,s,b(n)×{1, 2},
that removes the root half-edge h0 of M+ that is a stem and roots the obtained mobile M
at an angle of a special vertex by the following rule. Let α be the angle of M such that M+

is obtained from M by adding h0 in the angle α. Consider the unique mobile-labeling `(α)
of M , given by Lemma 30. If M is square, let β be the angle of the special vertex of M that
is between the half-edges labeled 0 and 1. In this case, r returns (M,x) rooted at β. If M is
hexagon, let v1 (resp. v2) be the first (resp. second) special vertex of M that is encountered
while walking counterclockwise along the border of the unique face of M , starting from α.
For i ∈ {1, 2}, let βi be the angle of vi that is between half-edges labeled 0 and 1. In this
case, r returns (M, 0) rooted at βx. We claim the following:

Claim 5 r is a bijection from M′r,s,b(n)× {1, 2} to (Ms
b,a(n)× {1, 2}) ∪ (Mh

b,a(n)× {0}).

Proof. It is clear by the definition of r that the image by r of an element ofM′r,s,b(n)×{1, 2}
is in (Ms

b,a(n)× {1, 2}) ∪ (Mh
b,a(n)× {0}).

Let r be the mapping defined on the elements (M,y) of (Ms
b,a(n)×{1, 2})∪(Mh

b,a(n)×{0})
by the following. Let β be the root angle of M and consider the unique labeling `(β) of M ,
given by Lemma 30. Close all the admissible triples of M to obtain a map G whose special
face is a quadrangle Q. Propagate the labeling `(β) to G by keeping the property that the
two labels that appear on an edge has to differ exactly by (2 mod 4). Then by Lemma 30 the
quadrangle Q of G is labeled as on Figure 45. So Q has a unique angle α between half-edges
labeled 0 and 1. We also denote α the angle of M that corresponds to the angle α of Q. Let
M+ be the map obtained from M by forgetting its root angle β and adding a root half-edge
h0 incident to α. If M is square, then let x = y. If M is hexagon, let x be such that β is
an angle incident to the x-th special vertex of M encountered while walking counterclockwise
along the face of M , starting from α. Then r returns (M+, x).

We claim that:

(1) r ◦ r = Id

Let (M+, x) be an element ofM′r,s,b(n)×{1, 2} and (M,y) its image by r. We use the notation

of the definition of r, i.e., the map M is obtained from M+ by removing the root half-edge
h0 of M+, incident to the angle α of M and rooting M according to the labeling `(α) at an
angle β between half-edges labeled 0 and 1. By Lemma 30, there is a unique mobile-labeling
of M such that β is between half-edges labeled 0 and 1. So the labeling `(β) used in the
definition of r is exactly the same as `(α). So M+ is obtained from M by adding a half-edge
h0 at an angle between half-edges labeled 0 and 1 of `(β).

From M+, one can build the graph Z = g−1(M+) ∈ T ′r (n) by closing admissible triples in
any order. The recovering method of Theorem 6 says that the root half-edge h0 can be the
last stem that is reattached by this procedure. So the graph G defined in the definition of r
is obtained from Z by removing the edge containing the root half-edge. So M+ is obtained
from M by adding a half-edge h0 at an angle of M corresponding to one of the angle of the
quadrangle Q of G.

By Lemma 30, the extension of the labeling `(β) to G shows that the quadrangle Q of G,
is labeled as on Figure 45. Moreover the angles of M that corresponds to the angles of Q are
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incident to half-edges with exactly the same labels in M and in Q. So there is a unique such
angle α of M between half-edges labeled 0 and 1. So M+ is obtained from M by adding a
half-edge h0 at the angle of M corresponding to α and r ◦ r = Id.

This proves (1).

Conversely, let (M,y) be an element of (Ms
b,a(n)×{1, 2})∪ (Mh

b,a(n)×{0}) and (M+, x)

its image by r. Since M is balanced, we have that M+ is also balanced. Moreover, the root
half-edge h0 is added to M in an angle of the special face obtained after reattaching all the
admissible triples of M . So M+ is safe and (M+, x) is in M′r,s,b(n)× {1, 2}.

It is clear that r ◦ r = Id, so r is a bijection. ♦

By Claim 3 to 5, we have r ◦ (g′, Id) ◦ (a, Id) is a bijection from T tc (n) × {1, 2} to
(Ms

b,a(n)× {1, 2}) ∪ (Mh
b,a(n)× {0}). �

7.3 Enumeration of skeletons

A skeleton is a toroidal unicellular map such that every inner vertex, i.e., every vertex of
degree at least two, belongs to its cycles. A skeleton is balanced if every cycle of the map has
the same number of angles on its left and right sides. A skeleton is square (resp. hexagon) if
it is a square (resp. hexagon) unicellular map. Let Sa(n) be the set of skeletons on n inner
vertices, such that all inner vertices have degree 4, and rooted at an angle of a special vertex.
Let Sb,a(n) be the set of balanced element of Sa(n). Let Ssa(n), Sha (n), Ssb,a(n) and Shb,a(n) be
the sets of square and hexagon elements of Sa(n) and Sb,a(n), respectively.

Given an element M of Mb(n), the skeleton of M is obtained from M by removing all
the vertices that are not vertices of the cycles of M nor in their neighborhood. It is direct to
see that the skeletons of elements of Mb,a(n) are in Sb,a(n).

An element of Mb,a(n) can be uniquely decomposed into an element of Sb,a(k), for some
k ≥ 1, and a (2k− 2)-uplet of ternary trees (each ternary tree being attached to a leaf of the
skeleton) such that the total number of inner vertices of the trees is n− k.

Let F(n, k) be the set of k-uplets of rooted ternary trees with total number of inner vertices
n. Its associated generating function satisfies F (z, u) =

∑
n,k |F(n, k)|znuk =

∑
k A(z)kuk =

1
1−uA(z) . Moreover, it is known that |F(n, k)| = k

2n−k
(
3n−k−1

n

)
(see [Sta99, Theorem 5.3.10]).

Let Ssb,a and Shb,a be the generating functions associated with Ssb,a and Shb,a, respectively,

i.e., Ssb,a(z) =
∑

n |Ssb,a(n)|zn and Shb,a(z) =
∑

n |Shb,a(n)|zn.
Then we have the following lemma:

Lemma 32

|Ms
b,a(n)| =

n∑
k=1

|Ssb,a(k)|.|F(n− k, 2k − 2)|

|Mh
b,a(n)| =

n∑
k=1

|Shb,a(k)|.|F(n− k, 2k − 2)|

and the associated generating functions satisfy:

M s
b,a(z) =

∑
n≥1
|Ms

b,a(n)|zn = Ssb,a(zA(z)2)/A(z)2
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Mh
b,a(z) =

∑
n≥1
|Mh

b,a(n)|zn = Shb,a(zA(z)2)/A(z)2.

Proof. The first two formulas are clear by above decomposition. Moreover, each element of
Ms

b,a(n) is obtained by substituting each of the 2k − 2 leaves of an element of Ssb,a(k) by a
ternary tree. So we have:

M s
b,a(z) =

∑
k≥1
|Ssb,a(k)|A(z)2k−2zk

=
1

A(z)2

∑
k≥1
|Ssb,a(k)|(A(z)2z)k

=
Ssb,a(zA(z)2)

A(z)2
.

Similarly, we have Mh
b,a(z) =

Sh
b,a(zA(z)

2)

A(z)2
. �

By Lemma 32, we are reduced to the enumeration of Ssb,a and Shb,a.
Consider an element S of Sa(n). If S is square, consider the two edge-disjoint closed

walks of S started from the special vertex, noted W1 and W2. We assume that W1 and
W2 are chosen such that the two half-edges h1, h2 that are incident to the root angle of S
are traversed from the special vertex in W1, W2, respectively, and that h1 and h2 appear
consecutively in counterclockwise order around the special vertex. If S is hexagon, then
consider the three walks W1, W2 and W3 of S starting from the special vertex v1 containing
the root angle, ending at the second special vertex v2, such that the three paths W1,W2,W3

appears consecutively in counterclockwise order around v1, starting from the leaf attached to
v1. Note that, for the square or hexagonal case, the Wi are uniquely defined and oriented.
Along each walk Wi, the inner vertices that are encountered may have both leaves on the
right, both leaves on the left, or one leaf on each side. In next two lemmas, we encode this
by using Grand Motzkin prefix/paths defined below.

A Grand Motzkin prefix (or GM prefix for short) of length n, is a path in Z2, starting at
the point (0, 0), ending at the point (n, δ), with δ ∈ Z, and composed of k steps (1, 1), (1,−1)
and (1, 0). Let gm(n, δ) be the number of GM prefix of length n starting at (0, 0) and ending
at (n, δ) and GM(z, u) =

∑
n,δ gm(n, δ)znuδ. There is one GM prefix of length 0 and a GM

prefix of length n > 0 is obtained by adding one step (1, 1), (1,−1) or (1, 0) to a GM prefix
of length (n− 1). This decomposition leads to the following equation:

GM(z, u) = 1 + z(u+ 1/u+ 1)GM(z, u) =
1

1− z(u+ 1/u+ 1)
=
∑
n≥0

(1 + 1/u+ u)nzn.

Let [zn]f denote the coefficient of zn of function f(z), i.e., if f =
∑

n fnz
n then [zn] = fn.

A Grand Motzkin path (or GM path for short) of length k is a Grand Motzkin prefix
of length k, ending at the point (k, 0). The generating function associated with GM paths
satisfies GM(z) = [u0]GM(z, u) = 1√

1−2z−3z2 (see [FM14]).

The square skeletons satisfy:
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Lemma 33

|Ssb,a(n)| = 3n − (−1)n

4

Ssb,a(z) =
z

1− 2z − 3z2
.

Proof. With above notations, an element of Ssb,a(n) is uniquely decomposed into a special
vertex and the two closed walks W1 and W2. for i ∈ {1, 2}, let ri (resp. li) be the number
of leaves of S incident to an inner vertex of Wi that are on the right (resp. left) side of Wi.
Let δi = (ri − li)/2. Since the special node as no leaves attached to it, the balanced property
implies that δ1 = δ2 = 0. So if Wi contains ki inner vertices, then Wi can be encoded by
a GM path of length ki. This decomposition results in the product of respective generating
series: Ssb,a(z) = z.GM(z)2 = z

1−2z−3z2 .

Now observe that Ssb,a(z)−2zSsb,a(z)−3z2Ssb,a(z) = z. We deduce the following recurrence:
for n ≥ 2, we have |Ssb,a(n)| = 2|Ssb,a(n− 1)|+ 3|Ssb,a(n− 2)|. Moreover, we have |Ssb,a(0)| = 0

and |Ssb,a(1)| = 1. Since 3n−(−1)n
4 satisfies the same conditions |Ssb,a(n)|, the two are identical.

�

The hexagon skeletons satisfy:

Lemma 34

|Shb,a(n)| = (n− 2).3n−1 +
5.3n−1 + (−1)n

4

Shb,a(z) =
4z2

(z + 1)(3z − 1)2
.

Proof. Let S be an element of Sha (n). Note that S is not assumed to be balanced here.
Considering this larger class, we are able extract the series Shb,a(z) by following the standard
diagonal method [Sta99, Section 6.3]. As with above notations, consider the three walks W1,
W2 and W3 of S starting from the special vertex v1 containing the root angle, ending at
the second special vertex v2, such that the three paths W1,W2,W3 appear consecutively in
counterclockwise order around v1, starting from the leaf attached to v1.

There are different cases to consider depending on the position of the leaves. We say that
S is of Type i if the leaf of v2 is after Wi in the counterclockwise order around v2 (see the
top line of Figure 46). In order to ease the upcoming computation, let rename these walks
depending of the type. For types 1 and 3, let Wc = W1,Wx = −W2 and Wy = −W3 (see
the bottom left and bottom right of Figure 46). For type 2, let Wc = W3,Wx = −W1 and
Wy = −W2 (see the bottom center of Figure 46, where edges have been redrawn differently
than in top-center figure).

Let C1, C2 be the cycles of S made of Wc + Wx and Wc + Wy respectively, with the
direction of traversal corresponding to the orientation of Wc,Wx,Wy. For i ∈ {1, 2}, let δi be
the number of leaves of S incident to Ci that are on its right side minus the number of leaves
of S incident to Ci that are on its left side, divided by two.

Let Sha (k, `, n) denote the elements of Sha (n) such that δ1 = k and δ2 = `, with
(k, `) ∈ Z2. Let Sha (u, v, z) be the associated generating function, i.e., Sha (u, v, z) =∑

(k,`,n)∈Z2×N |Sha (k, `, n)|ukv`zn. This generating function can be computed with the fol-
lowing method. A hexagonal skeleton can be decomposed into 2 special vertices (contributing

61



W3

W1
W2

v1

v2

W3

W1
W2

v1

v2

W3

W1
W2

v1

v2

Type 1 Type 2 Type 3

v1

v2

Wc

Wy

Wx

v1

v2

Wc

Wy

Wx

v1

v2

Wc

Wy

Wx

Figure 46: Different types of hexagon skeletons.

for z2) plus tetra-valent caterpillars Cc, Cx and Cy respectively contributing for GM(z, uv),
GM(z, u) and GM(z, v). Depending of the type of hexagon skeleton, the special vertices are
contributing for +1, 0 or −1 to δ1 and δ2, this is translated by a factor ( 1

uv + uv + 1) on the
generating function. There are four possible root angles around v1, so we have:

Sha (u, v, z) = 4z2(uv +
1

uv
+ 1)(GM(z, uv).GM(z, u).GM(z, v))

= − 4z2(u2v2 + uv + 1)uv

(u2z + uz − u+ z)(v2z + vz − v + z)(u2v2z + uvz − uv + z)
.

Observe that Shb,a(z) = [v0][u0]Sha (u, v, z).

The denominator of Sha (u, v, z), seen as a polynomial of u admits four roots: U, 1
U ,

U
v and

1
Uv where U = 1−z−

√
−3z2−2z+1
2z , and we have:

Sha (u, v, z) = − 4(u2v2 + uv + 1)u

(u− U)(u− 1
U )(u− U

v )(u− 1
Uv )v(v2z + vz − v + z)

.

Hence Sha (u, v, z) can be converted into partial fractions of u:

Sha (u, v, z) = A.

(
U2 + Uv + v2

(1− Uu)U2v2(U2 − v)
+

U2v2 + Uv + 1

(1− U
u )uUv2(1− U2v)

+
U2 + U + 1

(1− U
uv )(U2 − v)Uuv2

+
U2 + U + 1

(1− Uuv)U2v(1− U2v)

)
,

where A = 4v3U3

(v−1)(U2−1)(v2z+vz−v+z) .
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As A = O(z3) and U = O(z) (when z tends to 0), this identity splits into a sum of four
power series in z with coefficients in Q[u, 1u , v,

1
v ], two with only negative powers of u and two

with only nonnegative powers of u.

Sha (u, v, z) = A.

(
U2 + Uv + v2

U2v2(U2 − v)

∑
n≥0

(Uu)n +
U2v2 + Uv + 1

uUv2(1− U2v)

∑
n≥0

(
U

u

)n
+

U2 + U + 1

(U2 − v)Uuv2

∑
n≥0

(
U

uv

)n
+

U2 + U + 1

U2v(1− U2v)

∑
n≥0

(Uuv)n
)
.

Hence the coefficient [u0] can be directly extracted:

[u0]Sha (u, v, z) = A.

(
U2 + Uv + v2

U2v2(U2 − v)
+

U2 + U + 1

U2v(1− U2v)

)
=

4(v2z + vz + v + z)z2v√
−(z + 1)(3z − 1)(v2z2 + vz2 + 2vz + z2 − v)(v2z + vz − v + z)

.

Again, the denominator of [u0]Sha (u, v, z), seen as a polynomial of v admits four roots:

V0,
1
V0
, V1,

1
V1

where V0 = U and V1 = − z2+
√
−(z+1)(3z−1)(1−z)+2z−1

2z2
.

Hence [u0]Sha (u, v, z) can be converted into partial fractions of v:

[u0]Sha (u, v, z) = B.

(
V0(V

2
0 z + V0z + V0 + z)

(1− V0/v)v(V 2
0 − 1)(V0V1 − 1)

+
V1(V

2
1 z + V1z + V1 + z)

(1− V1/v)v(−V 2
1 + 1)(V0V1 − 1)

+
V 2
0 z + V0z + V0 + z

(1− V0v)(V 2
0 − 1)(V0V1 − 1)

+
V 2
1 z + V1z + V1 + z

(1− V1v)(1− V 2
1 )(V0V1 − 1)

)
,

where B = 4V0V 1

z
√
−(z+1)(3z−1)(V0−V1)

.

As B = O(z), V0 = O(z) and V1 = O(z2), this identity splits into a sum of four power
series in z with coefficients in Q[v, 1v ], two with only negative powers of v and two with only
nonnegative powers of v.

[u0]Sha (u, v, z) = B.

(
V0(V

2
0 z + V0z + V0 + z)

v(V 2
0 − 1)(V0V1 − 1)

∑
n≥0

(
V0
v

)n
+
V1(V

2
1 z + V1z + V1 + z)

v(−V 2
1 + 1)(V0V1 − 1)

∑
n≥0

(
V1
v

)n
+
V 2
0 z + V0z + V0 + z

(V 2
0 − 1)(V0V1 − 1)

∑
n≥0

(V0v)n +
V 2
1 z + V1z + V1 + z

(1− V 2
1 )(V0V1 − 1)

∑
n≥0

(V1v)n
)
,

Hence the coefficient [v0] can be directly extracted:

[v0][u0]Sha (u, v, z) = B

(
V 2
0 z + V0z + V0 + z

(V 2
0 − 1)(V0V1 − 1)

+
V 2
1 z + V1z + V1 + z

(V 2
1 − 1)(V0V1 − 1)

)
.

Which simplifies into the second part of the lemma:

Shb,a(z) = [v0][u0]Sha (u, v, z) =
4z2

(z + 1)(3z − 1)2
.

63



We can observe that Shb,a(z) − 5zShb,a(z) + 3z2Shb,a(z) + 9z3Shb,a(z) = 4z. We deduce the

following recurrence for n > 3, |Shb,a(n)| = 5|Shb,a(n − 1)| − 3|Shb,a(n − 2)| − 9|Shb,a(n − 3)|.
Moreover, we have |Shb,a(0)| = |Shb,a(1)| = 0 and |Shb,a(2)| = 4. Since (n−2).3n−1+ 5.3n−1+(−1)n

4

satisfies the same conditions as |Shb,a(n)|, the two are identical.
�

7.4 Enumeration theorem

The full enumeration theorem that we obtain is the following (the first part is precisely
Theorem 2 already stated in the introduction):

Theorem 9 The generating function associated with the number Th(n) of essentially 4-
connected toroidal triangulations on n vertices, rooted on any half-edge, is:

Th(z) =
∑
n≥0
|Th(n)|zn =

zA(z)

7zA(z)2 − 21zA(z) + 9z + 1

where A(z) is the generating function of (leaf-rooted) ternary trees satisfying A(z) =
1 + zA(z)3.

Moreover, the values of |Th(n)| are given by the following formulas:

|Th(n)| = 1

4

n∑
k=1

|T ph,c(n− k)|.|T tc (k)|

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)

|T tc (n)| =
n∑
k=1

S(k).|F(n− k, 2k − 2)|

S(n) =
(−1)n−1 + (3 + 4n)3n−1

8

|F(n, k)| = k

2n− k

(
3n− k − 1

n

)
.

Proof. By Lemma 28, we have:

|Th(n)| = 1

4

n∑
k=0

|T ph,c(n− k)|.|T tc (k)|

and so:

Th(z) =
1

4
T ph,c(z)T

t
c (z). (2)

By Lemma 29, we have:

|T ph,c(n)| = 4

n+ 1

(
3n+ 1

n

)
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T ph,c(z) = 4A(z)2. (3)

By Lemma 31, we have:

|T tc (n)| = |Ms
b,a(n)|+ 1

2
|Mh

b,a(n)| (4)

T tc (z) = M s
b,a(z) +

1

2
Mh
b,a(z). (5)

Let S(n) = |Ssb,a(n)| + 1
2 |S

h
b,a(n)| and S(z) = Ssb,a(z) + 1

2S
h
b,a(z). So, by Lemma 32,

Equations (4) and (5) become:

|T tc (n)| =
n∑
k=1

S(k).|F(n− k, 2k − 2)|

T tc (z) =
S(zA(z)2)

A(z)2
. (6)

From Lemmas 33 and 34, we obtain:

S(n) =
(−1)n−1 + (3 + 4n)3n−1

8

S(z) =
z(1− z)

(1 + z)(1− 3z)2
. (7)

From (6) and (7), we obtain:

T tc (z) =
z − z2.A(z)2

(z.A(z)2 + 1).(3z.A(z)2 − 1)2
. (8)

Combining (2), (3) and (8) gives :

Th(z) =
(z − z2A(z)2)A(z)2

(zA(z)2 + 1)(3zA(z)2 − 1)2
.

By (1) (see Section 7.1), one can replace zA3 by A− 1 in above formula and obtain:

Th(z) =
zA(z)

7zA(z)2 − 21zA(z) + 9z + 1
.

�

Part of the proof of Theorem 9 relies on generating function analysis and do not completely
explain the simplicity of some expressions. For instance, sequences of the number of different
kinds of skeletons (Ssb,a(n) and Shb,a(n)) have nice simple formulas (see Lemmas 33 and 34) that
deserve clean bijective interpretations. Note that these sequences already appear in OEIS [Slo]
(resp. A015518, A191008). Having a bijective proof of the enumeration of skeletons could
be essential to provide an efficient (e.g. sub-quadratic) random generation algorithm for
essentially 4-connected toroidal maps.
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8 Conclusion

In this paper, we have generalized transversal structures and some of its applications to the
toroidal case. Using only a local property in the definition, as in the planar case, is not enough
to obtain interesting properties. Indeed, the set of toroidal transversal structures of a given
toroidal map is partitioned into several distributive lattices. The main point of this paper is
to be able to find a global property, called “balanced”, that such an object may have or may
not have. Then, the set of balanced objects defines a unique lattice whose minimal element
has properties useful to apply techniques devised for the planar case. A challenging question
is to see if one can go further and found a generalization of the balanced property in higher
genus. Currently we have no idea of what could be the answer even for the double torus.

Acknowledgments. We would like to thank Mireille Bousquet-Mélou, Éric Fusy and Daniel
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[BF12a] O. Bernardi and É. Fusy. A bijection for triangulations, quadrangulations, pentag-
ulations, etc. Journal of Combinatorial Theory, Series A, 119(1):218–244, 2012.
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