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Introduction

In the last decades, the use of computer code experiments to model physical phenomena has become a recurrent task for many applied researchers and engineers. In such simulations, it is crucial to understand the global inuence of one or several input variables on the output of the system. When considering these inputs as random elements, this problem is generally called (global) sensitivity analysis. We refer, for example to [START_REF] De Rocquigny | Uncertainty in industrial practice[END_REF] or [START_REF] Saltelli | Sensitivity analysis. Wiley Series in Probability and Statistics[END_REF] for an overview on practical aspects of sensitivity analysis.

One of the most popular indicator to quantify the inuence of some inputs is the so-called Sobol index. This index was rst introduced in [START_REF] Pearson | On the partial correlation ratio[END_REF] and then considered by [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. It is well tailored when the output space is R. It compares using the so-called Hoeding decomposition (see [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF]) the conditional variance of the output (knowing some of the input variables) with the total variance of the output. Many dierent estimation procedures of the Sobol indices have been proposed and studied in the literature. Some are based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [START_REF] Kucherenko | Dierent numerical estimators for main eect global sensitivity indices[END_REF][START_REF] Owen | Better estimation of small Sobol' sensitivity indices[END_REF] and references therein for more details). More recently a method based on nested Monte-Carlo [START_REF] Goda | Computing the variance of a conditional expectation via non-nested Monte Carlo[END_REF] has been developed. In particular, an ecient estimation of the Sobol indices can be performed through the so-called Pick-Freeze method. For the description of this method and its theoretical study (consistency, central limit theorem, concentration inequalities and Berry-Esseen bounds), we refer to [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF] and references therein. Some other estimation procedures are based on dierent designs of experiments using for example polynomial chaos expansions (see [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF] and the reference therein for more details).

The case of vectorial outputs was rst studied in [START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF] and tackled using principal component analysis. In [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF], the authors recover the indices proposed in [START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF] and showed that in some sense they are the only reasonable generalization of the classical Sobol indices in dimension greater than 2. Moreover, they provide the theoretical study of the Pick-Freeze estimators and extend their denition to the case of outputs valued in a separable Hilbert space.

Since Sobol indices are based on the variance through the Hoeding decomposition, they only quantify the input inuence on the mean value of the computer code. Many authors proposed other ways to compare the conditional distribution of the output knowing some of the inputs to the distribution of the output. In [START_REF] Owen | Variance components and generalized Sobol' indices[END_REF][START_REF] Owen | Higher order Sobol' indices[END_REF], the authors considered higher moments to dene new indices, whereas in [START_REF] Borgonovo | A new uncertainty importance measure[END_REF][START_REF] Borgonovo | Moment independent importance measures: New results and analytical test cases[END_REF][START_REF] Borgonovo | A common rationale for global sensitivity measures and their estimation[END_REF][START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF], divergences or distances between measures are used. In [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF][START_REF] Kala | Quantile-oriented global sensitivity analysis of design resistance[END_REF], the authors used contrast functions to build goal-oriented indices. Although these works dened nice theoretical indices, the existence of an ecient statistical estimation procedure is still in most cases an open question. The case of vectorial-valued computer codes is considered in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] where a sensitivity index based on the whole distribution of the output utilizing the Cramérvon-Mises distance is dened. The authors showed that the Pick-Freeze estimation procedure can be used providing an asymptotically Gaussian estimator of the index. This scheme requires 3N evaluations of the output code and leads to a convergence rate of order √ N . This approach has been generalized in [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF], where the authors considered computer codes valued in a compact Riemannian manifold. Once again, they used the Pick-Freeze scheme to provide a consistent estimator of their index, requiring 4N evaluations of the output. Unfortunately, no central limit theorem was proved.

In this work, we build general indices for a code valued in a metric space and we provide an asymptotically Gaussian estimator based on U-statistics requiring only 2N evaluations of the output code while keeping a convergence rate of √ N . In addition, we explain that all the indices studied in [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF][START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF][START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF][START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF] can be seen as particular cases of our framework. Hence, we improve the estimation scheme of [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] and [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF] by reducing to 2N the number of evaluations of the code. Last but not least, using the results of Hoeding [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] on U-statistics, the asymptotic normality is proved straightforwardly.

The paper is organized as follows. Section 2 is dedicated to the denition of the new indices and the presentation of their estimation via U-statistics. In Section 3, we recover the classical indices classically used in global sensitivity analysis. Furthermore, we extend the work of [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF] and establish the central limit theorem that was not yet proved. We illustrate the procedure in Section 4 on a toy example and on two real-data models. The rst application is about the Gaussian plume model and consists in quantifying the sensitivity of the contaminant concentration with respect to some input parameters. Second, an elliptical dierential partial equation of diusive transport type is considered. In this setting, we proceed to the singular value decomposition of the solution and we perform a sensitivity analysis of the orthogonal matrix produced by the decomposition with respect to the equation parameters. Finally, some conclusions are given in Section 5.

2 General setting

The Cramér-von-Mises indices

The main idea of Cramér-von-Mises indices is to compare the conditional cumulative distribution function (c.d.f.) to the unconditional one via some distance. The supremum norm is used in [START_REF] Borgonovo | Probabilistic sensitivity measures as information value[END_REF] while in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] the L 2 -norm is chosen. The previous approaches are global. A local approach is considred in [START_REF] Luyi | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF].

Here, we consider a measurable function f (black-box code) dened on E = E 1 ×E 2 ו • •×E p and valued in a separable metric space (X, d). Here, (E 1 , A 1 ), • • • , (E p , A p ) are measurable spaces. The output denoted by Z is then given by

Z = f (X 1 , . . . , X p ), (1) 
where X i is a random element of E i and X 1 , . . . , X p are assumed to be mutually independent. Naturally, we assume that all the random variables are dened on the same probability space (Ω, A, P) and ω → (X 1 (ω), . . . , X p (ω)) is a measurable application from Ω to E.

In [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF], the authors studied, for X = R k , global sensitivity indices of Z with respect to the inputs X 1 ,. . ., X p based on its whole distribution (instead of considering only its second moment as done usually via the so-called Sobol indices). Those indices are based on the Cramér-von-Mises distance. To do so, they introduced a family of test functions parameterized by a single index t = (t 1 , . . . , t k ) ∈ R k and dened by

T t (Z) = 1 {Z t} = 1 {Z1 t1,...,Z k t k } .
More precisely, let u be a subset of I p = {1, . . . , p} and let ∼ u be its complementary in I p (∼ u = I p \ u). We dene X u = (X i ) i∈u . For t = (t 1 , . . . , t k ) ∈ R k , let also F be the distribution function of Z:

F (t) = P (Z t) = E 1 {Z t} ,
and F u be the conditional distribution function of Z conditionally on X u :

F u (t) = P (Z t|X u ) = E 1 {Z t} |X u .
Obviously, for any t ∈ R k , F u (t) is a random variable depending only on t and X u , the expec- tation of which is E [F u (t)] = F (t). Since for any xed t ∈ R k , T t (Z) is a real-valued random variable, we can perform its Hoeding decomposition with respect to u and ∼ u:

T t (Z) = F (t) + ((F u (t) -F (t)) + (F ∼u (t) -F (t)) + R t (X u , X ∼u ), where R t (X u , X ∼u ) = T t (Z) -E[Y (t)T t (Z)] -(E[T t (Z)|X u ] -E[T t (Z)]) -(E[T t (Z)|X ∼u ] -E[T t (Z)]) leading to Var(T t (Z)) = F (t)(1 -F (t)) = E (F u (t) -F (t)) 2 + E (F ∼u (t) -F (t)) 2 + Var(R t (X u , X ∼u )). (2) 
Then, the Cramér-von-Mises index is obtained by integrating over t with respect to the distribution of the output code Z and normalizing by the integrated total variance :

S u 2,CV M = R k E (F (t) -F u (t)) 2 dF (t) R k F (t)(1 -F (t))dF (t) . (3) 
In this example, the collection of the test functions T t (Z) = 1 {Z t} (t ∈ R k ) is parameterized by a single vectorial parameter t. Since the knowledge of the c.d.f. of Z: F (t) = E[1 {Z t} ] = P(Z t) characterizes its distribution, the index S u 2,CV M depends as expected on the whole distribution of the output computer code. Using the Pick-Freeze methodology, the authors of [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] proposed an estimator which requires 3N evaluations of the output code leading to a convergence rate of √ N . This approach has been generalized in [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF] to compact Riemannian manifolds replacing the indicator function of half-spaces 1 {Z t} parameterized by t by the indicator function of balls 1 {Z∈ B(a1,a2)} indexed by two parameters a 1 and a 2 . In this last work, B(a 1 , a 2 ) stands for the ball whose center is the middle point between a 1 and a 2 with radius a 1 a 2 /2. Therein a consistent estimation scheme based on 4N evaluations of the function is proposed. Nevertheless, the convergence rate of the estimator is not studied.

Now we aim at generalizing this methodology to any separable metric spaces and to any class of test functions parameterized by a xed number of elements of the metric space.

The general metric space sensitivity indices

Recall that Z lives in the space X. Generalizing the previous approach, we consider a family of test functions parameterized by m 1 elements of X. For any a = (a i ) i=1,...,m ∈ X m , we consider the test functions

X m × X → R (a, x) → T a (x).
We assume that T a (•) ∈ L 2 (P ⊗m ⊗ P) where P denotes the distribution of Z. Performing the Hoeding decomposition on each test function T a (•) and then integrating with respect to a using P ⊗m leads to the denition of our new index.

Denition 2.1. The general metric space sensitivity index with respect to u is dened by

S u 2,GM S = X m E (E[T a (Z)] -E[T a (Z)|X u ]) 2 dP ⊗m (a) X m Var(T a (Z))dP ⊗m (a) , (4) 
with

X u = (X i ) i∈u .
Observe that the dierent contributions S u 2,GM S , S ∼u 2,GM S and the integrated remaining term (see ( 2)) sum to 1.

Particular examples By convention, when the test functions T a do not depend on a, we set m = 0.

1. For X = R, m = 0, and T a given by T a (x) = x, one recovers the classical Sobol indices (see [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]). In this case, it appears that the parameterized test functions do not depend on the parameter a. For X = R k and m = 0, one can recover the index dened for vectorial outputs in [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF][START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF] by extending (4).

2. For X = R k , m = 1, and T a given by T a (x) = 1 {x a} , one recovers the index based on the Cramér-von-Mises distance dened in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] and recalled in (3).

Consider that

X = M is a manifold, m = 2 and T a is given by T a (x) = 1 {x∈ B(a1,a2)} ,
where B(a 1 , a 2 ) stands for the ball whose center is the middle point between a 1 and a 2 with radius a 1 a 2 /2. Here, one recovers the index dened in [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF].

Remark 2.2. The previous two rst examples can be seen as particular cases of what is called

Common Rationale in [START_REF] Borgonovo | A common rationale for global sensitivity measures and their estimation[END_REF]. More precisely, the rst-order Sobol index with respect to X i corresponds to the index η i in [4, Equation ( 4)] while the Cramér-von-Mises index with respect to X i is based on the distance between the c.d.f. F of Z and its conditional version F i with respect to X i . Actually, in our construction, as soon as the class of test functions T a characterizes the distribution, the index becomes a particular case of the Common Rationale. Analogously, the authors of [START_REF] Borgonovo | A common rationale for global sensitivity measures and their estimation[END_REF] also consider as particular cases the expectation of the L 1distance between the p.d.f. of Z and its conditional version with respect to X i (index δ i in [START_REF] Borgonovo | A common rationale for global sensitivity measures and their estimation[END_REF]Equation (12)] and the expectation of the L ∞ -distance between F of Z and its conditional version F i (index β i in [4, Equation ( 13)]). Notice that the integration in δ i is done with respect to the Lebesgue measure whereas the integration in our general metric space sensitivity index S u 2,GM S in ( 4) is done with respect to the distribution of the output Z. The benet is twofold. First, the integral always exists. Second, such an integration weights the support of the output distribution.

Estimation procedure via U-statistics

Following the so-called Pick-Freeze scheme, let X u be the random vector such that

X u i = X i if i ∈ u and X u i = X i if i /
∈ u where X i is an independent copy of X i . Then, setting

Z u = f (X u ), (5) 
a direct computation leads to the following relationship (see, e.g., [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF]):

Var(E[T a (Z)|X u ]) = Cov (T a (Z), T a (Z u )) . Now let us dene Z = (Z, Z u ) and consider (m + 2) i.i.d. copies of Z denoted by (Z i , i = 1, . . . , m + 2).
In the sequel, P u 2 stands for the law of Z = (Z, Z u ) . Setting A = (Z 1 , . . . , Z m ). Then the integrand in the numerator of (4) rewrites as

E (E[T A (Z)] -E[T A (Z)|X u ]) 2 = E A Var Xu (E Zm+1 [T A (Z m+1 )|X u ]) = E A Cov Zm+1 (T A (Z m+1 ), T A (Z u m+1 )) .
Here the notation E Z (resp. Var Z and Cov Z ) stands for the expectation (resp. the variance and the covariance) with respect to the law of the random variable Z. Now, for any 1 i m + 2, we let z i = (z i , z u i ) and we dene

Φ 1 (z 1 , . . . , z m+1 ) = T z1,...,zm (z m+1 )T z1,...,zm (z u m+1 ) Φ 2 (z 1 , . . . , z m+2 ) = T z1,...,zm (z m+1 )T z1,...,zm (z u m+2 ) Φ 3 (z 1 , . . . , z m+1 ) = T z1,...,zm (z m+1 ) 2 Φ 4 (z 1 , . . . , z m+2 ) = T z1,...,zm (z m+1 )T z1,...,zm (z m+2 ).
Further, we set

M (1) = M (3) = m + 1 and M (2) = M (4) = m + 2 (6) 
and we dene, for j = 1, . . . , 4,

I(Φ j ) = X M (j) Φ j (z 1 , . . . , z M (j) )dP u,⊗M (j) 2 (z 1 . . . , z M (j) ). (7) 
Finally, we introduce the application Ψ from R 4 to R dened by

Ψ : R 4 → R (x, y, z, t) → x-y z-t . (8) 
Then, S u 2,GM S can be rewritten as

S u 2,GM S = Ψ (I(Φ 1 ), I(Φ 2 ), I(Φ 3 ), I(Φ 4 )) . (9) 
The previous expression of S u 2,GM S will allow to perform easly its estimation. Following Hoeding [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF], we replace the functions Φ 1 , Φ 2 , Φ 3 and Φ 4 by their symmetrized version Φ s 1 , Φ s 2 , Φ s 3 and Φ s 4 :

Φ s j (z 1 , . . . , z M (j) ) = 1 (M (j))! τ ∈S M (j) Φ j (z τ (1) , . . . , z τ (M (j)) )
for j = 1, . . . , 4 where S k is the symmetric group of order k (that is the set of all permutations on I k ). For j = 1, . . . 4, the integrals I(Φ s j ) are naturally estimated by U-statistics of order M (j). More precisely, we consider an i.i.d. sample (Z 1 , . . . , Z N ) (N 1) with distribution P u 2 and, for j = 1, . . . , 4, we dene the U-statistics

U j,N = N M (j) - 1 
1 i1<•••<i M (j) N Φ s j Z i1 , . . . , Z i M (j) . (10) 
Theorem 7.1 in [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] ensures that U j,N converges in probability to I(Φ j ) for any j = 1, . . . , 4.

Moreover, one may also prove that the convergence holds almost surely proceeding as in the proof of Lemma 6.1 in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]. Then we estimate S u 2,GM S by

S u 2,GM S = U 1,N -U 2,N U 3,N -U 4,N = Ψ(U 1,N , U 2,N , U 3,N , U 4,N ). (11) 
Remark 2.3. Naturally, a covariance quantity Cov(A, B) can be estimated using either the

expression Cov(A, B) = E[AB]-E[A]E[B] or the expression Cov(A, B) = E[(A-E[A])(B-E[B])]
leading to the following estimators:

1 N N i=1 A i B i - 1 N N i=1 A i 1 N N i=1 B i or 1 N N i=1 A i - 1 N N i=1 A i B i - 1 N N i=1 B i
which are equal. The use of the right-hand side formula enables greater numerical stability (i.e., less error due to round-os). The Kahan compensated summation algorithm [START_REF] Kahan | Pracniques: further remarks on reducing truncation errors[END_REF] may also be used on these sums. However, the left-hand side formula is generally preferred in sensitivity analysis for the mathematical analysis. This analysis is of course independent of the way the estimators are numerically computed in practice. The same holds for a variance term. Hence, the estimator S u 2,GM S dened in [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF] can be rewritten in the fashion of the right-hand side of the previous display.

Our main result follows.

Theorem 2.4. If for

j = 1, . . . , 4, E Φ s j Z 1 , . . . , Z M (j) 2 < ∞ then √ N S u 2,GM S -S u 2,GM S L -→ N →∞ N 1 (0, σ 2 ) ( 12 
)
where the asymptotic variance σ 2 is given by [START_REF] Goda | Computing the variance of a conditional expectation via non-nested Monte Carlo[END_REF] in the proof below.

Proof of Theorem 2.4. The rst step of the proof is to apply Theorem 7.1 of [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] to the random vector (U 1,N , U 2,N , U 3,N , U 4,N ) . By Theorem 7.1 and Equations (6.1)-(6.3) in [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF], it follows that

√ N         U 1,N U 2,N U 3,N U 4,N     -     I(Φ s 1 ) I(Φ s 2 ) I(Φ s 3 ) I(Φ s 4 )         L -→ N →∞ N 4 (0, Γ)
where Γ is the square matrix of size 4 given by

Γ(i, j) = M (i)M (j)Cov(E[Φ s i (Z 1 , . . . , Z M (i) )|Z 1 ], E[Φ s j (Z 1 , . . . , Z M (j) )|Z 1 ]).
Now, it remains to apply the so-called delta method (see [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF]) with the function Ψ dened by [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF]. Thus, one gets the asymptotic behavior in Theorem 2.4 where σ 2 is given by

σ 2 = g Γg (13) 
with g = ∇Ψ(I(Φ s 1 ), I(Φ s 2 ), I(Φ s 3 ), I(Φ s 4 )) and ∇Ψ = (z -t) -2 (z -t, -z + t, -x + y, x -y) . Notice that we consider (m+2) copies of Z in the denition of S u 2,GM S (see ( 9)). Nevertheless, the estimation procedure only requires a N sample of Z (see [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]) that means only 2N evaluations of the black-box code which constitutes an appealing advantage of the method presented in this paper. Moreover, the required number of calls to the black-box code is independent of the size m of the class of tests functions unlike in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] or in [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF] where (m + 2) × N calls to the computer code were necessary. In addition, the proof of the asymptotic normality in Theorem 2.4 is elementary and does not rely anymore on the use of the sophisticated functional delta method as in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF].

Comments

For any output code f , one may consider dierent choices of the family (T a ) a∈X m of functions indexed by a ∈ X m leading to very dierent indices. The choice of the family must be induced by the aim of the practitioner. To quantify the output sensitivity around the mean, one should consider the classical Sobol indices based on the variance and corresponding to the rst particular case presented in Section 2.2. Otherwise, interested in the sensitivity of the whole distribution, one should prefer a family of functions that characterizes the distribution. For instance, in the second particular case presented in Section 2.2, the functions T a are the indicator functions of half-lines and yield the Cramér-von-Mises indices.

Moreover, since in the estimation procedure the number of output calls is independent of the choice of the family (T a ) a∈X m , one can consider and estimate simultaneously several indices with no-extra cost. In fact, the only computational challenge relies in our capability to evaluate the functions Φ on the sample.

3 Applications in classical frameworks and beyond

Particular cases

Sobol indices In the case where X = R, m = 0 and the test functions T a given by T a (x) = x (do not depend on the parameter a), we recover the classical Sobol indices. As mentioned in the Introduction, many classical methods of estimation are available. Among them, one can cite estimation procedure based on polynomial chaos expansion [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF], quasi Monte-Carlo scheme [START_REF] Kucherenko | Dierent numerical estimators for main eect global sensitivity indices[END_REF][START_REF] Owen | Better estimation of small Sobol' sensitivity indices[END_REF], the classical Pick-Freeze method [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF][START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF], and more recently a method based on nested Monte-Carlo [START_REF] Goda | Computing the variance of a conditional expectation via non-nested Monte Carlo[END_REF]. This last method seems to be numerically ecient. Nevertheless, it requires that all the random elements have a density with respect to the Lebesgue measure to be able to simulate under the conditional distribution. In addition, no theoretical asymptotic convergences are given.

As explained in Section 2.3, our method provides a new estimator based on U-statistics for the classical Sobol index. In that case, the estimator is given by [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF] and, for j = 1, . . . , 4, the U j,N 's are given by

U 1,N = 1 N N i=1 Z i Z u i U 2,N = 1 N (N -1) N i=1 Z i N i=1 Z u i - N i=1 Z i Z u i =: 1 N (N -1) ( Ũ2,N -Ṽ2,N ) U 3,N = 1 N N i=1 Z 2 i U 4,N = 1 N (N -1)   N i=1 Z i 2 - N i=1 Z 2 i   =: 1 N (N -1) ( Ũ4,N -Ṽ4,N ) leading to S u 2,GM S = U 1,N -U 2,N U 3,N -U 4,N = Ψ(U 1,N , U 2,N , U 3,N , U 4,N )
while in [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF], the classical Pick-Freeze estimator S u of S u 2,GM S is given by

S u = U 1,N -(1 -1/N 2 ) Ũ2,N U 3,N -(1 -1/N 2 ) Ũ4,N = Ψ(U 1,N , (1 -1/N 2 ) Ũ2,N , U 3,N , (1 -1/N 2 ) Ũ4,N ) (14) 
and takes into account the diagonal terms. Both procedures require 2N evaluations of the blackbox code and have the same rate of convergence. The estimators are slightly dierent which induces dierent asymptotic variances. Finally, one may improve the estimation S u using the information of the whole sample leading to T u given in [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]Equation (6)]:

T u = 1 N N i=1 Y i Y u i -1 N N j=1 Yi+Y u i 2 2 1 N N i=1 (Yi) 2 +(Y u i ) 2 2 -1 N N i=1 Yi+Y u i 2 2 . ( 15 
)
The sequence of estimators T u is asymptotically ecient in the Cramér-Rao sense (see [START_REF] Gamboa | Statistical inference for Sobol pick-freeze Monte Carlo method[END_REF]Proposition 2.5]). In this paper, we also could have constructed a new estimator T u 2,GM S analog version of S u 2,GM S taking into account the whole information contained in the sample. However, based on the same initial design as S u and T u , neither S u 2,GM S nor T u 2,GM S will be asymptotically ecient. Nevertheless, the estimation procedure proposed in this paper outperforms the procedure presented in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF][START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF] as soon as m 1.

Sobol indices for multivariate outputs For X = R k and m = 0, one may realize the same analogy between the estimation procedure proposed in this paper and that in [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF].

Cramér-von-Mises indices For X = R k , m = 1 and the test functions T a given by T a (x) = 1 {x a} , we outperform the central limit theorem proved in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]. Indeed, the estimator proposed in [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] requires 3N evaluations of the computer code versus only 2N in our new procedure. In addition, the proof therein is based on the powerful but complex functional delta method while the proof of Theorem 2.4 is an elementary application of Theorem 7.1 in [START_REF] Hoeding | A class of statistics with asymptotically normal distribution[END_REF] combined with the classical delta method.

Compact manifolds

A particular framework is the case when the output space is a compact Riemannian manifold M. In [START_REF] Fraiman | Sensitivity indices for output on a riemannian manifold[END_REF], a similar index to S u 2,GM S is studied in this special context, taking T a (x) = 1 {x∈ B(a1,a2)} as test functions, where B(a 1 , a 2 ) still stands for the ball whose center is the middle point between a 1 and a 2 with radius a 1 a 2 /2. The authors showed that, under some restrictions on the underlying probability measure and the Riemannian manifold, the family of balls B(a 1 , a 2 ) (a1,a2)∈M is a determining class, that is, if two probability measures P 1 and P 2 on M coincide on all the events of this family, then P 1 = P 2 . By this property, they proved that if their index, denoted B u 2 , vanishes then the distributions of T a (Z) and (T a (Z)|X u ) coincide. Further, the performance of B u 2 in Riemannian manifolds immersed in R d with d = 2, 3 and on the cone of positive denite matrices (manifold) is analyzed. Last, an exponential inequality for the estimator Bu 2 of B u 2 is provided together with the almost sure convergence that is deduced from. Unfortunately, no central limit theorem is given.

As a particular case of S u 2,GM S , the asymptotic distribution of Bu 2 can be found from Theorem 2.4. Given x, since (a 1 , a 2 ) → T (a1,a2) (x) is a symmetric function and m = 2, it is veried that,

Φ 1 (z 1 , z 2 , z 3 ) = 1 {z3,z u 3 ∈ B(z1,z2)} , Φ 2 (z 1 , z 2 , z 3 , z 4 ) = 1 {z3,z u 4 ∈ B(z1,z2)} , Φ 3 (z 1 , z 2 , z 3 ) = 1 {z3∈ B(z1,z2)} , Φ 4 (z 1 , z 2 , z 3 , z 4 ) = 1 {z3,z4∈ B(z1,z2)} .
In this setting, the limiting covariance matrix Γ is given by Γ(i, j) = M (i)M (j)Cov (L i , L j ), for i, j = 1, . . . , 4 where

L 1 = 1 6 τ ∈S3 P Z τ3 , Z u τ3 ∈ B(Z τ1 , Z τ2 )|Z 1 , L 2 = 1 24 τ ∈S4 P Z τ3 , Z u τ4 ∈ B(Z τ1 , Z τ2 )|Z 1 , L 3 = 1 6 τ ∈S3 P Z τ3 ∈ B(Z τ1 , Z τ2 )|Z 1 ) , L 4 = 1 24 τ ∈S4 P Z τ3 , Z τ4 ∈ B(Z τ1 , Z τ2 )|Z 1 .
4 Numerical applications

A non linear model

In this section, we illustrate and we compare the dierent estimation procedures based on the Pick-Freeze scheme and the U-statistics for the classical Sobol indices on the following toy model:

Z = exp{X 1 + 2X 2 }, (16) 
where X 1 and X 2 are independent standard Gaussian random variables. The distribution of Z is log-normal and we can derive both its probability density function and its c.d.f.

f Z (z) = 1 √ 10πz e -(ln z) 2 /10 1 R+ (z) and F Z (z) = Φ ln z √ 5 ,
where Φ stands for the c.d.f. of the standard Gaussian random variable. We have p = 2 input variables and tedious exact computations (see [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]) lead to closed forms of the Sobol indices:

S 1 = 1 -e -1 e 4 -1 ≈ 0.0118 and S 2 = e 3 -e -3 e 4 -1 ≈ 0.3738.
Further, the Cramér-von-Mises indices S 1 2,CV M and S 2 2,CV M are also explicitly computable:

S 1 2,CV M = 6 π arctan 2 -2 ≈ 0.1145 and S 2 2,CV M = 6 π arctan √ 19 -2 ≈ 0.5693.
The reader is refered to [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF] for the details of these computations.

In Figure 1, we compare the estimations of the two rst-order Sobol indices obtained by both estimation procedures (U-statistics and Pick-Freeze). The total number of calls of the computer code ranges from n = 100 to 500000. When estimating the Sobol indices with both methodologies, we have considered samples of size N = n/(p+1) so that each estimation requires a total number n of evaluations of the code. Analogously, when estimating the Cramér-von-Mises indices using U-statistics, we have also considered samples of size N = n/(p + 1). In contrast, when estimating the Cramér-von-Mises indices using the Pick-Freeze scheme, we have considered samples of size N = n/(p + 2). We observe that both methods converge and give precise results for large sample sizes. The same kind of convergence can be observed for the estimations of the Cramérvon-Mises indices with both methodologies. Actually, the convergence is a bit slower which is not surprising due to the greater complexity of the Cramér-von-Mises indices. In addition, the estimation procedure with U-statistics outperforms the Pick-Freeze one as soon as m 1. As already mentioned in Sections 2.3 and 2.4, such a better performance increases with the number m of parameters of the tests functions family. Indeed, for a xed budget n (in other words, a xed number of evaluations of the computer code), the needed sample size to estimate the p rst-order indices with the standard Pick-Freeze scheme is N 1 = n/(m + p + 1) to be compared to N 2 = n/(p + 2) required in the U -statistics estimation procedure.

The Gaussian plume model

In this section, the model under study concerns a point source that emits contaminant into a uni-directional wind in an innite domain. Such a model is also applied, for instance, to volcanic eruptions, pollen and insect dispersals, and is called the Gaussian plume model (GPM) (see, e.g., [START_REF] Carrascal | Sensitivity of gaussian plume model to dispersion specications[END_REF][START_REF] Stockie | The mathematics of atmospheric dispersion modeling[END_REF]). The GPM assumes that atmospheric turbulence is stationary and homogeneous. Naturally, in Earth Sciences, it is crucial to analyze the sensitivity of the output of the GPM model regarding the input parameters (see [START_REF] Mahanta | Sensitivity analysis with reference to emission concentration of gaussian plume model[END_REF][START_REF] Pouget | Sensitivity analysis of a one-dimensional model of a volcanic plume with particle fallout and collapse behavior[END_REF]).

The model parameters are represented in Figure 2. The contaminant is emitted at a constant rate Q and the wind direction is denoted by u = (u, 0, 0) (with u 0) while the eective height is H = h(1 + δ) where h is the stack height and δh is the plume rise. , where r is a parametric function given by r(x) = 1 u x 0 K(v)dv, the function K being the eddy diusion. In this section, we investigate the particular two-dimensional case: the height is considered as zero (at ground level). In addition, we suppose that r(x) = Kx/u where K is a constant. Hence, the contaminant concentration at location (x, y, 0) rewrites as:

C(x, y, 0) = Q 2πKx e -u(y 2 +H 2 ) 4Kx . (17) 
A rst step consists in performing a GSA for spatial data, namely an ubiquous sensitivity analysis. In other words, the sensitivity indices are computed location after location leading to a sensitivity map. See, for instance, [START_REF] Marrel | Sensitivity analysis of spatial and/or temporal phenomena[END_REF] for more details on this methodology. The results are presented in Figure 3. Secondly, we wish to perform a sensitivity analysis globally on the contaminant concentration with respect to the uncertain inputs Q, K, and u, while the altitude plume parameter H is xed in advance. In this setting, the function f that denes the output of interest in (1) is then given by:

f : R 3 → L 2 (R 2 ) (Q, K, u) → f (Q, K, u) = (C(x, y, 0)) (x,y)∈R 2 . (18) 
In other words, to any triplet (Q, K, u), the computer code associates one square-integrable eld from R 2 to R. Based on reality constraints and guided by the expert knowledge, the stochastic parameters Q, K, and u of the model are assumed to be all independent with uniform distribution on [0, 10]. Let C 1 and C 2 be two pollution concentrations with domain in the ground level. The range of values of x and y where C 1 and C 2 are compared is

A = {(x, y) ∈ R 2 : x ∈ [0, 10], y ∈ [-10, 10]}. The distance used is the classical L 2 distance d(C 1 , C 2 ) = (C 1 (x, y, 0) -C 2 (x, y, 0)) 2 dxdy.
To quantify the sensitivity on the contaminant concentration with respect to Q, K, and u, we consider the family of test functions T a given by T (a1,a2) (b) = 1 b∈B(a1,a2) , where a 1 , a 2 , and b are square-integrable applications from R 2 to R and B(a 1 , a 2 ) stands for the ball centered at a 1 with radius a 1 a 2 (whence m = 2). The values of the indices are presented in Table 1. In this study, we have considered several values of the altitude plume parameter H from 1 to 20 and a sample size N equal to 1000, 2000, and 5000. We observe that, as H increases, the values of the sensitivity indices decrease. When N = 5000, we may also observe that the rank of the indices largely varies with respect to the value of H: for large values of H, parameter K appears to be the most inuent on the concentration. In contrast, when H = 1, all three parameters seem to have the same inuence. 

N=1000 N=2000 N=5000 K Q u K Q u K Q u H=1 0 

Singular value decomposition in partial dierential equation

In this section, we study the sensitivity of the solution (numerical approximation) of a partial dierential equation, when the parameters of the equation (inputs) vary. In particular, we analyze the sensitivity of the subspaces generated by the singular value decomposition of the numerical grid output matrix solution. Many problems can be modelled by an elliptical dierential partial equation. For instance, in physics, electric potential, potential ow, structural mechanics are all studied, see [START_REF] Sobolev | Partial Dierential Equations of Mathematical Physics: International Series of Monographs in Pure and Applied Mathematics[END_REF]. In biology, the reactiondiusionadvection equation is used to model chemotaxis observed in bacteria, population migration and evolutionary adaptation to changing environments, see [START_REF] Volpert | Elliptic partial dierential equations[END_REF].

In this setting, it is usual to compact the information through the singular value decomposition of the solution matrix, that is, the numerical solution of the dierential equation. Furthermore, it can also be useful to analyze the inuence of the parameters in this information compactication.

In this section, an elliptical dierential partial equation of type diusive transport is considered:

B ∂C ∂t = ∂ ∂x D ∂C ∂x + ∂ ∂y D ∂C ∂y -rC + p xy , (19) 
with production rate p xy at location (x, y), consumption rate r, and diusive transport D of a substance C in time t and spatial dimensions (x, y). The boundaries are prescribed as zerogradient (default value). The parameter p xy is zero everywhere except in 50 randomly positioned spots denoted by (x i , y i ), for i = 1, . . . , 50. We assume that the production rate is the same at any of the 50 locations and equal to p and we consider that the function f in (1) dening the output C is given by f : R 4 → L 2 (R + × R 2 ) (B, D, r, p) → f (B, D, r, p) = (C(t, x, y)) (t,x,y)∈R+×R 2 .

(20)

Conclusion

In this paper, we explain how to construct a large variety of sensibility indices when the output space of the black-box model is a general metric space. This construction encompasses the classical Sobol indices [START_REF] Janon | Asymptotic normality and eciency of two Sobol index estimators[END_REF] and their vectorial generalization [START_REF] Gamboa | Sensitivity analysis for multidimensional and functional outputs[END_REF] as well as some indices based on the whole distribution, namely the Cramér-von-Mises indices [START_REF] Gamboa | Sensitivity analysis based on Cramérvon Mises distance[END_REF]. In addition, we propose an estimation procedure that ensures strong consistency and asymptotic normality at a cost of 2N calls to the computer code with a rate of convergence √ N . As soon as m 1, this new methodology appears to be more ecient than the so-called Pick-Freeze estimation procedure.

Figure 1 :

 1 Figure1: Non-linear model[START_REF] Kahan | Pracniques: further remarks on reducing truncation errors[END_REF]. Convergence of both methods when the total number of calls of the computer code increases. The two rst-order Sobol indices have been represented from left to right. Several total number of calls of the computer code have been considered ranging from n = 100 to n = 10 8 . The x-axis is in logarithmic scale.

Figure 2 :

 2 Figure 2: Plume model. Cross section at z = 0 of a contaminant plume emitted from a continuous point source, with wind direction aligned with the xaxis. Then the contaminant concentration at location (x, y, z) is given by C(x, y, z) = Q 4πur(x) e -y 2 4r(x) e -(z-H) 2 4r(x) + e -(z+H) 2 4r(x)

Figure 3 :

 3 Figure 3: Plume model (17). Ubiquous sensitivity analysis with respect to the emission rate Q (top left), the wind speed u (top right), the diusion K (bottom left) and the altitude H (bottom right).
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 1 .1365 0.1216 0.1330 0.1124 0.1419 0.1453 0.1425 0.1431 0.1562 H=2 0.1028 0.1197 0.1212 0.1291 0.1317 0.1171 0.1222 0.1627 0.1143 H=10 0.0813 0.0891 0.1010 0.1081 0.1077 0.1256 0.0893 0.0831 0.1001 H=20 0.1027 0.0246 0.1041 0.0620 0.0942 0.1030 0.0913 0.0091 0.0329 Sensitivity indices for the plume model (17)
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All the input parameters are then assumed to be uniformly distributed:

Let C(0, x, y) be the solution of [START_REF] Lamboni | Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models[END_REF] at time t = 0. We compute the matrix A that has the rst two principal component scores along its columns. Note that these two columns represent a rank-2 approximation of the matrix solution. This matrix A is a way to embed the approximated solution on a Stiefel manifold S t . That is, A ∈ S t = {M ∈ M 50,2 : M M = Id}, where M n,k stands for the set of matrices of size n × k. We consider the Stiefel manifold as an embedded one into the Euclidean space, and we choose the standard inner product in this space (Frobenius product) as metric in the Riemannian manifold. Notice that it is also possible to select another metric in S t . Therefore, the similarity between two matrices is given by the Frobenius distance, that is, for any matrices

where tr(A) represents the trace of the matrix A. We consider the parametric family of functions given by

where the parameters A 1 and A 2 of the test functions are now matrices (thus are written with capital letters) and B(A 1 , A 2 ) (resp. B(A 2 , A 1 )) still stands for the ball centered at A 1 (resp. A 2 ) with radius A 1 A 2 . In Table 2, the sensitivity indices are calculated for dierent values of β, δ, and γ and the high inuence of the parameter r is observed in all cases. As expected, this inuence increases with γ and decreases as the value of δ increases. The simulations have been generated using the R language [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. In particular, the discretized solution of the dierential equation has been computed with the ReacTran package [START_REF] Soetaert | R-package reactran: Reactive transport modelling in r[END_REF].