N

N

Sensitivity analysis in general metric spaces

Fabrice Gamboa, Thierry Klein, Agnes Lagnoux, Leonardo Moreno

» To cite this version:

Fabrice Gamboa, Thierry Klein, Agnes Lagnoux, Leonardo Moreno. Sensitivity analysis in general
metric spaces. 2020. hal-02044223v2

HAL Id: hal-02044223
https://hal.science/hal-02044223v2

Preprint submitted on 10 Feb 2020 (v2), last revised 19 Jan 2021 (v4)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02044223v2
https://hal.archives-ouvertes.fr

Sensitivity analysis in general metric spaces

Fabrice Gamboa!, Thierry Klein?, Agnés Lagnoux®, and Leonardo Moreno!

nstitut de Mathématiques de Toulouse; UMR5219. Université de Toulouse;
CNRS. UT3, F-31062 Toulouse, France.

2Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse;

ENAC - Ecole Nationale de I’Aviation Civile, Université de Toulouse, France

3Institut de Mathématiques de Toulouse; UMR5219. Université de Toulouse;
CNRS. UT2J, F-31058 Toulouse, France.

4Departamento de Métodos Cuantitativos, FCEA, Universidad de la Reptblica,
Uruguay

February 10, 2020

Abstract

In this paper, we introduce new indices adapted to outputs valued in general metric
spaces. This new class of indices encompasses the classical ones; in particular, the so-called
Sobol indices and the Cramér-von-Mises indices. Furthermore, we provide asymptotically
Gaussian estimators of these indices based on U-statistics. Surprisingly, we prove the asymp-
totic normality straightforwardly. Finally, we illustrate this new procedure on a toy model
and on two real-data examples.

Keywords: Sensitivity analysis, Cramér-von-Mises distance, Pick-Freeze method, U-statistics,
general metric spaces.

1 Introduction

In the last decades, the use of computer code experiments to model physical phenomena has
become a recurrent task for many applied researchers and engineers. In such simulations, it could
be crucial to understand the global influence of one or several input variables on the output of
the system. When considering these inputs as random elements, this problem is generally called
(global) sensitivity analysis. We refer, for example to [5] or [19] for an overview on practical
aspects of sensitivity analysis.

One of the most popular quantitative indicator to quantify the influence of some inputs is
the so-called Sobol index. This index was first introduced in [20] and is well tailored, when the
output space is R. It compares thanks to the so-called Hoeffding decomposition (see [11]) the
conditional variance of the output (knowing some of the input variables) with the global variance
of the output. An efficient estimation of the Sobol indices can be performed through the Pick-
Freeze method. For a description of this method and its theoretical study (consistency, central
limit theorem, asymptotic efficiency, concentration inequalities and Berry-Esseen bounds), we
refer to [12, 9] and references therein.



The case of vectorial outputs was first studied in [13] and tackled using principal component
analysis of the output. In [8], the authors recover the indices proposed in [13] and showed that in
some sense they are the only reasonable generalization of the classical Sobol indices in dimension
greater than 2. Moreover, they provide the theoretical study of the Pick-Freeze estimators and
extend their definitions to the case of outputs valued in a separable Hilbert space.

Since Sobol indices are based on the variance through the Hoeffding decomposition, they only
quantify the input influence on the mean value of the computer code. Many authors proposed
another way to compare the conditional distribution of the output knowing some of the inputs to
the distribution of the output. In [16, 15|, the authors considered higher moments to define new
indices, whereas in [1, 2, 4], the use of divergences or distances between measures allows to define
new indices. In [6], the authors used contrast functions to build goal-oriented indices. Although
these works defined nice theoretical indices, the existence of an efficient statistical estimation
procedure is still in most cases an open question. The case of vectorial-valued computer codes is
considered in [10] where a sensitivity index based on the whole distribution of the output thanks
to the Cramér-von-Mises distance is defined. The authors showed that the Pick-Freeze estimation
procedure can be used providing an asymptotically Gaussian estimator of the index. This scheme
requires 3N evaluations of the output code and leads to a convergence rate of order v/N. This
approach has been generalized in [7], where the authors considered computer codes valued in
a compact Riemannian manifold. Once again, they used the Pick-Freeze scheme to provide a
consistent estimator of their index requiring 4N evaluations of the output. Unfortunately, no
central limit theorem was proved.

In this work, we build general indices for a code valued in a metric space and we provide
asymptotically Gaussian estimator based on U-statistics requiring only 2N evaluations of the
output code while keeping a convergence rate of v/N. In addition, we explain that all the indices
studied in [12, 9, 8, 10, 7] can be seen as particular cases of our framework. Hence, we improve the
estimation scheme of [10] and [7] by reducing to 2N the number of evaluations of the code. Last
but not least, thanks to the results of Hoeffding [11] on U-statistics, the asymptotic normality is
proved straightforwardly.

The paper is organized as follows. Section 2 is dedicated to the definition of the new indices
and the presentation of their estimation via U-statistics. In Section 3, we recover the classical
indices used in sensitivity analysis. Furthermore, we extend the work of [7] and establish the
central limit theorem that was not yet proved. We illustrate the procedure in Section 4 on a
toy example and on two real-data models. The first application is about the Gaussian plume
model and consists in quantifying the sensitivity of the contaminant concentration with respect
to some input parameters. Second, an elliptical differential partial equation of type diffusive-
advective transport is considered. In this setting, we proceed to the singular value decomposition
of the solution and we perform a sensitivity analysis of the orthogonal matrix produced by the
decomposition with respect to the equation parameters. Finally, some conclusions are given in
Section 5.

2 General setting

We consider a regression function f (black-box code) defined on E = Ey x Ey x --- x E, and
valued in a separable metric space (X, d). Here, (E1, A1), -+, (Ep, Ap) are measurable spaces.
The output denoted by Z is given then by

Z=f(X1,...,Xp), (1)

where X; is a random element of E; and Xi,..., X, are assumed to be mutually independent.



In [10], the authors studied for X = R* sensitivity indices of Z with respect to the inputs
Xi,..., X, based on its whole distribution (instead of considering only its second moment as
done usually via the so-called Sobol indices). To do so, they introduced a family of test functions
parametrized by a single index t € R¥ and defined by

TH(Z) = Liz<ay,

where {Z < t} means that {Zy < t1,..., 72, < tx}.
Let u be a subset of I, = {1,...,p} and let ~ u be its complementary in I, (~ u = I\ {u}).
We define Xy, = (X;)icu- Let also F' be the distribution function of Z:

Ft)=P(Z<t)=E[lz¢n], fort=(ts,....t) € R
and F™ be the conditional distribution function of Z conditionally on X;:
FY(t) =P(Z < t|Xu) =E [V {z<|Xu] . for t = (t1,...,t;) € R"

Obviously, E[FU(t)] = F(t). Since for any fixed t € R* T;(Z) is a real-valued random
variable, we can perform its Hoeffding decomposition:

Var(Ty(2)) = F(£)(1 = F()) = E [(F*(t) = F())*| +E[(F~(t) = F(8))’] + Var(R(t,0)) (2)
where
R(t,u) = Ti(Z) — E[Y () Ti(2) — (E[Ty(2)|Xu] - E[T}(2)]) — (E[T3(Z)| X~u] - E[T:(2)]).

Then, the Cramér-von-Mises index is obtained by integrating in ¢ with respect to the distri-
bution of the output code Z:

o heB[re - P)]are
Sycvm = Jor FO)(A = F(t))dF(t) ¥

In this example, the collection of the expectations E[T;(Z)] = E[1{z<4] (t € R) is parametrized
by a single vectorial parameter ¢t. Since its knowledge characterizes the distribution of Z, the
previous indices depend as expected on the whole distribution of the output computer code.
Using the Pick-Freeze methodology, the authors of [10] proposed an estimator which requires 3N
evaluations of the output code leading to a convergence rate of v/N.

This approach has been generalized in [7] to compact Riemannian manifolds replacing the
indicator function of half-spaces 1;z<;; parametrized by ¢ by the indicator function of balls
1{zeB(ap)) indexed by two parameters a and b. In their work, B(a,b) stands for the ball of
diameter ab. In this last paper, a consistent estimation scheme based on 4N evaluations of the
function is proposed. Nevertheless, the convergence rate of the estimator is not studied.

Now we aim at generalizing this methodology to any separable metric spaces and to any
classes of test functions parametrized by a fixed number of elements of the metric space.

2.1 A new index

Generalizing the previous approach, we consider a family of test functions parametrized by m
elements of X with m € N*. For any a = (a;);=1,...m € X™, we consider the test functions

.....

X xX — R
(a,x) = Tu(x)



We assume that T,(-) € L?(P®™ ® P) where P denotes the distribution of Z. Performing the
Hoeffding decomposition on each test function 7,(-) and then integrating with respect to a using
P®™ leads to the definition of our new index.

Definition 2.1. The general metric space sensitivity index with respect to u is defined by

o e Ex [B2ITL(2)) — EAT(2)1 X)) PO (@)
S2,GMS = fxm Val"(Ta(Z))d]P)@m(a) ’ (4)

where Ey; stands for the expectation with respect to the random variable U.

Proposition 2.2. By construction, the new index lies in [0,1] and shares the same properties
as the Sobol one:

1. the different contributions sum to 1;
2. they are invariant by translation, by any isometry and by any non-degenerated scaling of
the components of Z.
Particular examples

1. For X =R, m = 0 and T, given by T,(x) = x, one recovers the classical Sobol indices (see
[21, 20]). For X = R*¥ and m = 0, one can recover the index defined for vectorial outputs
in [8, 13] by extending (4).

2. For X = R¥, m =1 and T, given by T,(z) = 1{s<a}, one recovers the index based on the
Cramér-von-Mises distance defined in [10] and recalled in (3).

3. Consider that X = M is a manifold, m = 2 and Ty, is given by T, () = L{zeB(ay,az)}, Where
B(aq,as) will stand for the ball of diameter ajaz. Here, one recovers the index defined in

[7]-

2.2 Estimation procedure via U-statistics

Following the so-called Pick-Freeze scheme, let X" be the random vector such that X = X,
and X = X/ if i ¢ u where X is an independent copy of X;. Then, setting

Z% = f(X"), (5)
a classical computation leads to the following relationship (see, e.g., [12]):
Var(E[T,(Z2)| X4]) = Cov (To(Z2), T.(ZY)) .

Let us define Z = (Z, Z*) T and consider (m+2) i.i.d. copies of Z denoted by (Z;,i = 1,...,m+2).
In the sequel, P4 stands for the law of Z = (Z,Z*)7. Then the integrand in the numerator of
(4) rewrites as

E [(E[Ta(z)] —E[Tu(Z)|Xu))?| =Ez,.....2,, [Var(E[Tu(Zmi1)| Xu))]
=Ez,...2, [Covz, (T2, . 2, Zm1),Tz,...2,,(Zpni1))] -

Here the notation Ez (resp. Covyz) stands for the expectation (resp. the covariance) with respect
to the law of the random variable Z.



Now, for any 1 < i < m+ 2, we let z; = (%, 2}") and we define

(Dl(zl; . ,Zm+1) = Tzl, \Zm (Zm—i-l)Tzl,.. Zm (ZyL:LJ,.l)
Do(21,s - Zmy2) = Ty o (1) Ty ,zm(z;'m)
(I)d(zla < Zm+1) = Tzl,‘. Zm (Zm+1)2
(1)4(21; . ,Zm+2) = Tzl,. Zm (Zm—i-l)Tzl ..... Zm (Zm+2)
We further set
m(l)=m(3)=m+1 and m(2) =m(4)=m+2 (6)
and we define, for j =1,...,4,
I((I)J) = /x o @j (Z17 C ,Zm(j))dPg@m(j)(Zl ey Zm(j))- (7)
Finally, we introduce the application ¥ from R* to R defined by
v R* - R
(ry.20) = ®)

Then, 53 ;)5 can be rewritten as

S2.aus = W (L(P1), [(P2), [(P3), [(Ds)). 9)

The previous expression of 53’ ;¢ Will allow to perform easly its estimation. Following Hoeffding
[11], we replace the functions ®1, Po, P53 and P4 by their symmetrized version @5, &5, ®§ and
o3

1
(I)S'(zla'“az ): . CI)'(ZTla"'aZT j )
j m(j) (m(]))' 6;, J (1) (m(y))
TEOm(4)
for j =1,...,4 where 8 is the symmetric group of order k (that is the set of all permutations
on I). For j =1,...4, the integrals I(®$) are naturally estimated by U-statistics of order m(j).
More precisely, we consider an i.i.d. sample (Z1,...,Zy) (N > 1) with distribution P§ and, for

j=1,...,4, we define the U-statistics
-1
N s
Ujn = (m(j)> > 3 (Ziy, - Zi, ) - (10)
1< < < (jH SN

Theorem 7.1 in [11] ensures that U; y converges in probability to I(®,) for any j = 1,...,4.
Moreover, one may also prove that the convergence holds almost surely proceeding as in the
proof of Lemma 6.1 in [10]. Then we estimate S35 by

u 2

§2,GMS = ﬁ =V (Ui,N,UsN,Us N, Usn). (11)

Our main result follows.

Theorem 2.3. If forj=1,...,4, E [cb; (zl,...,zm(j)ﬂ < oo then

A'U, u ’C
VN (Sz,GMS - SQ,GMS) N:io Nl(O»UZ) (12)

where the asymptotic variance o2 is given by (13) in the proof below.



Proof of Theorem 2.3. The first step of the proof is to apply Theorem 7.1 of [11] to the random
vector (U17N,U2,N,U37N,U47N)T. By Theorem 7.1 and Equations (6.1)-(6.3) in [11], it follows
that

Uin I(®7)
U27N B I((I’g) L

VN Us.n r@3) | | voze N0
Usn I(®3)

where I' is the square matrix of size 4 given by

Now, it remains to apply the so-called Delta method (see [25]) with the function ¥ defined by
(8). Thus, one gets the asymptotic behavior in Theorem 2.3 where o2 is given by

0?:=g'Tyg (13)
with g = VU(I(®5), (D), [(®5), [(®5)) and VU = (z—1) 2 (2 —t,—z +t,—z +y, o —y) . O

Notice that we consider (m+2) copies of Z in the definition of S5 /¢ (see (9)). Nevertheless,
the estimation procedure only requires a N sample of Z (see (11)) that means only 2V evaluations
of the black-box code which constitutes an appealing advantage of the method presented in this
paper. Moreover, the required number of calls to the black-box code is independent of the size m
of the class of tests functions unlike in [10] or in [7] where (m+2) x N calls of the computer code
were necessary. In addition, the proof of the asymptotic normality in Theorem 2.3 is elementary
and does not rely anymore on the use of the sophisticated functionnal Delta method as in [10].

2.3 Comments

Considering an output code f, one may consider different choices of the family (73)aexm of
functions indexed by a € X™ leading to very different indices. The choice of the family must
be induced by the aim of the practitioner. To quantify the output sensitivity around the mean,
one should consider the classical Sobol indices based on the variance and corresponding to the
first example of Section 2.1. Otherwise, interested in the sensitivity of the whole distribution,
one should prefer a family of functions that characterizes the distribution. For instance, in the
previous second example of Section 2.1, the functions T, are the indicator functions of half-lines
and yield the Cramér-von-Mises indices.

Moreover, since in the estimation procedure the number of output calls is independent of the
choice of the family (7})qexm, one can consider and estimate simultaneously several indices with
no-extra cost. In fact, the only computational challenge relies in our capability to evaluate the
functions ® on the sample.

3 Applications in classical frameworks and beyond

3.1 Particular cases

Sobol indices For X = R, m = 0 and the test functions T, given by Ty (z) = z, our method
provides a new estimator based on U-statistics for the classical Sobol index. In that case, the



estimator is given by (11) and, for j =1,...,4, the U; n’s are given by

1
U=~ ZZ
i=1
1 N N N ) i i
Us N Zi Yy Zi— AVA IES (Ua,n — Vo)
o (5757 5A7) =
| X
_ 2
U37N - N lez
1 N 2 N ]
_ . o 2 _. 7 RV,
leading to
U U-
Sy ams = U;Z — Ujg =V (U N, Uz n,Us N, UsN)

while in [9], the classical Pick-Freeze estimator S* of S35 Gms is given by

_Uin— (1—1/N?)Us n

Su = -
U3,N - (1 - 1/N2)U4,N

= U(Uy N, (1 = 1/N?)Us n, Us v, (1 = 1/N?)Uy n) (14)

and takes into account the diagonal terms. Both procedures require 2N evaluations of the
black-box code and have the same rate of convergence. The estimators are slightly different
which induces different asymptotic variances. Finally, one may improve the procedures using the
information of the whole sample leading to the analog version of the estimation T" given in |9,

Eq.(6)]:
2
N u N Yity®
_ N iz ViV - (% 2= T)

Tu = 1 N (Y')2+(Y‘u)2 1 N Yi+vYu 2" (15)
Nlim oz (sz‘:l R )

The sequence of estimators Tvis asymptotically efficient in the Cramér-Rao sense (see [9, Propo-

sition 2.5]). In this paper, we also could have constructed a new estimator @“G Ms analog version
of §§‘G ms taking into account the whole information contained in the sample. Anyway, based

on the same initial design as S and f“, neither §§‘ GM s Dor T 2.cms Will be asymptotically effi-
cient. Nevertheless, the estimation procedure proposed in this paper outperforms the procedure
presented in [10, 7] as soon as m > 1.

Sobol indices for multivariate outputs For X = R* and m = 0, one may realize the same
analogy between the estimation procedure proposed in this paper and that in [8].

Cramér-von-Mises indices For X = R*¥, m = 1 and the test functions T, given by T, (z) =
l{z<q}, we outperform the central limit theorem proved in [10]. Indeed, the estimator proposed
in [10] requires 3N evaluations of the computer code versus only 2N in our new procedure. In
addition, the proof therein is based on the powerful but complex functional Delta method while
the proof of Theorem 2.3 is an elementary application of Theorem 7.1 in [11] combined with the
classical Delta method.



3.2 Compact manifolds

A particular framework is the case when the output space is a compact Riemannian manifold M.
In [7], a similar index to S;GMS is studied in this special context, taking T4 () = L{zeB(ay,a0)} @S
test functions. The authors showed that, under some restrictions on the underlying probability
measure and the Riemannian manifold, the family of balls (B(a1,a2)) 4, 4,)eac IS @ determining
class, that is, if two probability measures P; and P, on M coincide on all the events of this family,
then P, = P». By this property, they proved that if their index, denoted B3, vanishes then the
distributions of T,(Z) and T,(Z)| Xy coincide. Further, in the last paper, the performance of
BY in Riemannian manifolds immersed in R? with d = 2,3 and on the cone of positive definite
matrices (manifold) is analyzed. Last, an exponential inequality for the estimator BY of BY is
provided together with the almost sure convergence that is deduced from. Unfortunately, no
central limit theorem is given.

As a particular case of S5 Gm s, the asymptotic distribution of B; can be found from Theorem
2.3. Given z, since (a1,az) = T(q,,4,)(2) is a symmetric function and m = 2, it is verified that,

d, Z1a227z3) = 1{2372363(21722)}7

o4

2\Z ’Z2,Z3,Z4) = 1{Z3,ZZ€B(117Z2)}7

(
(z1
(z1
(

kA

3\Z ,ZQ,Z3) = 1{2363(21722)}’
(Dél Z1,Z2,Z3,Z4) = H{ZS,Z4EB(ZI’Z2)}'

In this setting, the limiting covariance matrix I is given by I'(z, j) = m(i)m(j)Cov (L, L;),
for 7,7 =1,...,4 where

1
L, = 6 Z IP(ZTS’Z“:;} € B(ZT1’Z7'2)|Z1) ’

TES3

1
Ly = ﬂ Z P(ngvz;l € B(Z7'17ZT2)|Zl) ’

TES,

1
Lz = 6 Z P(Zm € B(Z:,,Z:,)|Z1)),

TES3

1
L4 = ﬁ Z P(ngaz'm S B(ZT17ZTz)|Z1> :

TES,

It is also possible to take other test functions 7, (with m = 2). In this case, the index can
be built in a more general metric spaces (M, d). For instance, To(%) = LizeB(a;,02)UB(az,a1)} OF
Ta(CC) = ]]-{a:EB(al,ag)ﬁB(az,al)}-

4 Numerical applications

4.1 A non linear model

In this section, we illustrate and compare the different estimation procedures based on the Pick-
Freeze scheme and the U-statistics for the classical the Sobol indices on the following toy model:

Z = exp{X1 + 2)(2}7 (16)



where X7 and X5 are independent standard Gaussian random variables. The distribution of Z
is log-normal and we can derive both its density and its distribution functions:

1 2 1
fz(y) e~ (Iny) /10]JR+(y) and Fy(y)=® (ny) )

B v 107y \/5
Here, ® stands for the distribution function of the standard Gaussian random variable. We have
p = 2 and tedious exact computations lead to closed forms of the Sobol indices S' and S?:

1—6_1 3—6_3

§'= — T ~ 00118 and §? = ——— ~ 03738,

et — et —

Further, the Cramér-von-Mises indices S5 oy, and S3 oy-y, are also explicitly computable:

Siovm = garctan2 —2~0.1145 and S5 oy = garctan V19 — 2 = 0.5693.

The reader is refered to [10] for the details of these computations.

In Figure 1, we compare the estimations of the two first order Sobol indices and the estima-
tions of the two first order Cramér-von-Mises indices obtained by both estimation procedures
(U-statistics and Pick-Freeze). The total number of calls of the computer code range from n = 100
to 500000. To have a fair comparison, when estimating the Sobol indices with both methodolo-
gies (U-statistics and Pick-Freeze) and the Cramér-von-Mises indices using U-statistics, we have
considered samples of size N = n/(p+ 1). In contrast, when estimating the Cramér-von-Mises
indices using the Pick-Freeze scheme, we have considered samples of size N = n/(p + 2). Then,
each estimation requires a total number n of evaluations of the code. We observe that both
methods converge and give precise results for large sample sizes. In addition, the estimation
procedure with U-statistics outperforms the Pick-Freeze one as soon as m > 1 as expected. Such
a better performance increases with the number m of parameters of the tests functions family.

4.2 The Gaussian plume model

In this section, the model under study concerns about a point source that emits contaminant
into a uni-directional wind in an infinite domain. Such a model is also applied, for instance,
to volcanic eruptions, pollen and insect dispersals, and is called the Gaussian plume model
(GPM) (see, e.g., [3, 24]). The GPM assumes that atmospheric turbulence is stationary and
homogeneous. Naturally, in Earth Sciences, it is crucial to analyze the sensitivity of the output
of the GPM model regarding the input parameters (see [14, 17]).

The model parameters are represented in Figure 2. The contaminant is emitted at a constant
rate @ and the wind direction is denoted by u = (u,0,0) (with u > 0) while the effective height
is H = h(1 4 ¢) where h is the stack height and §h is the plume rise.

Then the contaminant concentration at location (z,y, 2) is given by

_v? [ _(=H)? _ G+mH)?
C’(x,y,z) — 47TuQr(x)6 Ir(w) (e (@) e 4@ >7

where 7 is a parametric function given by r(z) = 1 fox K (v)dv, the function K being the eddy

T u
diffusion. In this section, we investigate the particular two-dimensional case: the height is
considered as zero (at ground level). In addition, we suppose that r(z) = Kz /u where K is a

constant. Hence, the contaminant concentration at location (x,y,0) rewrites as:

Q  —uerH?)
iRz .

C(x7y70) = 27TK.'I:6

(17)
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Figure 1: Non-linear model (16). Convergence of both methods when the total number of calls
of the computer code increases. The two first order Sobol indices have been represented from left
to right at the top row while the two first order Cramér-von-Mises indices have been represented
from left to right at the bottom row. Several total number of calls of the computer code have
been considered: N = 100, 500, 1000, 5000, 10000, 50000, 100000, and 500000. When estimating
the Sobol indices with both methodologies (U-statistics and Pick-Freeze) and the Cramér-von-
Mises indices with the U-statistics, we have considered samples of size N = n/3. In contrast,
when estimating the Cramér-von-Mises indices using the Pick-Freeze scheme, we have considered
samples of size N = n/4. The z-axis is in logarithmic scale.

Now we wish to perform a sensitivity analysis on the contaminant concentration with respect
to the uncertain inputs ), K, and u, while the alture plume parameter H is fixed in advance.
In this setting, the function f that defines the output of interest in (1) is then given by:

fiOR o L*(R?)

(Qv K7 ’LL) = f(Qv K7 ’LL) = (C(x7y70))(x,y)6]R2 " (18)

In other words, to any 3-uplet (Q, K, u), the computer code associates one square-integrable field
from R? to R. Based on reality constraints and guided by the expert knowledge, the stochastic
parameters @), K, and u of the model are assumed to be all independent with uniform distribution
U(0,10). For two pollution concentrations C; and Cy with domain in the ground level (in R?),

10



Wind direction
—

Figure 2: Cross section at z = 0 of a contaminant plume emitted from a continuous point source,
with wind direction aligned with the r—axis.

the distance used is the classical L? distance

d(Ch, Cy) = \/ / / (Cr(2,9,0) — Ca(x, 3, 0))2ddy.

To quantify the sensitivity on the contaminant concentration with respect to @, K, and u,
we consider the family of functions Tj, given by T4, 4,)(b) = Liep,, ., Where a1, az, and b
square-integrable are applications from R? to R and B(a, a,) stands for the L? ball centered at
a1 with diameter ayaz (whence m = 2). The values of the indices are presented in Table 1. In
this study, we have considered several values of the alture plume parameter H from 1 to 20 and a
sample size N equal to 1000, 2000, and 5000. We observe that, as H increases, the values of the
sensitivity indices decrease. When N = 5000, we may also observe that the rank of the indices
largely varies with respect to the value of H: for large values of H, the parameter K appears to
be the most influent on the concentration. In contrast, when H = 1, all three parameters seem
to have the same influence.

N=1000 N=2000 N=5000
K Q u K Q u K Q u
H=1 0.1365 0.1216 0.1330 | 0.1124 0.1419 0.1453 | 0.1425 0.1431 0.1562
H=2 0.1028 0.1197 0.1212 | 0.1291 0.1317 0.1171 | 0.1222 0.1627 0.1143
H=10 | 0.0813 0.0891 0.1010 | 0.1081 0.1077 0.1256 | 0.0893 0.0831 0.1001
H=20 | 0.1027 0.0246 0.1041 | 0.0620 0.0942 0.1030 | 0.0913 0.0091 0.0329

Table 1: Sensitivity indices for the plume model (17)

4.3 Singular value decomposition in partial differential equation

In this example, we study the sensitivity of the solution (numerical approximation) of an equation
in partial derivatives, when the parameters of the equation (inputs) vary. In particular, we
analyze the sensitivity of the subspaces generated by the singular value decomposition of the
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numerical grid output matrix solution. Following the same example, an elliptical differential
partial equation of type diffusive-advective transport is considered:

aC 0 oC 0 oC
% _ 9 \p%lL 2 pd 1
ot  Ox [ 5‘:1:} + dy [ 5‘y} rC oy, (19)

with production rate p,, at location (z,y), consumption rC, and diffusive transport D of a
substance C' in three dimensions (¢, z,y). The boundaries are prescribed as zero-gradient (default
value). The parameter p,, is zero everywhere except for 50 randomly positioned spots denoted
by (zi,y;), for i =1,...,50.

Many problems can be modelled by an elliptical differential partial equation. For instance, in
physics, electric potential, potential flow, structural mechanics are all studied, see [22]. In biology,
the reaction—diffusion—advection equation is used to model chemotaxis observed in bacteria,
population migration and evolutionary adaptation to changing environments, see [26].

In this setting, it is usual to compact the information through the singular value decomposi-
tion of the solution matrix of dimension 50 x 50, that is, the numerical solution of the differential
equation (19). Furthermore, it can also be useful to analyze the influence of the parameters in
this information compactification. In that view, we assume that the production rate is the same
at any of the 50 locations and equal to p and we consider that the function f in (1) defining the
output C'is given by

£ R4 - L2(R; x R?)

20
(B,D,’I",p) = f(B7D7T7p) = (C(t7x7y))(t,z,y)ER+><R2 . ( )

All the input parameters are then assumed to be uniformly distributed:

B ~U(1- 3,1+ p),
D ~U(2—-10,2+9),
r~~v-U(1,2),
p~U0,1).

Let C(0,z,y) be the solution of (19) and M be the orthogonal matrix given by its singular
value decomposition (the first two vectors orthonormal eigenvectors of C' x CT). Here, the
similarity between two matrices is given by the Frobenius distance, that is, for any matrices A,
and By € Mn,k,

d(Ay, Az) = \/tf((Al — A2)T(A1 — Ag)),

where tr(A) represents the trace of the matrix A. The parametric family of functions Ty, is given
by

Tlar,a2)(0) = 1beBy, 0y 0y Bazayag

where a1, as and b are matrices and By, 4, still stands for the ball centered at a; with diameter
aiaz. In Table 2, the sensitivity indices are calculated for different values of 8, §, and v and the
high influence of the parameter r is observed in all cases. As expected, this influence increases
with v and decreases as the value of § increases. The simulations have been generated using
the R language [18]. In particular, the discretized solution of the differential equation has been
computed with the ReacTran package [23].
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6=0.1 6=0.5
v =0.001 B D r B D r
f=0.1 |0.001 0.011 0.546 | 0.020 0.071 0.119
B=05 |0.010 0.007 0.491 | 0.000 0.041 0.102
6=0.1 0=0.5
v =0.01 B D r B D r
f=0.1 |0.000 0.001 0.664 | 0.010 0.053 0.168
6=05 |0.013 0.006 0.621 | 0.008 0.041 0.132
6=0.1 6=0.5
v=0.1 B D T B D r
f=0.1 |0.005 0.006 0.794 | 0.020 0.051 0.179
S=05 |0.000 0.006 0.721 | 0.000 0.043 0.171

Table 2: Sensitivity indices for the partial differential equation (19)

5 Conclusion

In this paper, we explain how to construct a large variety of sensibility indices as soon as the
output space of the black-box model is a general metric space. This construction encompasses
the classical Sobol indices [12] and their vectorial generalization [8] as well as some indices based
on the whole distribution, namely the Cramér-von-Mises indices [10]. In addition, we propose an
estimation procedure that ensures strong consistency and asymptotic normality at a cost of 2V
calls to the code with a rate of convergence v/N. Hence, as soon as m > 1, this new methodology
appears to be more efficient than the so-called Pick-Freeze estimation procedure.
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