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1 Introduction

2 General setting

2.1 Notation

It is convenient to have short expressions for terms that converge in probability to zero. We follow [13].
The notation oPr(1) (respectively OPr(1)) stands for a sequence of random variables that converges to
zero in probability (resp. is bounded in probability) as n→∞. More generally, for a sequence of random
variables Rn,

Xn = oPr(Rn) means Xn = YnRn with Yn
Pr→ 0

Xn = OPr(Rn) means Xn = YnRn with Yn = OPr(1).

For deterministic sequences Xn and Rn, the stochastic notation reduce to the usual o and O.

In the paper, c stands for a generic constant that may di�er from one line to another.

2.2 A new index

We consider a black-box code f from E := E1 × E2 × · · · × Ed valued in some separable metric space
(X , d). The output is denoted by Z given by

Z = f(X(1), . . . , X(d)). (1)

In [5], the authors perform a sensitivity analysis when X = Rk on Z based on the whole distribution of Z
(instead of considering only its second moment as usually via the so-called Sobol indices). In that view,
they introduce a class of test functions parametrized by a single index t ∈ Rk and de�ned by

Yt(Z) = 1{Z6t}.
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Then they compute

E
[
(E[Yt(Z)]− E[Yt(Z)|Xv])

2
]

= E
[
(F (t)− F v(t))2

]
(2)

and Var(Yt(Z)) = F (t)(1 − F (t)) as for the classical Sobol indices. Finally, they integrate both (2) and
Var(Yt(Z)) with respect to the distribution of the output code Z to obtain the Cramér Von Mises index
with respect to v by

Sv2,CVM :=

∫
Rk E

[
(F (t)− F v(t))2

]
dF (t)∫

Rk F (t)(1− F (t))dF (t)
. (3)

In this example, the collection of the expectations E[Yt(Z)] = E[1{Z6t}] is parametrized by a single
parameter t. Since its knowledge characterizes the distribution of Z, the previous indices depend as
expected on the whole distribution of the output computer code. Using the Pick and Freeze methodology,
they propose an estimator which requires 3N evaluations of the code for a rate of convergence of

√
N .

This approach has been generalized in [] to compact manifolds replacing the indicator function of half-
spaces 1{Z6t} parametrized by t by the indicator function of balls 1{Z∈B(a,b)} indexed by two parameters

a and b. In their work, B(a, b) stands for the ball of diameter ab. They also propose a procedure scheme
based on 3N evaluations of the computer code.

In this paper, we generalize this methodology to separable metric spaces and to classes of test functions
parametrized by a �xed number of indices. We prove a central limit theorem for an estimator based on
a U-statistics that only requires 2N evaluations of the computer code. We also consider a V-statistics
and study its asymptotic behavior. This technology can be applied to the framework considered in [5]
reducing the computational cost with a U-statistics estimator whose asymptotic behavior can be deduced
in an easier way. Similarly, the computational cost is reduced with respect to that in [] and the asymptotic
behavior of the estimator is established.

More precisely, we assume that the test functions are parametrized by m ∈ N∗ elements of X . Hence for
any a = (ai)i=1,...,m ∈ Xm, the test functions

Xm ×X → R
(a, x) 7→ Ya(x)

are L2-functions with respect to the product measure P⊗m ⊗ P on Xm × X . Then we de�ne the general
metric space sensitivity index with respect to v by

Sv2,GMS :=

∫
Xm E

[
(E[Ya(Z)]− E[Ya(Z)|Xv])

2
]
dP⊗m(a)∫

Xm Var(Ya(Z))dP⊗m(a)
, (4)

where P⊗m is the product m-times of the distribution of the output code Z.

Particular cases

1. For X = R, m = 1 and Ya is given by Ya(x) = x, one recovers the classical Sobol indices (see
[12, 11]).

2. For X = Rk andm = 1, one can recover the index de�ned for vectorial outputs in [3, 8] by extending
(4) in the following way. We allow the function Ya to take its values in X = Rk so that we set
Ya(x) = x and using (7), we de�ne

Sv2,GMS :=

∫
Xm tr (Cov (Ya(Z), Ya(Zv))) dP⊗m(a)∫

Xm tr (Var(Ya(Z))) dP⊗m(a)
. (5)

3. For X = Rk, m = 1 and Ya is given by Ya(x) = 1{x6a}, one recovers the index based on Cramér
von Mises distance de�ned in [5] and recalled in (3).

4. Now consider that X = M a manifold, m = 2 and Ya is given by Ya(x) = 1{x∈B(a1,a2)}, where
B(a1, a2) will stand for the ball of diameter a1a2. Here, one recovers the index de�ned in []. In
some other examples, B(a1, a2) will stand for the ball centered at a1 with radius a1a2.
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2.3 Estimation procedure via U-statistics

Following the so-called Pick and Freeze scheme, let Xv be the random vector such that Xv
v = Xv and

Xv
i = X ′i if i 6= v where X ′i is an independent copy of Xi. Then, setting

Zv := f(Xv), (6)

an obvious computation leads to the following relationship (see, e.g., [7])

Var(E[Ya(Z)|Xv]) = Cov (Ya(Z), Ya(Zv)) .

Let us de�ne Z = (Z,Zv)> and we consider (Zi, i = 1, . . . ,m+ 2) (m+ 2) i.i.d. copies of Z. We denote
by Pv2 the law of Z = (Z,Zv)>. Then the numerator rewrites as

EZ1,...,Zm [Var(E[Ya(Zm+1)|Xv])] = EZ1,...,Zm

[
CovZm+1(YZ1,...,Zm(Zm+1), YZ1,...,Zm(Zvm+1))

]
. (7)

Here the notation EZ stands for the expectation with respect to the random variable Z.

Now for any 1 6 i 6 m+ 2, we let zi = (zi, z
v
i ) and we de�ne

Φ1(z1, . . . , zm+1) := Yz1,...,zm(zm+1)Yz1,...,zm(zvm+1)

Φ2(z1, . . . , zm+2) := Yz1,...,zm(zm+1)Yz1,...,zm(zvm+2)

Φ3(z1, . . . , zm+1) := Yz1,...,zm(zm+1)2

Φ4(z1, . . . , zm+2) := Yz1,...,zm(zm+1)Yz1,...,zm(zm+2).

We set

m(1) = m(3) = m+ 1 and m(2) = m(4) = m+ 2 (8)

and we de�ne for j = 1, . . . , 4,

I(Φj) :=

∫
Xm(j)

Φj(z1, . . . , zm(j))dP
v,⊗m(j)
2 (z1 . . . , zm(j)). (9)

Finally, we introduce the application Ψ from R4 to R de�ned by

Ψ : R4 → R
(x, y, z, t) 7→ x−y

z−t .
(10)

Then one can express Sv2,GMS in the following way

Sv2,GMS := Ψ (I(Φ1), I(Φ2), I(Φ3), I(Φ4)) . (11)

Following the framework of Hoe�ding [6], we replace the functions Φ1,Φ2, Φ3 and Φ4 by their symmetrized
version Φs1,Φ

s
2, Φs3 and Φs4:

Φsj(z1, . . . , zm(j)) =
1

(m(j))!

∑
τ∈Sm(j)

Φj(zτ(1), . . . , zτ(m(j)))

for j = 1, . . . , 4 where Sk is the symmetric group of degree k. For j = 1, . . . 4, the integrals I(Φsj)
are naturally estimated by U -statistics of order m(j). More precisely, we consider a N i.i.d. sample
(Z1, . . . ,ZN ) with distribution Pv2 and for j = 1, . . . , 4, we de�ne

Uj,N :=

(
N
m(j)

)−1 ∑
16i1<···<im(j)6N

Φsj
(
Zi1 , . . . ,Zim(j)

)
. (12)

Theorem 7.1 in [6] ensures that Uj,N converges in probability to I(Φj) for any j = 1, . . . , 4. Moreover,
one may also prove that the convergence holds almost surely proceeding as in the proof of Lemma 6.1 in
[5].
We estimate Sv2,GMS by

Ŝv2,GMS :=
U1,N − U2,N

U3,N − U4,N
= Ψ(U1,N , U2,N , U3,N , U4,N ). (13)
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Remark 2.1. Notice that we consider (m + 2) copies of Z in the de�nition of Sv2,GMS (see (11)).
Nevertheless, the estimation procedure only requires a N sample of Z (see (13)) which means only 2N
evaluations of the black-box code.

Theorem 2.2. If for j = 1, . . . , 4, E
[
Φsj
(
Z1, . . . ,Zm(j)

)2]
<∞ then

√
N
(
Ŝv2,GMS − Sv2,GMS

)
L−−−−−→

n→+∞
N (0, σ2) (14)

where the asymptotic variance σ2 is given by (22) in the proof.

2.4 Comments and particular cases

Considering an output code f , one may consider di�erent choices of the family (Ya)a∈Xm of functions
indexed by a ∈ Xm leading to very di�erent indices. The choice is induced by the aim of the practitioner.
To quantify the output sensitivity around the mean, one should consider the classical Sobol indices
based on the variance and corresponding to the previous particular case 1. Otherwise, interested in
the sensitivity of the whole distribution, one should take a family of functions that characterizes the
distribution. For instance, in the previous particular case 3., the functions Ya are the indicator functions
of half-lines and yield the Cramér von Mises indices.

Moreover, since in the estimation procedure the number of output calls is independent of the choice of
the family (Ya)a∈Xm , one can consider and estimate simultaneously several indices with no-extra cost. In
fact, the only computational challenge relies in our capability to evaluate the functions Φ at the sample
points.

Particular cases

1. For X = R, m = 1 and Ya is given by Ya(x) = x, we provide a new estimator based on U -statistics
of the classical Sobol index. In that case, the estimator is given by (13) and Uj,N are given by

U1,N =
1

N

N∑
i=1

ZiZ
v
i

U2,N =
1

N(N − 1)

(
N∑
i=1

Zi

N∑
i=1

Zvi −
N∑
i=1

ZiZ
v
i

)
=: U1

2,N − U2
2,N

U3,N =
1

N

N∑
i=1

Z2
i

U4,N =
1

N(N − 1)

( N∑
i=1

Zi

)2

−
N∑
i=1

Z2
i

 =: U1
4,N − U2

4,N

while in [4], the estimator SvN is given by

SvN :=
U1,N − U1

2,N

U3,N − U1
4,N

= Ψ(U1,N , U
1
2,N , U3,N , U

1
4,N ) (15)

that takes into account the diagonal terms. Both procedures require 2N evaluations of the black-
box code and have the same rate of convergence. The estimators are slightly di�erent which induces
di�erent asymptotic variances. Note that if the computer is centered, the procedures are the same.
Finally, one may improve the procedures using the information of the whole sample leading to the
analog version of the estimation T̂ vN given in [4, Eq.(6)].

2. For X = Rk and m = 1, one may realize the same analogy between the estimation procedure
proposed in this paper and that in [3].
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3. For X = Rk, m = 1 and Ya is given by Ya(x) = 1{x6a}, we outperform the CLT proved in [5].
Indeed, the estimator proposed in [5] requires 3N evaluations of the computer code while only
2N are required in our procedure. In addition, their proof is based on the powerful but complex
functional Delta method while the proof of Theorem 2.2 is an elementary application of Theorem
7.1 in [6] combined with the classical Delta method.

3 Beyond the applications in classical frameworks

3.1 Compact manifolds

3.2 Computer codes whose outputs are distribution functions

General setting In some applications, we deal with stochastic codes in the sense that two evaluations of
the code for the same input x lead to di�erent outputs. The practitioner is interested in the distribution
µx of the output for a given x. This type of codes can be traduced in terms of a deterministic code
by considering an extra input which is not chosen by the practitioner but which is a latent variable
generated randomly by the computer code. In the framework of sensitivity analysis, one consider the
inputs as random variables. Then we will construct all the random variables (the one chosen by the
practitioner and those generated by the computer code) on the same probability space leading to the
application:

fs : E ×D → R (16)

(x, d) 7→ fs(x, d)

We naturally denote the output random variable fs(x, ·) by fs(x).

Hence, one may de�ne another (deterministic) computer code associated with fs whose output is a
probability measure:

f : E →M2(R) (17)

x 7→ µx

whereM2(R) is the set of the probability measures µ such that
∫
x2dµ(x) < +∞. Obviously, in practice,

one does not assess the output code f but one only obtains a natural approximation of the measure µx
given by n evaluations of fs at x, namely,

µx,n :=
1

n

n∑
j=1

δfs(x,dj).

Concretely, for a single random input X ∈ E = E1× · · ·×Ed whose distribution is denoted by L, we will
evaluate n times the code fs de�ned by (16) so that the the code will generate n variables D1, . . . , Dn

and one may observe
fs(X,D1), . . . , fs(X,Dn)

leading to the measure µX,n = 1
n

∑n
j=1 δfs(X,Dj) approximating the distribution of fs(X). Note that the

random variables D1, . . . , Dn are not observed.

Sensitivity analysis In order to study the sensitivity of the distribution µx, one can use the framework
introduced in Section 2.2. In that view, we endowedM2(R) with the Wasserstein distance W2 of order
2. Then (4) becomes

Sv2,GMS =

∫
Xm E

[(
E[1W2(µ1,µX)6W2(µ1,µ2)]− E[1W2(µ1,µX)6W2(µ1,µ2)|Xv]

)2]
dP⊗2(µ1, µ2)∫

Xm Var(1W2(µ1,µX)6W2(µ1,µ2))dP⊗2(µ1, µ2)

or even Sv2,GMS = Ψ (I(Φ1), I(Φ2), I(Φ3), I(Φ4)) with Ψ and I de�ned in (10) and (9) and

Φ1(µ1, . . . ,µ3) = 1W2(µ1,µ3)6W2(µ1,µ2)1W2(µ1,µv
3)6W2(µ1,µ2)

Φ2(µ1, . . . ,µ4) = 1W2(µ1,µ3)6W2(µ1,µ2)1W2(µ1,µv
4)6W2(µ1,µ2)

Φ3(µ1, . . . ,µ3) = 1W2(µ1,µ3)6W2(µ1,µ2)

Φ4(µ1, . . . ,µ4) = 1W2(µ1,µ3)6W2(µ1,µ2)1W2(µ1,µ4)6W2(µ1,µ2)

where µi = µXi
is the concatenation of the measure µXi and its Pick and Freeze version denoted by µXv

i
.
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Indices estimation In an ideal scenario which corresponds to the framework of (17), one may asses to
the probability measure µx for any x. Then following the estimation procedure of Section 2.3, one gets
an estimation of the sensitivity index Sv2,GMS with a nice asymptotic behavior given in Theorem 2.2.

In the more realistic framework presented above in (16), we only have access to the approximation µx,n
of µx rendering more complex the estimation procedure and the study of the asymptotic properties. In
this case, the general design of experiments is the following:

(X1, D1,1, . . . , D1,n) → fs(X1, D1,1), . . . , fs(X1, D1,n)

(Xv
1 , D

′
1,1, . . . , D

′
1,n) → fs(X

v
1 , D

′
1,1), . . . , fs(X

v
1 , D

′
1,n)

...

(XN , DN,1, . . . , DN,n) → fs(XN , DN,1), . . . , fs(XN , DN,n)

(Xv
N , D

′
N,1, . . . , D

′
N,n) → fs(X

v
N , D

′
N,1), . . . , fs(X

v
N , D

′
N,n)

where 2 × N × n is the total number of evaluations of the stochastic code (16). Then we construct the
approximations of µi (standing for µXi

) given by

µi,n =
1

n

n∑
j=1

δfs(Xi,Di,j),

for any i = 1, . . . , N . Now for j = 1, . . . , 4, let

Uj,N,n :=

(
N
m(j)

)−1 ∑
16i1<···<im(j)6N

Φsj

(
µi1,n, . . . ,µim(j),n

)
(18)

where as previously done Φs˙ is the symmetrized version of Φ̇. Then we estimate Sv2,GMS by

Ŝv2,GMS,n :=
U1,N,n − U2,N,n

U3,N,n − U4,N,n
= Ψ(U1,N,n, U2,N,n, U3,N,n, U4,N,n). (19)

Remark 3.1. 1. The estimator in (18) is easy to compute since for two discrete measures supported
on a same number of points and given by

ν1 =
1

n

n∑
k=1

δxk
, ν2 =

1

n

n∑
k=1

δyk ,

the Wasserstein distance between ν1 and ν2 simply writes

W 2
2 (ν1, ν2) =

1

n

n∑
j=1

(x(j) − y(j))
2,

where x(j) is the j-th order statistics of x.

2. In [2], [9] and [10], the authors deal with stochastic computer codes with probability density func-
tions as outputs. In other words, they de�ne the following application:

f : E → F (20)

x 7→ f(x)

where F is the set of probability density functions:

F :=

{
g ∈ L1(R); g > 0,

∫
R
g(x)dx = 1

}
.

Proposition 3.2. Consider three i.i.d. copies X1, X2 and X3 of X distributed according to L. Let δ(N)
be a sequence tending to 0 as N goes to in�nity and such that

P (|W2(µX1
, µX3

)−W2(µX1
, µX2

)| 6 δ(N)) = o

(
1√
N

)
.

We choose n such that E[W2(µX , µX,n)] = o(δ(N)/
√
N). Under the assumptions of Theorem 2.2, we get

√
N
(
Ŝv2,GMS,n − Sv2,GMS

)
L−−−−−→

n→+∞
N (0, σ2) (21)

where the asymptotic variance σ2 is given by (22) in the proof of Theorem 2.2.
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Practical choices of δ(N). In some particular frameworks, one may derive easily a suitable value of
δ(N). Two examples are given in the following.

• If the inverse of the random variableW := |W2(µX1
, µX3

)−W2(µX1
, µX2

)| has a �nite expectation,
then, by Markov inequality,

P (W 6 δ(N)) = P
(
W−1 > δ(N)−1

)
6

1

δ(N)
E
[

1

W

]
and it su�ces to choose δ(N) so that δ(N)−1 = o

(
N−1/2

)
as N goes to in�nity.

• Assume that X is uniformly distributed on [0, 1] and that µX is a Gaussian distribution centered
at X with unit variance. Then the Wasserstein distance W2(µX1 , µX2) rewrites as (X1 −X2)2 so
that the radom variable W = |W2(µX1

, µX3
)−W2(µX1

, µX2
)| is given by∣∣(X1 −X3)2 − (X1 −X2)2

∣∣ = |(X3 −X2)(X2 +X3 − 2X1)| .

Consequently,

P(W 6 δ(N)) 6 P(|X3 −X2| 6
√
δ(N)) + P(|X2 +X3 − 2X1| 6

√
δ(N)).

Notice that (X2 + X3)/2 and X1 are two independent random variables uniformly distributed on
[0, 1]. Hence it remains to compute P(|U1 − U2| 6 α) for U1 and U2 two independent random
variables uniformly distributed on [0, 1] and α =

√
δ(N) and α =

√
δ(N)/2. It turns out that

P(|U1 − U2| 6 α) = α(2− α)

leading to P(W 6 δ(N)) = O
(√

δ(N)
)
. Consequently, a suitable choice for δ(N) is δ(N) = o(1/N).

Practical choices of n. Analogously, one may derive easily suitable choices of the value of n in some
particular cases. For instance, we refer the reader to [1] to get upper bounds on E[Wp(µX , µX,n)] for
several values of p > 1 and several assumptions on the distribution on µX : géneral, uniform, Gaussian,
beta, log concave... Here are some results.

• In the general framework, the upper bound for p > 1 relies on the functional

Jp(µX) :=

∫
R

(FµX
(x)(1− FµX

(x)))
p/2

fµX
(x)p−1)

dx

where FµX
is the cumulative distribution function associated to µX and fµX

its probability distri-
bution function. See Cf. [1, Theorems 3.2, 5.1 and 5.3].

• Assume that µX is uniformly distributed on [0, 1]. Then by [1, Theorems 4.7, 4.8 and 4.9], for any
n > 1,

E[W2(µX , µX,n)2] 6
1

6n
,

for any p > 1 and for any n > 1,

E[Wp(µX , µX,n)p]1/p 6 (Const)

√
p

n
.

and for any n > 1,

E[W∞(µX , µX,n)] 6
(Const)

n
.

E.g. (Const) =
√
π/2.

• Assume that µX is a log-concave distribution with standard deviation σ. Then by [1, Corollaries
6.10 and 6.12], for any 1 6 p < 2 and for any n > 1,

E[Wp(µX , µX,n)p] 6
(Const)

2− p

(
σ√
n

)p
,
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for any n > 1,

E[W2(µX , µX,n)2] 6
(Const)σ2 log n

n
,

and for any p > 2 and for any n > 1,

E[Wp(µX , µX,n)p] 6
Cpσ

p

n
,

where Cp depends on p, only. Furthermore, if µX supported on [a, b], then for any n > 1,

E[W2(µX , µX,n)2] 6
(Const)(b− a)2

n+ 1
.

E.g. (Const) = 4/ ln 2. Cf. [1, Corollary 6.11].

Example 3.3. We consider the previous example in which X is uniformly distributed on [0, 1] and µX
is a Gaussian distribution centered at X with unit variance. Then by [1, Corollary 6.14], we have for any
n > 3,

E[W2(µX , µX,n)2] 6
(Const) log log n

n
.

and for any p > 2 and for any n > 3,

E[Wp(µX , µX,n)p] 6
Cp

n(log n)p/2
,

where Cp depends on p, only. Since we already chose δ(N) = o(N−1), it remains to take log log n/n =

o(N−2) to ful�ll the condition E[W2(µX , µX,n)] = o(δ(N)/
√
N).

4 Numerical applications

IN PROCESS

5 Proof

5.1 Proof of Theorem 2.2

The �rst step of the proof is to apply Theorem 7.1 of [6] to the random vector (U1,N , U2,N , U3,N , U4,N )
>
.

By Theorem 7.1 and Equations (6.1)-(6.3) in [6], it follows that

√
N



U1,N

U2,N

U3,N

U4,N

−

I(Φs1)
I(Φs2)
I(Φs3)
I(Φs4)


 L−−−−−→

n→+∞
N (0,Γ)

where Γ is the square matrix of size 4 given by

Γ(i, j) := m(i)m(j)Cov(E[Φsi (Z1, . . . ,Zm(i))|Z1],E[Φsj(Z1, . . . ,Zm(j))|Z1]).

Now, it remains to apply the so-called Delta method (see [13]) with the function Ψ de�ned by (10). We
get the asymptotic behavior in (2.2) with σ2 given by

σ2 := g>Γg (22)

with g = ∇Ψ(I(Φs1), I(Φs2), I(Φs3), I(Φs4)) and ∇Ψ = (z − t)−2 (z − t,−z + t,−x+ y, x− y)
>
.
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5.2 Proof of Proposition 3.2

One has
√
N
(
Ŝv2,GMS,n − Sv2,GMS

)
=
√
N
(
Ŝv2,GMS,n − Ŝv2,GMS

)
+
√
N
(
Ŝv2,GMS − Sv2,GMS

)
.

By Theorem 2.2, the second term in the right hand side of the previous equation is asymptotically
Gaussian. If we prove that the �rst term in the right hand side is oP(1), then by Slutsky's Lemma [13,

Lemma 2.8],
√
N
(
Ŝv2,GMS,n − Sv2,GMS

)
is asymptotically Gaussian.

Now we prove that
√
N
(
Ŝv2,GMS,n − Ŝv2,GMS

)
= oP(1). We write

Ŝv2,GMS,n − Ŝv2,GMS = Ψ(U1,N,n, U2,N,n, U3,N,n, U4,N,n)−Ψ(U1,N , U2,N , U3,N , U4,N )

=
[(U1,N,n − U1,N )− (U2,N,n − U2,N )] (U3,N − U4,N )− [(U3,N,n − U3,N )− (U4,N,n − U4,N )] (U1,N − U2,N )

[(U3,N,n − U3,N )− (U4,N,n − U4,N ) + (U3,N − U4,N )] (U3,N − U4,N )
.

Since (Ui,N,n − Ui,N,n), for i = 3, 4 and (U3,N − U4,N ) converges almost surely respectively to 0 and
I(Φ3) − I(Φ4), the denominator converges almost surely. Thus it su�ces to prove that the numerator
is oP(1/

√
N) which reduces to prove that

√
N (Ui,N,n − Ui,N ) = oP(1) for i = 1, . . . , 4, where Ui,N,n

(respectively Ui,N ) has been de�ned in (18) (resp. (12)). Let i = 1 for example. The other terms can be
treated analogously. Here, m(1) = 3. We write

E [|U1,N,n − U1,N |]

6

(
N
3

)−1

(3!)−1
∑

16i1<i2<i36N
τ∈S3

E
[∣∣∣Φ1

(
µτ(i1),n,µτ(i2),n,µτ(i3),n

)
− Φ1

(
µτ(i1),µτ(i2),µτ(i3)

)∣∣∣]
= E

[∣∣Φ1

(
µ1,n, . . .µ2,n,µ3,n

)
− Φ1 (µ1,µ2,µ3)

∣∣]
6 2E

[∣∣1W2(µ1,µ3)6W2(µ1,µ2) − 1W2(µ1,n,µ3,n)6W2(µ1,n,µ2,n)

∣∣]
=: 2E [Bn]

where the random variable Bn in the expectation in the right hand side of the previous inequality is a
Bernoulli random variable whose distribution does not depend on (1, 2, 3). Let ∆(N) be the following
event

∆(N) :=
{∣∣W2(µτ(1), µτ(3))−W2(µτ(1), µτ(2))

∣∣ > δ(N)
}
.

Obviously, we get E
[
Bn1∆(N)c

]
6 P(∆(N)c), where Ac stands for the complementary of A in Ω. Fur-

thermore,

E
[
Bn1∆(N)

]
6 E [Bn|∆(N)] = P (Bn = 1|∆(N))

6
3∑
i=1

P
(
W2(µi, µi,n) >

δ(N)

4

)
6

12

δ(N)
E[W2(µi, µi,n)].

Finally, we introduce ε > 0 and study:

P
(√

N |U1,N,n − U1,N | > ε
)
6

√
N

ε
E [|U1,N,n − U1,N |]

6 2

√
N

ε
E [Bn]

6

√
N

ε

24

δ(N)
E[W2(µi, µi,n)] + 2

√
N

ε
P(∆(N)c)

It remains to choose �rst, δ(N) so that P(∆(N)c) = o
(

1/
√
N
)
and second, n such that E[W2(µi, µi,n)] =

o(δ(N)/
√
N). Consequently,

√
N(U1,N,n − U1,N ) = oP(1). Analogously, one gets

√
N(Ui,N,n − Ui,N ) =

oP(1) for i=2, 3 and 4.
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