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Abstract

Internal waves describe the (linear) response of an incompressible sta-
bly stratified fluid to small perturbations. The inclination of their group
velocity with respect to the vertical is completely determined by their
frequency. Therefore the reflection on a sloping boundary cannot follow
Descartes’ laws, and it is expected to be singular if the slope has the same
inclination as the group velocity. In this paper, we prove that in this
critical geometry the weakly viscous and weakly nonlinear wave equations
have actually a solution which is well approximated by the sum of the in-
cident wave packet, a reflected second harmonic and some boundary layer
terms. This result confirms the prediction by Dauxois and Young, and
provides precise estimates on the time of validity of this approximation.

1 Main results

Internal waves are of utmost importance in oceanic flows. They describe small
departures from equilibrium in an incompressible fluid under the combined effect
of density stratification and gravity. These waves are very well described when
the effect of boundaries is neglected, assuming for instance that the fluid is
contained in a parallelepipedic box with zero flux condition at the boundary (or
equivalently in a periodic box).

Assume that at equilibrium the stratification is given by the stable profile
ρ̄(x) = ρ̄(x3) with ρ̄′(x3) < 0. Note that, in most physical systems, the vari-
ations of ρ̄ are very small compared to its average ρ0, and count only for the
buoyancy effect (not for inertia). Small perturbations of this equilibrium will
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create both a (zero divergence) velocity field δv, and a fluctuation of the density

ρ = ρ̄ + δ
ρ0

g
b of order δ � 1, where b is the buoyancy. The dynamics of the

system is then governed by the Boussinesq equations :

∂tv + δ(v · ∇)v +∇P + be3 = ν∆v,

∂tb+ δ(v · ∇)b+
g

ρ0
v3ρ̄
′ = κ∆b,

∇ · v = 0,

(1.1)

see [21, 4, 1, 8] for further details on the derivation of the system. Note that the
viscous term κ∆b in the buoyancy equation comes from the thermal dissipation
(combined with the Boussinesq approximation connecting the density and the
temperature, see [10]). One often considers in addition that the stratification is
locally affine so that ρ̄′ is a constant, see again [10]. For the sake of simplicity,
we will focus on this case. Note however that this assumption is not consistent
with the approximation ρ̄ ∼ ρ0 in a large domain, especially in the whole space
or in a half space.

Keeping only the leading order terms (the linear inviscid approximation)
in (1.1), and taking the Fourier transform of this linear system with constant
coefficients, we obtain the linear inviscid wave equation

∂t

(
v̂p,3
b̂p

)
+

(
0 1− p23

|p|2
gρ̄′

ρ0
0

)(
v̂p,3
b̂p

)
= 0 . (1.2)

The solution in R3 can be expressed as a sum of plane waves with dispersion
relation

ω = ±N |ph|
|p|

,

where N = (−gρ̄′/ρ0)1/2 denotes the Brunt-Väisälä frequency (see [21] for fur-
ther details). By analogy with geometric optics for electromagnetic or acoustic
waves (see for instance [13, 14, 16]), one can use this dispersion relation to study
the “propagation” of internal waves (which actually makes sense only for wave
packets and not for single plane waves, see [17]). The crucial difference here is
that the frequency ω prescribes the direction of the propagation instead of the
modulus of the wavelength : in 2D, on the energy level ω, the wavenumber p
satisfies indeed

|p1|
|p|

=
1

N
ω

and the group velocity ∇pω, which is orthogonal to p, makes an angle β =
± arcsin(ω/N) with respect to the horizontal (see also [6] for a mathematical
description of attractors for waves with homogeneous dispersion relation of de-
gree 0).

What we would like to understand in this paper is how these waves behave
in presence of a sloping boundary. This is a major challenge from the
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physical point of view. Sandstrom [23] proposed indeed in 1966 the oceanic
internal wave field as a possible source of the energy which is needed to activate
strong mixing near sloping boundaries.

1.1 Physical predictions for the near-critical reflection

• The reflection of inviscid internal waves off a uniformly sloping bottom
was first investigated by Philipps [20] in 1966. Because the wave frequency is
related to the direction of propagation by ω = N sinβ, preservation of ω in the
reflection implies preservation of the angle β (which is the angle between the
group velocity and the horizontal, or equivalently between the phase velocity
and the vertical). A simple geometric picture (see Figure 1) shows then that this
will generate a focusing mechanism. More precisely, to determine the reflection

Figure 1: Focusing of waves reflected by a sloping bottom.

ɣ

laws, we look at the solutions of the linear inviscid wave equation (1.2) in the
half space delimited by the slope

x1 sin γ − x3 cos γ = 0 .

We seek these solutions in the form of an incident wave propagating with an
angle β with respect to the horizontal (recall that the direction of propagation
is orthogonal to the wavenumber) plus a reflected wave. In order that the zero
flux condition (which is the only admissible boundary condition in the inviscid
regime) is satisfied on the slope, we then obtain necessary conditions on the
wavenumber of the reflected wave, as well as some polarization conditions to
determine the amplitude of the reflected wave. To simplify our study, we work
in a 2D setting from now on.

An appropriate system of coordinates to express these conditions is (x, y)
where x is the abscissa along the boundary and y the distance to the boundary
(see Figure 2). We will denote by (k,m) the corresponding Fourier variables,
and by (u,w) the tangential and normal components of the velocity. In these
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Figure 2: Reference system of coordinates.

Y

X

ɣ

ɣ

coordinates, the fully nonlinear system (1.1) becomes

∂tu+ δ (u∂x + w∂y)u− sin γb+ ∂xp = 0,

∂tw + δ (u∂x + w∂y)w − cos γb+ ∂yp = 0,

∂tb+ δ (u∂x + w∂y) b+N2(sin γu+ cos γw) = 0,

∂xu+ ∂yw = 0,

(1.3)

while the linear inviscid wave system (1.2) can be restated

−iωû− sin γb̂+ ikP̂ = 0,

−iωŵ − cos γb̂+ imP̂ = 0,

−iωb̂+N2 sin γû+N2 cos γŵ = 0,

ikû+ imŵ = 0.

(1.4)

Since it has to lift the boundary condition w|y=0 = 0, the reflected wave should
have the same horizontal wave number k and time frequency ω as the incident
wave, but a different vertical wave number m′, which also satisfies the dispersion
relation

1

N2
ω2 =

(k cos γ −m sin γ)2

k2 +m2
= sin2 β. (1.5)

The equation for m and m′ is therefore

m2(sin2 β − sin2 γ) + 2km cos γ sin γ + (sin2 β − cos2 γ)k2 = 0. (1.6)

The roots are

m = k
cos γ sin γ − cosβ sinβ

sin2 β − sin2 γ
, m′ = k

cos γ sin γ + cosβ sinβ

sin2 β − sin2 γ
.

Note in particular that, as β → γ, |m′| → ∞.
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The elementary solution of (1.4) supplemented with the zero flux condition
is therefore of the formûŵ

b̂

 = A

 1
− k
m

N i(k cos γ−m sin γ)
m sin β

 e−iN sin βt+ikx+imy

+B

 1
− k
m′

N i(k cos γ−m′ sin γ)
m′ sin β

 e−iN sin βt+ikx+im′y + c.c.,

where c.c. denotes the complex conjugate, with the polarization condition

A
k

m
+B

k

m′
= 0,

meaning that the amplitude of the reflected wave is O(m
′

m ).
The most effective situation for boundary mixing arises therefore when an

oncoming wave reflects off a bottom slope with angle γ which nearly matches the
angle of wave propagation, namely β = γ − ε2 with ε� 1. At the critical angle
β = γ, the analytic theory of internal waves reflecting off a uniformly sloping
bottom predicts that the reflected wave has infinite amplitude and infinitesi-
mal wavelength. These unphysical results signal the failure of the idealizations
(namely, linear waves and inviscid fluid).

• The viscous and nonlinear effects associated to the near-critical re-
flection of internal waves have been studied by Dauxois and Young [10] in 1999.
The main idea is that, even though the original perturbation generating the
incident wave is small, the amplitude of the reflected wave is enhanced by the
focusing mechanism, so that the nonlinear coupling between the incident and
the reflected wave might no longer be negligible. Moreover, the dissipation is
enhanced because of the fact that the normal wavenumber of the reflected wave
is much bigger than the original wavenumber.

Actually, when one considers the viscous case, the analysis is much more
delicate as the system of equations has to be supplemented with more boundary
conditions : since the equations for u, w and b are parabolic, one should impose
one boundary condition for each one of these quantities. From the physical
point of view, it is natural to prescribe a Dirichlet boundary condition on both
components of the velocity (no slip condition), and a Neumann condition on the
buoyancy (no diffusive flux through the slope, see [10] for a discussion on this
point). Even at the linear level, i.e. for the viscous wave system

∂t

ûpŵp
b̂p

+

ν(k2 +m2) 0 m(k cos γ−m sin γ)
k2+m2

0 ν(k2 +m2) k(m sin γ−k cos γ)
k2+m2

N2 sin γ N2 cos γ κ(k2 +m2)


ûpŵp
b̂p

 = 0 , (1.7)

with p = (k,m), it is therefore much more complicated to compute elemen-
tary solutions satisfying the suitable boundary conditions since there are three
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matching conditions instead of one. In their paper, Dauxois and Young actu-
ally discarded the boundary condition on the buoyancy (which is justified for
instance if κ = 0), and chose the distinguished scaling ν = ε6. They found that
elementary solutions can be then decomposed as the sum of

• the incident wave;

• two boundary layer terms with exponential decay in y/ε2.

In other words, this means that one can find two values m1,m2 (distinct from
m, and having a non negative imaginary part) such that the matrix in (1.7) has
iω = iN sinβ as an eigenvalue. These two eigenvalues m1, m2 bifurcate from m′

when we add the small viscosity ν = O(ε6), and they are of order O(1/ε2) like
m′. The matching conditions for u and w at y = 0 provide then polarization
conditions for the amplitudes of these two damped reflected waves.

In the boundary layer, for δ small enough, we expect the nonlinear term to
be weak so that it should not destroy the wave structure. This means that the
nonlinearity can be dealt with as a weak perturbation of the linear evolution.
At leading order, we then expect it will produce two new modes, one which is
oscillating with frequency 2ω and a mean flow. The amplitudes of these modes
should be a small correction to the boundary layer, but which has non zero
trace on the boundary! In their paper, Dauxois and Young lifted this (small)
remaining trace by adding

• a second harmonic propagating in the outer domain provided that 2ω
N ≤ 1;

• a mean flow (which is not written explicitly as it is expected to stay
localized close to the boundary).

As a result of this construction, they obtain an approximate solution in the sense
that it satisfies the equation (1.1) with suitable scalings for the parameters of
the system, together with the boundary conditions u|y=0 = w|y=0 = 0, up to
remainders which should be either smaller in energy, or of same order but fast
oscillating (thus converging weakly to 0). We will say that the approximation
is consistent. This Ansatz shows in particular that there is a critical amplitude
where the nonlinearity, although small, is no longer negligible even in the outer
domain. This is made evident by the generation of the second harmonic.

• This scenario has been validated by experimental visualization of
the reflection process. The lab experiments conducted by physicists, especially
in the group of Dauxois [9, 12], have indeed confirmed that the nonlinearity
plays a key role in the boundary layer.

Dauxois, Didier, and Falcon introduced in [9] the Schlieren technique to
study the spatiotemporal evolution of the internal waves reflection close to the
critical reflection. The internal wave, producing density disturbances, causes
lines to distort, this distorting line pattern being recorded by a camera. Note
that this experimental technique is sensitive to the index gradient, and there-
fore to the density gradient. The dynamics of isopycnals is then found in good
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qualitative agreement with the theory. Moreover, this experiment confirms the
theoretically predicted scenario for the transition to boundary-layer turbulence
responsible for boundary mixing: the growth of a density perturbation pro-
duces a statically unstable density field which then overturns with small-scale
fluctuations inside.

Peacock and Tabaei then presented in [18] the first set of experimental visu-
alizations (using also the digital Schlieren method) that confirm the existence
of radiated higher-harmonic beams. For arrangements in which the angle of
propagation of the second harmonic exceeds the slope angle, radiated beams
are visualized. When the propagation angle of the second harmonic deceeds the
slope angle no radiated beams are detected, as the associated density gradient
perturbations are too weak for the experimental method. The case of a critical
slope is also reported.

Quantitative results have finally been obtained in [12]. Experiments were
carried out in the Coriolis platform, in Grenoble, filled with salted water.
The large scale of the facility allows to strongly reduce the viscous dissipa-
tion along wave propagation and quantitative results are obtained thanks to
high-resolution Particle Image Velocimetry measurements. Generation of the
second and third harmonic frequencies is clearly demonstrated in the impact
zone. Although these harmonics are almost invisible from the instantaneous
velocity field, they are very clearly apparent after the filtering procedure. These
experiments also provide evidence that harmonics with frequency higher than
N cannot propagate and remain trapped near the slope.

1.2 Mathematical description of the near-critical reflec-
tion

The mathematical analysis of the near-critical reflection follows essentially the
same lines, but requires a more careful treatment of some delicate points which
we will explain now.

First of all, the consistency of the approximation is not sufficient to
deduce that the solution of the original problem will be close to the approximate
solution. This issue is related to the possible instabilities of the system : a small
error on the equation (in the form of a source term Rapp) could then generate
important deviations of the dynamics. This means that, in order to prove
that the matched asymptotic expansion Wapp provides a good approximation
of what happens in reality, one needs to prove some stability for the original
weakly nonlinear system (1.1). The classical way of doing so is to establish
energy inequalities : for the Navier-Stokes equations, we typically expect that
the growth of the L2 norm ‖W−Wapp‖L2 should be controlled by the Lipschitz
norm δ‖∇Wapp‖L∞ , provided that there is no error (at all) on the boundary
conditions.

‖(W −Wapp)(t)‖2L2 ≤‖(W −Wapp)(0)‖2L2 exp(δ‖∇Wapp‖2L∞t)

+

∫ t

0

‖Rapp(s)‖2L2 exp(δ‖∇Wapp‖2L∞(t− s))ds .
(1.8)
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However this has many implications. More details will be provided in Section
4.2.

(i) We need to work with solutions of finite energy (or at least such that
W −Wapp has finite energy), which is not the case of (a finite sum of)
plane waves!

(ii) The remainder has to be small (in energy), and actually smaller than the
second harmonic if we would like to prove that this term is physically
relevant.

(iii) The time interval on which the approximation is accurate depends on the
Lipschitz (or at least the L∞) norm of the approximate solution.

Points (ii) and (iii) are somehow technical, they can be tackled by tracking the
dependency ofWapp and Rapp with respect to the different parameters. We will
also need to construct some additional correctors to lift the boundary conditions.
We refer to Section 3 for these technical details.

Point (i) is more tricky. It is related to the fact that a “plane wave” is
not a good physical object (although it is considered as a very basic object
in physics!) This has already been mentioned in the introduction when talking
about propagation of wave and group velocity. These notions do not make sense
for a single plane wave, but rather for a wave packet. Plane waves just provide
a tool to decompose these wave packets on elementary objects (just like the
Fourier transform). A very pedagogical discussion on these topics can be found
for instance in [17]. In all the sequel of this paper, we will thus consider wave
packets, with energy density concentrated close to the frequency ω0 = sin γ
in order to see the effects of criticality. Of course, as long as we study linear
equations, looking at a wave packet (i.e. at a superposition of plane waves) does
not introduce any additional difficulty for the matched asymptotic expansion.
But this is no longer true when the nonlinearity enters into the game.

Let us then go back to the construction of the approximate solution
Wapp, as there are also here some points which need to be clarified.

(iv) In the construction by Dauxois and Young [10], one boundary condition
(the one on the buoyancy b) is discarded, supposedly because it should
produce effects of higher order. This is however not completely clear from
the computations given in the paper (see the comments p. 283). Section 2
of the present paper will provide a very systematic construction for linear
boundary layers. We refer to [11, 7] for a presentation of the method.
We will see in particular that the solution to the viscous wave equation
(1.7) involves a superposition of boundary layers of different sizes, and
that there is no overdetermination of the problem if we take into account
all these contributions.

(v) Since we will consider wave packets, we will need to understand how to
deal with the nonlinear interactions in the boundary layer for a general
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superposition of waves (see Section 3). Section 3 will provide a careful
analysis of the generation of both the rectified (or mean) flow and the
second harmonic.

(vi) The rectified flow in [10] (defined as the component with ω = 0 generated
by the weak nonlinearity) is neglected since it has to vanish far from the
boundary (see p. 282). Although in [10] there is no quantitative estimate
of the decay rate, nor of the energy contained in this rectified flow (which
could be more energetic than the second harmonic for instance), this is
in agreement with our construction. We have indeed two boundary layer
mean flows (vanishing far from the boundary), and the third boundary
condition can be lifted in a very crude way (by adding a small corrector
which has no physical relevance).

1.3 Notation

Our construction of an approximate solution will involve many terms, which all
play a different role. For the reader’s convenience, we have gathered here the
notations that will be used throughout the paper, and by doing so we roughly
sketch the main steps of the construction.

• We denote by W the vector

uw
b

;

• The first step of our construction is the definition of a solution of the linear
problem. This solution will be the main order term in the approximate
solution, and therefore we will denote it by W0;

• The first order correctors, which lift the nonlinearity δQ(W0,W0), will be
denoted by W1.

The notations Wj allow us to distinguish between terms of different orders
within the approximate solution. But we also need to specify the nature of each
term within a given order. For instance, W0 will be the sum of an incident
wave packet, of a boundary layer term localized within a region of width ε2 of
the boundary y = 0, and of a boundary layer term localized within a region of
width ε3 of the boundary y = 0. Therefore we adopt the following notation:

• The incident wave packet will be denoted W0
inc;

• The boundary layer terms localized within a region of width ε2 (resp.
ε3) of the boundary will be denoted Wj

BL,ε2 (resp. Wj
BL,ε3), where the

superscript j refers to the order of the term they belong to;

• The mean flow will be denoted by W1
MF ;

• The second harmonic will be denoted by W1
II .

9



1.4 The stability result

From now on, we choose N = 1 in order to alleviate the notation.
We consider the Cauchy problem associated to the Boussinesq equations in
R2

+ = R× R+,

∂tu− b sin γ + ∂xp+ δ(u∂xu+ w∂yu) = ν0ε
6∆u,

∂tw − b cos γ + ∂yp+ δ(u∂xw + w∂yw) = ν0ε
6∆w,

∂tb+ u sin γ + w cos γ + δ(u∂xb+ w∂yb) = κ0ε
6∆b,

∂xu+ ∂yw = 0,

(1.9)

endowed with the boundary conditions

u|y=0 = w|y=0 = ∂yb|y=0 = 0 . (1.10)

Note that this is a just rewriting of the Boussinesq system (1.1) in the slope
coordinates, nothing but the viscous version of system (1.3). As discussed at
the beginning of Section 3, after a complete linear analysis of all the possible
regimes induced by the different parameters of the system in Section 2, the non-
linear system will be treated according to the scalings by Dauxois and Young
in [10], where, in particular, the size of the viscosity is ν = ν0ε

6, κ = κ0ε
6.

Our main result is a stability estimate for the approximate solution Wapp =
(uapp, wapp, bapp), i.e. an L2 estimate of the difference between Wapp and the
weak solutions W = (u,w, b) to (1.9)-(1.10). Before providing the stability the-
orem, the global existence of weak solutions to the Cauchy problem for system
(1.9) with boundary conditions (1.10) is stated below.
We will use the following notation.

Vσ := {(u,w, b) ∈ H1(R2
+)3, u|y=0 = w|y=0 = 0, ∂xu+ ∂yw = 0},

V′σ = dual space of Vσ.
(1.11)

Proposition 1.1. Let W0 = (u0, w0, b0) a divergence free L2 initial data. Then
there exists a unique global weak solution

W ∈ C(R+;V′σ) ∩ L∞(R+;L2(R2
+)) ∩ L2

loc(R+;Vσ)

to system (1.9)-(1.10), which satisfies the following energy inequality for all
t ≥ 0,

‖W(t)‖2L2(R2
+) + 2ε6ν0

∫ t

0

(
‖∇u(s)‖2L2(R2

+) + ‖∇w(s)‖2L2(R2
+)

)
ds

+2ε6κ0

∫ T

0

‖∇b(s)‖2L2(R2
+) ds ≤ ‖W0‖2L2(R2

+).

(1.12)

The proof of this theorem follows by adapting the result of global weak
(Leray) solutions to the incompressible Navier-Stokes equation in general do-
mains in [5]. The crucial point is the conservation of energy, represented by
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the energy inequality (1.12), which can be simply obtained in the usual way, by
taking the scalar product of (1.9) with W.
For the sake of completeness, we will provide a sketch of the argument in the
Appendix.
We now state our main result.

Theorem 1.1. Consider the Boussinesq equations (1.9) in the scaling by Daux-
ois and Young in R2

+ = R× R+, with boundary conditions (1.10).
Then there exists a vector field

Wapp := (uapp, wapp, bapp) =W0
inc +WBL +W1

II +Wcorr,

whereW0
inc, WBL, W1

II , Wcorr are respectively an incident wave packet, a bound-
ary layer, a second harmonic wave packet and an additional correction term,
which is an approximate solution, in the sense that

∂tuapp − bapp sin γ + ∂xpapp + δ(uapp, wapp) · ∇uapp − ν0ε
6∆uapp = O(δε2),

∂twapp − bapp cos γ + ∂ypapp + δ(uapp, wapp) · ∇wapp − ν0ε
6∆wapp = O(δε2),

∂tbapp + uapp sin γ + wapp cos γ + δ(uapp, wapp) · ∇bapp − κ0ε
6∆bapp = O(δε2),

∂xuapp + ∂ywapp = 0,

where the remainders O(δε2) have to be understood in the sense of the L2(R2
+)

norm, and endowed with the boundary conditions

uapp|y=0 = wapp|y=0 = ∂ybapp|y=0 = 0 .

Furthermore, denoting byW the unique weak solution to the Cauchy problem
associated with system (1.9)-(1.10), with initial data

W0 =Wapp(t = 0),

we have the following stability estimate:

‖(Wapp −W)(t)‖L2(R2
+) ≤ δε2 exp((δε−2 + 1)t). (1.13)

Remark 1.2. Let us add some comments on Theorem 1.1.

• The first part of the statement could be reformulated saying that Wapp is
a consistent approximate solution, which means that it satisfies the
equations of system (1.9)-(1.10) modulo a remainder (of order δε2 in L2).
In the second part, we infer that the consistent approximate solution is also
stable in the sense of the L2 norm, meaning that the difference in
L2 between this approximate solution and the unique weak solution to the
original system (1.9)-(1.10) with initial data Wapp(t = 0) is smaller than
a remainder of size δε2 in L2. Note that, as widely discussed in the rest
of the paper, the boundary conditions (1.10) need to be exactly satisfied
by the approximate solution in order to establish the stability inequality
(1.13). A consistent approximate solution is indeed already given by the
sum of first three terms W0

inc +WBL +W1
II , while to achieve stability we

need to add another corrector Wcorr, whose explicit expression is given in
Proposition 3.1.
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• We point out that far from the boundary, the leading order term of the ap-
proximate solution Wapp is represented by the incident wave packet W0

inc.

• Theorem 1.1 could also be stated in a more general fashion, by taking into
account any incident wave packet (not only the ones of the critical regime
by Dauxois and Young). The construction of the approximate solution can
be done exactly in the same spirit and it should be easier, the critical case
being the most difficult one to handle.

More details on the terms involved in the expression of the approximate
solution Wapp are provided in Lemma 2.7 and Proposition 3.1.
The proof of Theorem 1.1 relies on a quite accurate quantification of all the
sizes of the terms and the remainders of the approximate solution in L2 and
L∞. These computations will be provided in details in Section 3. A general
construction of the profiles and sizes of the boundary layers, depending on their
time frequency and tangential wave number, is provided in Section 2. The
stability inequality is established in Section 4.

2 Linear viscous boundary layers

The purpose of this section is to provide a systematic description of boundary
layers in the linear case. In particular, we will explain how boundary layer sizes
and profiles can be computed, which boundary conditions can be lifted, and
we will derive the asymptotic behavior of the boundary layer sizes in different
regimes, including the case of critical reflection. In this case, we will also derive
the expansions of the linear boundary layer operators, that will allow us to
perform the weakly nonlinear analysis of Section 3.

As explained in the introduction, the first item in the construction of an
approximate solution is an incident wave (ui, wi, bi) (or an incident wave packet,
which is an infinite linear superposition of incident waves). This incident wave
does not solve the boundary conditions

u = 0, w = 0, ∂yb = 0 on y = 0, (2.1)

and it is expected that boundary layers take place close to the wall y = 0 to lift
the traces of (ui, wi, ∂ybi). Therefore the purpose of our analysis in the present
section is the following: we seek an exact solution of the linear system

∂tu− sin γb+ ∂xp = ν∆u,

∂tw − cos γb+ ∂yp = ν∆w,

∂tb+ sin γu+ cos γw = κ∆b,

ux + wy = 0,

(2.2)

endowed with the boundary conditions

u|y=0 = u exp(i(kx− ωt)),
w|y=0 = w exp(i(kx− ωt)),
∂yb|y=0 = b exp(i(kx− ωt)),

(2.3)
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where k, ω ∈ R are prescribed, and u,w, b ∈ C. We refer to the work of Gérard-
Varet and Paul [11] for a presentation of the methodology developed here, and
to the paper [7] by the last two authors for an application to a case in which
several boundary layers with different sizes co-exist. Since equation (2.2) is
linear and has constant coefficients, it is natural to look for modal solutions, i.e.
(linear combinations of) functions of the form

(u,w, b, p)(t, x, y) = (U,W,B, P ) exp(i(kx− ωt)− λy), (2.4)

with <(λ) > 0. When we plug this expression into system (2.2), we obtain

Aν,κ(ω, k, λ)


U
W
B
P

 = 0,

where

Aν,κ,ω,k(λ) =


−iω + ν(k2 − λ2) 0 − sin γ ik

0 −iω + ν(k2 − λ2) − cos γ −λ
sin γ cos γ −iω + κ(k2 − λ2) 0
ik −λ 0 0

 .

(2.5)
As a consequence, a modal function of the form (2.4) is a non trivial solution
of (2.2) if an only if detAν,κ,ω,k(λ) = 0 and (U,W,B, P ) ∈ kerAν,κ,ω,k(λ) \ {0}.
The corresponding solution is a boundary layer mode if <(λ)� 1, and the size
of the boundary layer is then (<(λ))−1. Furthermore, the number of boundary
conditions that can be lifted by the boundary layer is equal to the dimension of
the vector space

Vect {(U,W,−λB) ∈ C3, ∃(P, λ) ∈ C2, <(λ) > 0 and

detAν,κ,ω,k(λ) = 0, (U,W,B, P ) ∈ kerAν,κ,ω,k(λ)},

where (U,W ) lift the Dirichlet boundary conditions for the velocity field, while
−λB, which is the amplitude of the derivative in y of expression (2.4), counts
for the no flux condition on the buoyancy ∂yb = 0 at y = 0. Now, it can
be easily checked that detAν,κ(ω, k, λ) is a polynomial of degree 6 in λ, that
has therefore 6 complex roots, counted with multiplicity. We now investigate
the asymptotic values of these roots depending on the viscosity and the slope
criticality. We will prove in particular that we can usually lift three boundary
conditions thanks to this linear boundary layer.

13



2.1 Sizes of the boundary layers in terms of the viscosity
and slope criticality

A straightforward computation leads to

detAν,κ,ω,k(λ)

= (k2 − λ2)
(
−iω + ν(k2 − λ2)

) (
−iω + κ(k2 − λ2)

)
−2ikλ sin γ cos γ + k2 cos2 γ − λ2 sin2 γ

= νκ(k2 − λ2)3 − iω(ν + κ)(k2 − λ2)2 + (ω2 − sin2 γ)λ2

−2ikλ sin γ cos γ + k2(cos2 γ − ω2)

= −νκλ6 + (−iω(κ+ ν) + 3νκk2)λ4

+
[
ω2 − sin2 γ + 2iω(κ+ ν)k2 − 3νκk4

]
λ2

−2ik sin γ cos γλ+ k2(cos2 γ − ω2 − iω(κ+ ν)k2 + νκk4).

Note that in the case ν = κ = 0 and λ = −im, we retrieve the dispersion relation
(1.5). In all regimes considered below, we will make the following assumptions:
0 < ν � 1, 0 < κ � 1, |k| ≤ c0, c−1

0 ≤ | cos2 γ − ω2| ≤ c0 for some fixed
constant c0. We introduce a criticality parameter ζ := ω2 − sin2 γ, and we will
investigate both the cases |ζ| � 1 and |ζ| & 1. To simplify the discussion, we
will also assume that ν and κ are of the same order of magnitude. However,
we will not systematically assume that we are in a critical setting. In other
words, we will not assume any relationship between ν and ζ. It follows from the
above assumptions that when ω and k are bounded away from zero, the roots
of detAν,κ,ω,k are asymptotically equivalent to the ones of

Pν,κ,ω,k(λ) := −νκλ6 − iω(κ+ ν)λ4 + (ζ + 2iω(κ+ ν)k2)λ2

−2ik sin γ cos γλ+ k2(cos2 γ − ω2).

However, for further purposes, we will also need to consider the case |ω| � 1,
|k| � 1, which we will do in a separate paragraph.

Let us now explain our general strategy to find the boundary layer sizes.
We first look for roots with the smallest possible absolute value. In the case
|k| ≥ c−1

0 , since all coefficients of Pν,κ,ω,k are bounded and the coefficient of
order zero is bounded away from zero, the smallest roots will be of size 1, and
all coefficients of order o(1) can be neglected. We then look for roots λ with
a large absolute value, balancing the higher order terms, whose coefficients are
smaller, with (some of) the lower order ones. This leads to an Ansatz of the
form |λ| ∝ ν−α for some α > 0. We then plug this Ansatz into Pν,κ,ω,k, check
that the terms that have not been taken into account can indeed be neglected,
and derive an effective equation for λ. While looking for possible asymptotic
behaviors for λ, it is also useful to keep in mind that the product of all roots is
−(νκ)−1(cos2 γ − ω2).
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2.1.1 Case |k| ≥ c0 > 0, |ω| ≥ c0 > 0

Case |ζ| & 1 (non-critical reflection) In this case, it can be easily checked
that the roots of Pν,κ,ω,k can be classified in the following way:

• There are two roots of size 1, which therefore do not correspond to bound-
ary layers, and which are approximate roots of the equation

(ω2 − sin2 γ)λ2 − 2ik sin γ cos γλ+ k2(cos2 γ − ω2) = 0.

These two roots converge towards pure imaginary values in the limit ν, κ→
0 when |ω| remains below the critical value ωc = 1. They then correspond
to the incident and the reflected wave in the non-critical case (compare
the above equation with the dispersion relation (1.5) or with (1.6)). When
|ω| > 1, the two roots have a non-zero real part: one of them (say λ1) has
a negative real part (and must therefore be discarded), and the other (say
λ2) has a positive real part. It corresponds to an exponentially decaying
mode, which is however not confined to a boundary layer.

• There are four roots λ such that |λ| = O(ν−1/2) (remember that we have
assumed that ν and κ are of the same order), which are approximate roots
of the equation

−νκλ4 − iω(κ+ ν)λ2 + ζ = 0.

Among these roots, two have a strictly positive real part, and two have a
negative real part.

Case ν1/3 � |ζ| � 1 (critical reflection with small diffusivity) In this
case, there are four types of roots:

• There is one root of size 1, say λ1, such that

λ1 ∼ −i
k(cos2 γ − ω2)

2 sin γ cos γ
.

This root corresponds to the incident wave.

• There is one root of size ζ−1, say λ2, which satisfies

λ2 ∼
2ik sin γ cos γ

ζ
.

Plugging this expression back into the equation Aν,κ,ω,k(λ2) = 0, it can
be proved that <(λ2) is negative and of size ν/ζ4.

• There are two roots of size |ζ/ν|1/2, say λ3 and λ4, which are approximate
solutions of

−iω(κ+ ν)λ2 + ζ = 0.

Among these two roots, exactly one (say λ3) has a strictly positive real
part of size |ζ/ν|1/2, and the other one has a strictly negative real part.
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• There are two roots of size ν−1/2, which are approximate solutions of

−νκλ2 − iω(κ+ ν) = 0.

Among these two roots, exactly one (say λ5) has a strictly positive real
part of size ν−1/2, and the other one has a strictly negative real part.

Case ν1/3 ∼ |ζ| (critical reflection in the scaling of Dauxois and Young)
This case is very similar to the one above. The only difference lies in the fact
that the roots λ2, λ3 and λ4 are now all of size ν−1/3, and are approximate
solutions of

−iω(κ+ ν)λ3 + ζλ− 2ik sin γ cos γ = 0. (2.6)

One can check that this equation has exactly two roots with positive real part
(see Remark 2.1 below).

Case |ζ| � ν1/3 (critical reflection with large diffusivity) Once again,
this case is similar to the two cases above. The three roots λ2, λ3 and λ4 are all
of size ν−1/3, and are now approximate solutions of

iω(κ+ ν)λ3 − 2ik sin γ cos γ = 0.

The conclusion remains the same.

Remark 2.1 (Number of roots with positive real part). In the analysis above,
we have counted by hand the number of roots of detAν,κ,ω,k with positive real
part in some specific cases. Les us now prove that this number remains con-
stant as the parameter ζ varies. Assume that the parameters ν, κ, γ and k are
fixed, with ν and κ small, and consider the roots λi, i = 1, ...6 as functions of
the criticality parameter ζ. Then it can be easily checked, using the previous
arguments, that the curves ζ 7→ λi(ζ) do not cross. Indeed, if there were a
crossing, it would obviously occur for two eigenvalues within the same regime,
and a quick look at each of the regimes described above ensures that this cannot
happen. As a consequence, each function ζ 7→ λi(ζ) is continuous (and even
C1). Furthermore, the curves do not cross the imaginary axis: indeed, if a root
λ is imaginary, then we deduce that

=(detAν,κ,ω,k(λ)) = 0 = ω(κ+ ν)(λ2 − k2)2

and therefore λ = ±|k| and λ ∈ R: contradiction. As a consequence, each curve
ζ 7→ λi(ζ) remains in the same complex half-plane. In particular, λ2, λ3 and λ5

always have a positive real part, and λ4 and λ6 always have a negative real part.
The eigenvalue λ1 corresponds to the incident wave and is therefore discarded.

Note that an eigenvector corresponding to a root λ is
Uλ
Wλ

Bλ
Pλ

 =


1
ik
λ

sin γ+ ik
λ cos γ

iω−κ(k2−λ2)

1
ik

[
iω + ν(λ2 − k2) + sin γ sin γ+ikλ−1 cos γ

iω+κ(λ2−k2)

]
 (2.7)
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We now go back to each of the cases above, and check that the vectors
 Uλj

Wλj

−λjBλj

 , j ∈ {2, 3, 5}


are linearly independent. As a consequence, we can always lift three bound-
ary conditions.

2.1.2 Case |k| � 1, |ω| � 1

In the following sections, we will also need to investigate the case when |k| and
|ω| are small. More specifically, we will be interested in the scaling |k| . ν1/3,
|ω| . ν1/3. Going back to the expression of detAν,κ,ω,k, we obtain the following
asymptotic behaviors for the roots:

• There are two roots of size ν1/3, say λ1 and λ2, such that if |k| & ν1/3

λj ∼
−ik
tan γ

, j = 1, 2.

Note that one of these roots (say λ1) has a negative real part, the other
one (say λ2) a positive real part. However, the root λ2 does not correspond
to a boundary layer because <(λ2)� 1. Computations lead to

<(λ2) ∼ −<(λ1) ∼ − (ν + κ)|k|3

sin2 γ
= O(ν2)

in the scaling |k| & ν1/3.

• There are four roots of size O(ν−1/2), say λi for i ∈ {3, · · · , 6} which
satisfy

λ4
i ∼ −

sin2 γ

νκ
.

Among these, two have a strictly positive real part (say λ3 and λ5), and
two have a strictly negative real part.

Once again, we can theoretically lift three boundary conditions. Note how-
ever that the vector Xλ2

exp(−λ2z) has a very slow decay, which leads to several
complications: first, if |k| � ν1/3 and |ω| & ν1/3, the asymptotic given for λ2

above may become invalid, and computing an exact rate of decay in all cases
becomes quite technical. Furthermore, in the rest of the paper, we will consider
wave packets, i.e. superposition of plane waves. This entails that the boundary
layer part of the solution corresponding to the rate λ2 will behave like∫

R

1

ν1/6
ϕ

(
k

ν1/3

)
exp

(
i(kx− ωt)− i k

tan γ
y − cν|k|3y

)
dk,
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where ϕ ∈ C∞0 (R). The Plancherel theorem entails that the L2
x,y norm of this

quantity is bounded by

1

ν1/6

(∫
R

∫ ∞
0

ϕ2

(
k

ν1/3

)
exp

(
−2cν|k|3y

)
dy dk

)1/2

≤ 1

ν1/6

(∫
R
ϕ2

(
k

ν1/3

)
1

2cν|k|3
dk

) 1
2

.

It is not clear that the right-hand side is finite, unless we add further assumptions
on ϕ. Therefore, in the rest of this paper, we will discard the part of the solution
that should be handled by the eigenvalue λ2 in this regime. As a consequence,
we will only be able to lift two boundary conditions in this case.

Let us sum up the results of this paragraph in the following table.

Table 1: Sizes of the boundary layers in different regimes

|ζ| & 1 ν
1
4 . |ζ| � 1 ν

1
3 � |ζ| � ν

1
4 |ζ| . ν

1
3

• One reflected
wave

• One BL of
size ν1/2 (lift-
ing 2 condi-
tions)

• One highly
oscillating re-
flected wave
(with slow
decay)

• One BL of size
(ν/ζ)1/2

• One BL of size
ν1/2

• One BL of size
|ζ|4/ν

• One BL of size
(ν/ζ)1/2

• One BL of size
ν1/2

• One BL of size
ν1/3

• One BL of size
ν1/2 (lifting 2
conditions)

1. Case |k| & 1:

• If |ζ| & 1, there is one reflected wave (lifting the vertical bound-
ary condition) and one boundary layer of size ν1/2, lifting the two
remaining boundary conditions;

• If ν1/3 � |ζ| � 1, there are three boundary layers, of sizes ζ4/ν,
(ν/ζ)1/2, and ν1/2;

• If |ζ| . ν1/3, there are two boundary layers, of sizes ν1/3 and ν1/2.

2. Case |k| . ν1/3, |ω| . ν1/3:

There is one boundary layer of size ν1/2, lifting two (out of three) boundary
conditions.
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2.2 Boundary operators

We now gather the results and observations from the preceding paragraph.
• Assume that we are in the regime |k| & 1. Let (u,w, b) ∈ C3, and consider

the linear system with unknowns (a2, a3, a5)

a2 + a3 + a5 = u,

ik

λ2
a2 +

ik

λ3
a3 +

ik

λ5
a5 = w,

∑
j∈{2,3,5}

−λjaj

[
sin γ + ik

λ cos γ

iω − κ(k2 − λ2)

]
= b.

(2.8)

Define the functionuw
b

 =
∑

j∈{2,3,5}

aj exp(i(kx− ωt)− λjy)

 Uλj
Wλj

Bλj

 . (2.9)

Then by construction, we have the following result:

Lemma 2.2 (Critical reflection for an oscillating flow). Assume that there exists
a constant c0 > 0 such that c−1

0 ≤ |k| ≤ c0, c−1
0 ≤ | cos2 γ − ω2| ≤ c0. Assume

that |ζ| � ν1/4 and that ν � 1, κ� 1 with ν/κ ∝ 1.
Let u,w, b ∈ C. Then there exists an exact solution (u,w, b) of the linear

system (2.2) with:
u|y=0 = u exp(i(kx− ωt)),
w|y=0 = w exp(i(kx− ωt)),
∂yb|y=0 = b exp(i(kx− ωt)).

This solution is given by

Bcω,k[u,w, b] :=
∑

j∈{2,3,5}

aj exp(i(kx− ωt)− λjy)

 Uλj
Wλj

Bλj

 ,

where the coefficients aj are determined by the system (2.8). It is exponentially
small outside a small boundary layer localized in the vicinity of y = 0.

We have a similar result in the case of a non-critical reflection; the main
difference lies in the fact that the solution is the sum of a boundary layer and
of a flow that is not confined to a small region.

Lemma 2.3 (Non-critical reflection). Assume that there exists a constant c0 >
0 such that c−1

0 ≤ |k| ≤ c0, c−1
0 ≤ | cos2 γ − ω2| ≤ c0. Assume that |ζ| & 1 and

that ν � 1, κ� 1 with ν/κ ∝ 1.
Let u,w, b ∈ C. Then there exists an exact solution (u,w, b) of the linear

system (2.2) with:
u|y=0 = u exp(i(kx− ωt)),
w|y=0 = w exp(i(kx− ωt)),
∂yb|y=0 = b exp(i(kx− ωt)).
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This solution is given by

Bnc,RWω,k [u,w, b] := a2 exp(i(kx− ωt)− λ2y)

 Uλj
Wλj

Bλj

 ,

Bnc,BLω,k [u,w, b] :=
∑

j∈{3,5}

aj exp(i(kx− ωt)− λjy)

 Uλj
Wλj

Bλj

 ,

where the coefficients aj are determined by the system (2.8). It is composed of

a boundary layer of size ν
1
3 and of a (possibly decaying) reflected wave.

• We now address the case of a non-oscillating flow, i.e. |k| . ν1/3, |ω| .
ν1/3. As stressed in the previous subsection, in this case we only lift two bound-
ary conditions. Looking at system (2.8) and recalling that λ2 = O(k) = O(ν1/3),
λ3, λ5 = O(ν−1/2), we see that the best approximation of the actual linear so-
lution is to choose a2, a3 and a5 so that a2 = 0 and a3 and a5 satisfy

a3 + a5 = u,∑
j∈{3,5}

−λjaj

[
sin γ + ik

λ cos γ

iω − κ(k2 − λ2)

]
= b.

(2.10)

We obtain the following result:

Lemma 2.4 (Non-critical reflection for a non-oscillating flow). Assume that
ν � 1, κ� 1 with ν/κ ∝ 1, and that |k| . ν1/3, |ω| . ν1/3.

Let u, b ∈ C. Then there exists an exact solution (u,w, b) of the linear system
(2.2) such that

u|y=0 = u exp(i(kx− ωt)),
∂yb|y=0 = b exp(i(kx− ωt)).

This solution is given by

Bnoω,k[u,w, b] :=
∑

j∈{3,5}

aj exp(i(kx− ωt)− λjy)

 Uλj
Wλj

Bλj ,


where the coefficients a3, a5 are determined by system (2.10). Furthermore, the
remaining trace satisfies

w|y=0 = exp(i(kx− ωt))
∑

j∈{3,5}

ik

λj
aj .

2.3 Superposition of boundary layers in the Dauxois-Young
scaling

In the rest of this section, we focus on the case of a critical reflection in the
scaling of Dauxois and Young [10], i.e. we assume that ν1/3 ∼ |ζ|. We recall
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that in this case, there is a boundary layer of size ν1/3, which is described in
[10], and another one much smaller, of size ν1/2, which is absent from [10]. We
now describe the interplay between these two boundary layers. More precisely,
we compute asymptotic values for the coefficients aj defined in (2.8). We also
switch to the notation that will be used in the rest of this paper, and that was
introduced in [10]: more precisely, we take ν = ν0ε

6, κ = κ0ε
6, where ε � 1

is a small parameter, and ν0, κ0 > 0 are constant and independent of ε. We
therefore refer to the boundary layer of size ν1/3 (resp. ν1/2) as the ε2 (resp.
ε3) boundary layer.

Definition 2.5. In the rest of this section, we denote by Λ̄2, Λ̄3, Λ̄5 the complex
numbers with positive real parts defined by

Λ̄j := lim
ν→0

λjν
1/3 = lim

ε→0
λjε

2 for j = 2, 3, Λ̄5 := lim
ν→0

λ5ν
1/2 = lim

ε→0
λ5ε

3.

A straight-forward linear analysis shows that there exists Ā2, Ā3, Ā5 ∈ C\{0}
such that

a2 ∼
Ā2

ε2
, a3 ∼

Ā3

ε2
, a5 ∼

Ā5

ε
,

where the coefficients Ā2, Ā3, Ā5 satisfy the linear system

Ā2 + Ā3 = 0,

ik

Λ̄2
Ā2 +

ik

Λ̄3
Ā3 = w,

1

iω
(Λ̄2Ā2 + Λ̄3Ā3) +

1

iω + cΛ̄2
5

Λ̄5Ā5 = 0,

(2.11)

where c := κ0/ν0 > 0. As a consequence, if we isolate the ε2 boundary layer
part, namely

UBL,ε2 :=
∑

j∈{2,3}

ajXλj exp(i(kx− ωt)− λjy),

then
‖uBL,ε2‖∞ = O(ε−2‖(u,w, b)‖∞),

‖wBL,ε2‖∞ = O(‖(u,w, b)‖∞),

‖bBL,ε2‖∞ = O(ε−2‖(u,w, b)‖∞)

while
uBL,ε2|y=0 = o(ε−2),

wBL,ε2|y=0 = w exp(i(kx− ωt)) +O(ε2),

bBL,ε2|y=0 = o(ε−2).

(2.12)

Remark 2.6. Note that the boundary condition on the normal component of
the velocity is mostly handled by the boundary layer of size ε2, which is not
the case for the tangential component. There is indeed an intricate relationship
between the ε2 and the ε3 boundary layers, and the boundary term u is in fact
distributed among the two boundary layers.
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An (almost) exact solution to the linear system (2.2)-(2.1) in the case c−1
0 ≤

|k| ≤ c0, |ζ| � ε3/2 is provided by the sum of incident wave and the boundary
layers, i.e.

U0 = Uinc + UBL + c.c. (2.13)

where the incident wave is Uinc = (u, w, b) exp(i(kx+my−ωt)), and the bound-
ary layer is

UBL = −Bcω,k(u, w, imb).

Note that the boundary conditions are satisfied without any error, since the
trace of the incident wave is balanced by the boundary layer. The only source
of error comes from the action of the diffusion operator on the incident wave.

2.4 Definition and size of the linear solution

Since we wish to work with finite energy solutions, we will consider wave packets
rather than plane waves, i.e. functions of the form

W0
inc :=

∫
R2

Â(k,m)Xk,m exp(i(kx− ωk,mt+my)) dk dm, (2.14)

where Â ∈ S(R2), and Xk,m :=

 1
− k
m

i(k cos γ−m sin γ)
mωk,m

. The boundary layer is then

W0
BL = −

∫
R2

Â(k,m)Bω,k
(

1,− k
m
,
−(k cos γ −m sin γ)

ωk,m

)
dk dm, (2.15)

where Bω,k can be Bcω,k, Bnc,BLω,k , or Bnoω,k, depending on the regime under con-
sideration.

In order that W0
inc is an incident wave packet, we also need that the group

velocity is oriented towards the slope. Since the time frequency is given by

ωk,m = ±k cos γ −m sin γ√
k2 +m2

,

then the group velocity reads

vg = ∇k,mωk,m = ±m cos γ + k sin γ

(k2 +m2)
3
2

(
m
−k

)
.

We thus choose the sign of ωk,m in such a way that

vg · ey = ∓k(m cos γ + k sin γ)

(k2 +m2)
3
2

< 0,
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where ey is the unit vector along the normal axis y.

In order to focus on the critical case, we will choose functions Â which are
supported close to ±(k0,m0), where (k0,m0) are such that

(k0 cos γ −m0 sin γ)2

k2
0 +m2

0

= sin2 γ.

More precisely, we will take

Â(k,m) :=
1

ε2
χ

(
k − k0

ε2

)
χ

(
m−m0

ε2

)
+

1

ε2
χ

(
k + k0

ε2

)
χ

(
m+m0

ε2

)
,

(2.16)
where χ ∈ C∞0 (R) is a real valued function. Note that in this case, for all

(k,m) ∈ SuppÂ, we have ζk,m := ω2
k,m − sin2 γ = O(ε2).

The previous analysis shows that we can decompose W0
BL as W0

BL,ε2 +

W0
BL,ε3 , where

W0
BL,ε2 := −

∫
R2

Â(k,m)
∑

j∈{2,3}

aj exp (i(kx− ωk,mt)− λjy)

UλjWλj

Bλj

 dk dm,

W0
BL,ε3 := −

∫
R2

Â(k,m)a5 exp (i(kx− ωk,mt)− λ5y)

Uλ5

Wλ5

Bλ5

 dk dm.

(2.17)
In the rest of the paper, we set

W0 :=W0
inc +W0

BL,ε2 +W0
BL,ε3 . (2.18)

We can then estimate the sizes of W0
inc,W0

BL,ε2 and W0
BL,ε3 in L∞ and L2:

Lemma 2.7. Assume that Â is given by (2.16), where χ ∈ C∞0 (R) is a real
valued function. We then have the following properties, for all t ∈ R:

• Size of the incident wave packet:

‖W0
inc‖L2(R2

+) = O(1), ‖W0
inc‖L∞(R2

+) = O(ε2);

• Size of the ε2 boundary layer:

‖W0
BL,ε2‖L2(R2

+) = O(1), ‖W0
BL,ε2‖L∞(R2

+) = O(1);

Note that the normal component of the velocity is much smaller (by a
factor O(ε2)).

• Size of the ε3 boundary layer:

‖W0
BL,ε3‖L2(R2

+) = O(ε3/2), ‖W0
BL,ε3‖L∞(R2

+) = O(ε).

Note that the normal component of the velocity is much smaller (by a
factor O(ε3)).
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As a consequence, W0 is of size O(1) in L∞ and L2.

Proof. • We start with the incident wave packet. Note that definition (2.14)
allows us to extend the definition of W0

inc to the whole space R2. According to
the Plancherel formula, we have

‖W0
inc‖L2(R2

+) ≤ ‖W0
inc‖L2(R2) = ‖Â(k,m)Xk,m‖L2(R2

k,m) . ‖Â‖L2 . 1

by our choice of scaling. Furthermore,

‖W0
inc‖L∞ . ‖Â‖L1(R2) . ε2.

• We now turn towards the estimates on W0
BL,ε2 . We start with the L∞

estimate, which is simpler. We recall that a2, a3 = O(ε−2), and that

UλjWλj

Bλj

 =

O(1) for all k,m in the support of Â. We deduce that

‖W0
BL,ε2‖L∞(R2

+) . ε−2‖Â‖L1(R2) . 1.

The L2 norm is slightly more involved. Using the Fubini theorem, we have

W0
BL,ε2(t, x, y) = −

∫
R
eikx

∫
R

∑
j∈{2,3}

Â(k,m)aje
−iωt−λjy

UλjWλj

Bλj

 dm

 dk.

Note that if (k,m) ∈ SuppÂ, there exist constants C, c > 0 (independent of ε)
such that for j = 2, 3,

|aj | ≤
C

ε2
,

∥∥∥∥∥∥
UλjWλj

Bλj

∥∥∥∥∥∥ ≤ C, <(λj) ≥
c

ε2
.

Therefore, using the Plancherel theorem,

‖W0
BL,ε2(t, y)‖2L2

x
=

∫
R

∣∣∣∣∣∣
∫
R

∑
j∈{2,3}

Â(k,m)aje
−iωt−λjy

UλjWλj

Bλj

 dm

∣∣∣∣∣∣
2

dk

≤ C

ε8

∫
R

∣∣∣∣∣
∫
R

∑
±

exp
(
−cy
ε2

)
χ

(
k ± k0

ε2

)
χ

(
m±m0

ε2

)
dm

∣∣∣∣∣
2

dk

≤ C

ε4
exp

(
−2cy

ε2

)∑
±

∫
R
χ2

(
k ± k0

ε2

)
dk

≤ C

ε2
exp

(
−2cy

ε2

)
.

Integrating this inequality with respect to y, we obtain ‖W0
BL,ε2(t, y)‖L2

x,y
. 1.
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• The ε3 boundary layer is treated with similar arguments. We recall that
a5 = O(ε−1), and that there exists a constant c such that λ5 & cε−3 for all
(k,m) ∈ SuppA. Therefore

‖W0
BL,ε3‖L∞(R2

+) . ε−1‖Â‖L1(R2) . ε,

and

‖W0
BL,ε3(t, y)‖2L2

x
≤ C

ε2
exp

(
−2cy

ε3

)∑
±

∫
R
χ2

(
k ± k0

ε2

)
dk ≤ C exp

(
−2cy

ε3

)
.

The result follows.

Remark 2.8. • The intuition behind the sizes of the ε2 and ε3 boundary
layers is the following. Because of the wave packet, both boundary layers
are localized in x in a band of width ε−2. As a consequence, the ε2 (resp.
ε3) boundary layer is localized in a region of size ε−2 × ε2 = 1 (resp.
ε−2× ε3 = ε). Hence the L2 and L∞ sizes of the ε2 boundary layer are of
the same order, while the L2 size of the ε3 boundary layer is

‖W0
BL,ε3‖L2 . ‖W0

BL,ε3‖L∞ × (ε−2 × ε3)1/2 . ε× ε1/2 = ε3/2.

• The same bounds hold for all derivatives with respect to x. Concerning
the y derivatives, the same bounds hold for the incident wave packet, but
a power εj is lost with each derivation for the εj boundary layer, j = 2, 3.

3 Weakly nonlinear system

This section aims at providing a description of our approximate solution when
the weak nonlinearity comes into play. As anticipated in the introduction, the
nonlinear solution can be formally seen as a small perturbation of the linear
one.

More precisely, we will start from the (almost) exact solution to the lin-
ear system W0, and we will construct an approximate solution to the weakly
nonlinear system in the form

Wapp =W0 +W1

where the correctorW1 compensates the self-interactions ofW0. In other words,
the nonlinear term will be treated as a source term for the linear equation. One
difficulty here is to deal with nonlinear interactions in the context of the wave
packet approximation, which is an infinite superposition of plane waves.

In the case of near-critical reflection with the scalings suggested by Dauxois
and Young [10], where δ is the parameter of the weak nonlinearity and the
viscosity is of order O(ε6), the weakly nonlinear system is the one considered in
(1.9). Let us rewrite this system in the following more compact way. Let P be
the orthogonal projection onto the divergence free vector fields in L2(R+)3, i.e.
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fields of the form W = (u,w, b) ∈ L2(R2
+)3 with ∂xu + ∂yw = 0 . For W, W ′

also belonging to H1(R+)3, define

Lε

uw
b

 = P

 −b sin γ
−b cos γ

u sin γ + w cos γ

−
ν0ε

6∆u
ν0ε

6∆w
κ0ε

6∆b


and

Q(W,W ′) = P((u∂x + w∂y)W ′). (3.1)

Then system (1.9) becomes

∂tW + LεW + δQ(W,W) = 0. (3.2)

The main result of this section is the following.

Proposition 3.1. Let W0 be given by (2.18). There exists a function W1,
which satisfies

∂tW1 + LεW1 = −δQ(W0,W0) + r1,

together with the boundary conditions u1
|y=0 = w1

|y=0 = 0, ∂yb
1
|y=0 = 0, where

the remainder r1 satisfies
‖r1‖L2 ≤ Cδε2,

and which can be decomposed as

W1 =W1
II +W1

MF +W1
BL,ε2 +W1

BL,ε3 .

The terms of the above decomposition satisfy the following properties:

• The ε2 boundary layer satisfies

‖W1
BL,ε2‖L2(R2

+) . δ, ‖W1
BL,ε2‖L∞(R2

+) . δ ;

Moreover, the normal component of the velocity is smaller by a factor
O(ε2). Derivatives with respect to t and x are bounded, while each deriva-
tive with respect to y has a cost O(ε−2).

• The ε3 boundary layer satisfies

‖W1
BL,ε3‖L2(R2

+) . δε1/2, ‖W1
BL,ε3‖L∞(R2

+) . δ ;

Moreover, the normal component of the velocity is smaller by a factor
O(ε3). Derivatives with respect to t and x are bounded, while each deriva-
tive with respect to y has a cost O(ε−3).

• The second harmonic oscillates around frequencies ±2ω0, and satisfies

‖W1
II‖L2(R2

+) . δ, ‖W1
II‖L∞(R2

+) . δε2 ;
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• The mean flow is much smaller

‖W1
MF ‖Hs(R2

+) . δε2, ‖W1
MF ‖W s,∞(R2

+) . δε3 ,

for any s ∈ N. For these second harmonic and mean flow contributions,
derivatives with respect to t, x, y are bounded.

Note that the terms do not all have the same size. We need all of them to get
a small remainder r1 and to lift exactly all boundary conditions. However our
convergence result will not be precise enough to give a physical meaning to all
correctors (in particular to the mean flow). There are several tools that are
important in our construction:

• First, since Q is a bilinear operator, we can use definition (2.18) to write
Q(W0,W0) as a sum of nine terms. According to Lemma 2.7, the largest
of these terms is Q(W0

BL,ε2 ,W0
BL,ε2). Hence we will need to carefully

write the expression of this quadratic term, and in particular, to outline
its dependency in time (i.e. its time-frequency) and in space (frequency
in the tangential variable, decay in y).

• By linearity, it is also clear that every term in Q(W0,W0) (except for
Q(W0

inc,W0
inc)) is a linear superposition of terms of the type

exp(i(kx− ωt)− λy),

with <(λ)� 1, and k (resp. ω) is in a neighborhood of size ε2 of 0 or 2k0

(resp. 0 or 2ω0). Therefore it will be sufficient to understand the behavior
of solutions of

∂tW + LεW = exp(i(kx− ωt)− λy),

with homogeneous boundary conditions. We will perform an almost ex-
plicit computation of an approximate solution, relying on an asymptotic
expansion of Lε and on the boundary layer analysis of the previous section.

Let us now list the nine possible type of interactions by decreasing size in
L2, and give their typical decay (based on the estimates in Lemma 2.7).
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Table 2: List of quadratic interactions

type of interaction size in L2 typical decay rate

(a1) Q(W0
BL,ε2 ,W0

BL,ε2) O(1) ε−2

(a2) Q(W0
inc,W0

BL,ε2) O(1) ε−2

(b1) Q(W0
BL,ε2 ,W0

BL,ε3) O(ε1/2) ε−3

(b2) Q(W0
inc,W0

BL,ε3) O(ε1/2) ε−3

(b3) Q(W0
BL,ε3 ,W0

BL,ε2) O(ε3/2) ε−3

(c1) Q(W0
BL,ε2 ,W0

inc) O(ε2) ε−2

(c2) Q(W0
inc,W0

inc) O(ε2) no decay

(c3) Q(W0
BL,ε3 ,W0

BL,ε3) O(ε5/2) ε−3

(c4) Q(W0
BL,ε3 ,W0

inc) O(ε7/2) ε−3

Remark 3.2. Note that boundary layer terms of size ε2 (type (a)) will give
birth to boundary layer terms of size ε2 AND of size ε3 (through the boundary
condition). Note also that we will not lift terms of type (c) as they are already
of size O(ε2) and can be directly incorporated to the remainder r1.

3.1 Interactions of type (a)

In this paragraph, we treat the nonlinear terms which are of size O(1) in L2,
with an exponential decay of rate O(ε−2). More precisely, we will prove the
following result:

Proposition 3.3. There exists a corrector W1
(a) which satisfies the following

properties:

(i) W1
(a) is a solution of the evolution equation

∂tW1
(a) + LεW1

(a) = −δ × (a) + r1
(a),

with
‖r1

(a)‖L2 . δε2;

(ii) W1
(a) satisfies exactly the homogeneous boundary conditions (1.10);
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(iii) W1
(a) can be decomposed as the sum of a mean flow W1

MF ;(a), a second

harmonic W1
II;(a), an ε2 boundary layer W1

BL,ε2;(a), and an ε3 boundary

layer W1
BL,ε3;(a)

W1
(a) =W1

BL,ε2;(a) +W1
BL,ε3;(a) +W1

II;(a) +W1
MF ;(a) .

– The ε2 boundary layer satisfies

‖W1
BL,ε2;(a)‖L2(R2

+) . δ, ‖W1
BL,ε2;(a)‖L∞(R2

+) . δ ;

Moreover, the normal component of the velocity is smaller by a factor
O(ε2). Derivatives with respect to t and x are bounded, while each
derivative with respect to y has a cost O(ε−2).

– The ε3 boundary layer satisfies

‖W1
BL,ε3;(a)‖L2(R2

+) . δε1/2, ‖W1
BL,ε3;(a)‖L∞(R2

+) . δ ;

Moreover, the normal component of the velocity is smaller by a factor
O(ε3). Derivatives with respect to t and x are bounded, while each
derivative with respect to y has a cost O(ε−3).

– The second harmonic satisfies

‖W1
II;(a)‖L2(R2

+) . δ, ‖W1
II;(a)‖L∞(R2

+) . δε2 ;

– The mean flow is much smaller

‖W1
MF ;(a)‖Hs . δε2, ‖W1

MF ;(a)‖W s,∞ . δε3 .

For these second harmonic and mean flow contributions, derivatives
with respect to t, x, y are bounded.

Our strategy will be the following: we will first find an approximate solution
of the equation

∂tW + LεW = −δ × (a)

without taking into account the boundary condition. We then lift the remain-
ing trace by using the boundary operator of the previous section. Note that
our construction is very reminiscent from the construction of Ekman boundary
layers for instance.

We start with a computation of Q(W0
BL,ε2 ,W0

BL,ε2) and Q(W0
inc,W0

BL,ε2).
Using the formulas of the previous section, we have

(u0
BL,ε2∂x + w0

BL,ε2∂y)W0
BL,ε2 =

∫
R4

∑
j,j′∈{2,3}

ÂÂ′aa′ei(k+k′)x−i(ω+ω′)t−(λ+λ′)y×

× (ik′U − λ′W )

U ′

W ′

B′

 dk dm dk′ dm′,

(3.3)
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where we wrote in a condensed manner Â for Â(k,m) defined in (2.16), a for
aj(k,m), (U,W,B) for (Uλj(k,m),Wλj(k,m), Bλj(k,m)), see (2.17), and used the

same convention for Â′, a′, (U ′,W ′, B′) (depending on j′, k′,m′). Similarly,

(u0
inc∂x + w0

inc∂y)W0
BL,ε2 =

∫
R4

∑
j′∈{2,3}

ÂÂ′aei(k+k′)x−i(ω+ω′)t−(λ′−im)y×

× (ik′Uinc − λ′Winc)

U ′

W ′

B′

 dk dm dk′ dm′,

(3.4)
where (Uinc,Winc, Binc) denotes here the Fourier transform of the incident wave,
see (2.14).

Note that, in this representation, the Leray projection is simply a multiplier
which does not change the general form of the source term. More precisely,
since µ is such that <(µ) & ε−2, it is given at leading order by

(I − P)

eilx−µy
U ′

W ′

B′

 = eilx−µy

 0
W ′

0

+O(ε2) ,

In particular the second component ofQ(W0
BL,ε2 ,W0

BL,ε2)+Q(W0
inc,W0

BL,ε2)

is smaller than the other components by a factor O(ε2).

Since Â in (2.16) is supported in the vicinity of ±(k0,m0), it follows that

in the expression above, for (k,m) ∈ SuppÂ, (k′,m′) ∈ SuppÂ′, (k + k′, ω +
ω′) is localized either in a ball of size ε2 around (0, 0), or in a ball of size ε2

around ±(2k0, 2ω0). Hence, by linear superposition, it is sufficient to consider
the equation

∂tW + LεW = δ exp(ilx− iαt− µy)

U ′

W ′

B′

 , (3.5)

where µ is such that <(µ) & ε−2, U ′, B′ = O(1), W ′ = O(ε2), l is close to
0, ±2k0, α is close to 0, ±2ω0.

Step 1 : approximation of the linear operator. Let us now compute an approx-
imate operator for Lε in this scaling. Since the operator Lε has constant coeffi-
cients, we look for a solution of (3.5) of the formW = δ exp(ilx−iαt−µy)X, for
some vector X ∈ C3 to be determined. Because of the divergence free condition,
we expect the second component of X to be O(ε2). Therefore, looking at the
equation for the second component and taking into account the exponential de-
cay, we infer that the pressure is also O(ε2), and it is legitimate to keep only the
equation on the u and b components of W (which will be checked a posteriori
anyway). The equation then becomes

∂tV + LV = δ exp(ilx− iαt− µy)V ′ (3.6)
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where V : R+ × R2
+ → C2, V ′ = (U ′, B′)T , and

L = sin γ

(
0 −1
1 0

)
. (3.7)

It is well-known that the eigenvalues of L are ±i sin γ, and that the correspond-
ing normalized eigenvectors are V± = 1√

2
(1, ∓i). We therefore have that

exp(Lt) = exp(i sin γt)Π+ + exp(−i sin γt)Π−

with

Π± =
1

2

(
1 ±i
∓i 1

)
.

We then have the following lemma :

Lemma 3.4. There exists a solution to (3.6) which is given explicitly by

V(t, x, y) = δeilx−µy−iαt
∑
±

1

−iα± i sin γ
Π±V ′.

In particular, it has the same decay and the same size as V ′.

Proof. Conjugating the equation (3.6) by exp(Lt), we get

d

dt

(∑
±
e±i sin γtΠ±V ′

)
= δeilx−µy

∑
±
e−iαt±i sin γtΠ±V ′.

Now, by assumption, recalling that ζ = ω2
0 − sin2 γ ≈ O(ε2) and that ω + ω′ in

formulas (3.3)-(3.4) is localized in a neighborhood of 0,±2ω0, then

| − α± sin γ| ≥ ω0/2 > 0

for ε small enough. Therefore the right-hand side does not generate any secular
growth, and we have

V(t, x, y) = δeilx−µy
∑
±

1

−iα± i sin γ
e−iαtΠ±V ′.

which is the expected formula.

We then define V1
BL,ε2;(a1),V

1
BL,ε2;(a1) by superposition :

V1
BL,ε2;(a1) := −δ

∫
R4

∑
j,j′∈{2,3}

∑
±
ÂÂ′aa′ei(k+k′)x−i(ω+ω′)t−(λ+λ′)y ×

× k′U + iλ′W

−(ω + ω′)± sin γ
Π±

(
U ′

B′

)
dk dk′ dmdm′

V1
BL,ε2;(a2) := −δ

∫
R4

∑
j′∈{2,3}

ÂÂ′aei(k+k′)x−i(ω+ω′t)−(λ′−im′)y ×

× k
′Uinc + iλ′Winc

−(ω + ω′)± sin γ
Π±

(
U ′

B′

)
dk dk′ dmdm,
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where we recall that in the notation V1
BL,ε2;(aj), the subscript (aj) refers to the

classification of quadratic interactions in Table 2. By Lemma 2.7, it is clear that
these quantities are ε2 boundary layer terms, whose size in L2 and in L∞ are
O(δ).

Step 2 : restoring the divergence-free condition. We then defineW1
BL,ε2;(a1) (resp.

W1
BL,ε2;(a2)) by adding the normal velocity of W1

BL,ε2;(a1) (resp. W1
BL,ε2;(a2))

obtained simply by integrating the divergence free condition

W 1
BL,ε2;(a1) := −1

2
δ

∫
R4

∑
j,j′∈{2,3}

∑
±
ÂÂ′aa′

i(k + k′)

λ+ λ′
ei(k+k′)x−i(ω+ω′)t−(λ+λ′)y ×

× k′U + iλ′W

−(ω + ω′)± sin γ
(U ′ ± iB′)dk dk′ dmdm′

W 1
BL,ε2;(a2) := −1

2
δ

∫
R4

∑
j′∈{2,3}

ÂÂ′a′
i(k + k′)

λ′ − im
ei(k+k′)x−i(ω+ω′)t−(λ′−im)y ×

× k
′Uinc + iλ′Winc

−(ω + ω′)± sin γ
(U ′ ± iB′)dk dk′ dmdm

The sizes of W 1
BL,ε2;(a1),W

1
BL,ε2;(a2) in L2 and in L∞ are O(δε2), since λ, λ′ ≈

O(ε−2).
Note that W1

BL,ε2;(a1) and W1
BL,ε2;(a2) are superpositions of vectors of re-

spective form  1
i(k+k′)
λ+λ′

±i

 ,

 1
i(k+k′)
−im+λ′

±i

 .

By construction,
∑
j=1,2W1

BL,ε2;(aj) is divergence free, and it can be easily
checked that it is a solution of

∂t
∑
j=1,2

W1
BL,ε2;(aj) + Lε

∑
j=1,2

W1
BL,ε2;(aj)

= −δQ(W0
BL,ε2 ,W0

BL,ε2)− δQ(W0
inc,W0

BL,ε2) + r1
(a),L,

where the remainder r1
(a),L (coming from the terms which have been neglected

in Lε, i.e. viscous terms, terms involving the normal component W 1
BL,ε2;(aj)

and correctors of order O(ε2) in the Leray projection) satisfies

‖r1
(a),L‖L2 = O(δε2).

Step 3 : Lifting the boundary conditions. Now,W1
BL,ε2;(a) has a non-zero trace

on the boundary, which must be lifted. In order to do so, we use the boundary
operators of the previous section. Let us recall thatW1

BL,ε2;(a) oscillates around
the frequencies 0 and ±2ω0, so that we are never in the critical case. More
precisely, we will use either the construction in the case |ζ| & 1 (this corresponds
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to the frequencies ±2ω0, and will give rise to the second harmonic), or the one
in the case |k| . ν1/3 = ε2, |ω| . ε2 (this corresponds to the frequencies close
to zero, and will give rise to the mean flow).

Before doing the explicit computation, we need to identify the parts of
W1
BL,ε2;(a) that will give rise to a second harmonic or to a mean flow. To

that end, we write

ÂÂ′ = Â(k,m)Â(k′,m′)

=
1

ε4

∑
η,η′∈{±1}

χ

(
k + ηk0

ε2
,
m+ ηm0

ε2

)
χ

(
k′ + η′k0

ε2
,
m′ + η′m0

ε2

)
= A0(k, k′,m,m′) +AII(k, k′,m,m′),

where

A0(k, k′,m,m′) =
1

ε4

∑
η∈{±1}

χ

(
k + ηk0

ε2
,
m+ ηm0

ε2

)
χ

(
k′ − ηk0

ε2
,
m′ − ηm0

ε2

)
,

AII(k, k′,m,m′) =
1

ε4

∑
η∈{±1}

χ

(
k + ηk0

ε2
,
m+ ηm0

ε2

)
χ

(
k′ + ηk0

ε2
,
m′ + ηm0

ε2

)
.

If (k, k′,m,m′) ∈ SuppA0, then (k + k′,m + m′, ω + ω′) = O(ε2), while if
(k, k′,m,m′) ∈ SuppAII , then (k+k′,m+m′, ω+ω′) = ±2(k0,m0, ω0)+O(ε2).

Using the expressions above, we infer that U1
BL,ε2;(a)

W 1
BL,ε2;(a)

∂yB
1
BL,ε2;(a)


|y=0

= −δ
∫
R4

(A0 +AII) ei(k+k′)x−i(ω+ω′)t

u(a)

w(a)

b(a)

 dk dk′ dm dm′,

whereu(a)

w(a)

b(a)

 =
1

2

∑
j,j′∈{2,3}

∑
±
aa′

k′U + iλ′W

−(ω + ω′)± sin γ
(U ′ ± iB′)

 1
i(k+k′)
λ+λ′

±i(λ+ λ′)


+

1

2

∑
j′∈{2,3}

∑
±
a′
k′Uinc + iλ′Winc

−(ω + ω′)± sin γ
(U ′ ± iB′)

 1
i(k+k′)
λ′−im

±i(λ′ − im)


=

∑
j,j′∈{2,3}

∑
±
O(ε−4)

 1
i(k+k′)
λ+λ′

O(ε−2)

+
∑

j′∈{2,3}

∑
±
O(ε−4)

 1
i(k+k′)
λ′−im
O(ε−2)

 .

We recall that a, a′, λ, U, U ′, etc. are condensed notations for aj , aj′ , λj(k,m, ω),
Uλ, Uλ′ respectively, see (2.17), while we refer to (2.14) for the notations Uinc,Winc.
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We now lift the contributions ofA0 andAII using the results of the preceding
section. Note that the time frequency of AII is ±2ω0, therefore it fits the
framework of the non-critical case discussed in Lemma 2.3. On the other hand,
A0 is a non oscillating term in time and we will apply the results of Lemma 2.4.

• Using Lemma 2.3, we define the boundary layer corrector associated with AII

W1
BL,ε3;(aII) : = δ

∫
R4

AII(k, k′,m,m′)Bnc,BLω+ω′,k+k′ [u(a),w(a), b(a)]dk dk
′ dm dm′

= δ
∑
j=3,5

∫
R4

AII(k, k′,m,m′)αjei((k+k′)x−(ω+ω′)t)−Λjydk dk′ dm dm′

and the second harmonic flow associated with the term (a)

W1
II;(a) : = δ

∫
R4

AII(k, k′,m,m′)Bnc,RWω+ω′,k+k′ [u(a),w(a), b(a)]dk dk
′ dm dm′

= δ

∫
R4

AII(k, k′,m,m′)α2e
i((k+k′)x−(ω+ω′)t)−Λ2ydk dk′ dm dm′,

where Λ2,Λ3,Λ5 denote the roots with positive real parts of the determinant of
the matrix Aν,κ(ω+ ω′, k+ k′,Λj) defined in (2.5), associated to ω+ ω′, k+ k′.
The coefficients α2, α3, α5 satisfy (2.8), i.e.

α2 + α3 + α5 = u(a)= O(ε−4),

1

Λ2
α2 +

1

Λ3
α3 +

1

Λ5
α5 =

w(a)

i(k + k′)
= O(ε−2),

Λ̃2α2 + Λ̃3α3 + Λ̃5α5 = − 1

sin γ
b(a)= O(ε−6),

with Λ̃2 ∼ Λ2

ω+ω′ = O(1), Λ3,Λ5 = O(ε−3) and

Λ̃3 ∼
Λ3

i(ω + ω′) + ε6κ0Λ2
3

, Λ̃5 ∼
Λ5

i(ω + ω′) + ε6κ0Λ2
5

.

We can prove the following result:

Lemma 3.5. The additional boundary corrector satisfies the following estimate

‖W1
BL,ε3;(aII)‖L2(R2

+) . δε1/2, ‖W1
BL,ε3;(aII)‖L∞(R2

+) . δ.

If sin γ > 1/2, the second harmonic flow W1
II;(a) is evanescent far from the

boundary.
‖W1

II;(a)‖L2(R2
+) . δε, ‖W1

II;(a)‖L∞(R2
+) . δε2.

If sin γ < 1/2, the second harmonic flow W1
II;(a) is a wave packet propagating

in the outer domain, and satisfying the following estimates

‖W1
II;(a)‖L2(R2

+) . δ, ‖W1
II;(a)‖L∞(R2

+) . δε2.
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Proof. We need first to estimate the coefficients α2, α3, α5, which means that
we have to compute a good approximation of C−1 for

C =

 1 1 1
1

Λ2

1
Λ3

1
Λ5

Λ̃2 Λ̃3 Λ̃5

 . (3.8)

The determinant of the matrix C is of the form

detC =
∑
i,j

± Λ̃i
Λj
∼ Λ̃3 − Λ̃5

Λ2
= O(ε−3) .

We then obtain the inverse matrix by computing the comatrix. At leading order,
we get

C−1 ∼ O(ε3)


Λ̃5

Λ3
− Λ̃3

Λ5
Λ̃3 − Λ̃5

1
Λ5
− 1

Λ3

− Λ̃5

Λ2
Λ̃5

1
Λ2

Λ̃3

Λ2
−Λ̃3 − 1

Λ2

 (3.9)

Combining this formula with the estimates on u(a),w(a), b(a), we obtain that

α2 = O(ε−2), α3, α5 = O(ε−4) .

Integrating with respect to m,m′, k − k′ as already done in the proof of
Lemma 2.7, we obtain that the Fourier transform with respect to x ofW1

BL,ε3;(aII)

is O(δε−2) in L∞k+k′,y with decay rate O(ε−3) in y, and supported in a small

domain of size O(ε2) in k + k′. We then have the following estimates

‖W1
BL,ε3;(aII)‖L2(R2

+) . δε1/2, ‖W1
BL,ε3;(aII)‖L∞(R2

+) . δ .

Recall that Λ2 = O(1) has a non negative real part and satisfies approxi-
mately

((ω+ω′)2−sin2 γ)Λ2
2−2i(k+k′) sin γ cos γΛ2 +(k+k′)2(cos2 γ−(ω+ω′)2) = 0 .

(3.10)
Since k + k′ = ±2k0 +O(ε2) and ω + ω′ = ±2ω0 +O(ε2), we have that

Λ2 = ±
2ik0 sin γ cos γ ∓ 4k0

√
sin2 γ(3 sin2 γ − cos2 γ)

3 sin2 γ
+O(ε2) := Λ0 +O(ε2) .

More precisely, we can expand ω + ω′ − 2ω0, and then Λ2 − Λ0 as a (linear)
function of m−m0 and k − k0.

• If sin γ > 1/2 then tan γ > 1/3 and Λ0 has a nonnegative real part.
Integrating with respect to m,m′, k − k′ as done in the proof of Lemma
2.7, we obtain that the Fourier transform with respect to x of W1

II;(a) is

O(δ) in L∞k+k′,y, and supported in a small domain of size O(ε2) in k + k′.
We then have the following estimates

‖W1
II;(a)‖L2(R2

+) . δε, ‖W1
II;(a)‖L∞(R2

+) . δε2 .
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• If sin γ < 1/2, then tan γ < 1/3 and Λ0 is purely imaginary. Since
there is no decay in y at main order, we have to use the integral with
respect to m,m′ to get some integrability. Going back to the expression
of detAν,κ,ω+ω′,k+k′ in Section 2, we find that there exist real constants
µ1, µ2 such that

Λ2 − Λ0 = iµ1(m+m′ − 2m0) + iµ2(k + k′ − 2k0) +O(ε4) .

In other words, up to a change of variable (normal form), m + m′ is the
Fourier variable of y. Integrating with respect to m−m′, k−k′, we obtain
that the Fourier transform with respect to x, y of W1

II;(a) is O(δε−2) in

L∞, and supported in a small domain of size O(ε4). We then have the
following estimates

‖W1
II;(a)‖L2(R2

+) . δ, ‖W1
II;(a)‖L∞(R2

+) . δε2 .

• The contribution of A0 is slightly more complicated, because the boundary
operator only lifts two of the components. We first consider the boundary layer
part due to A0, namely

W1
BL,ε3;(aMF ) = δ

∫
R4

A0(k, k′,m,m′)Bno,BLω+ω′,k+k′ [u(a), b(a)]dk dk
′ dm dm′.

Then as observed in Lemma 2.4, there remains a non-zero trace for the w
component, namely

W1
(a) := δ

∫
R4

A0e
i(k+k′)x−i(ω+ω′)t

−w(a) +
∑

l∈{3,5}

i(k + k′)

Λl
ᾱl

 ,
where ᾱ3, ᾱ5 solve the system

ᾱ3 + ᾱ5 = u(a) = O(ε−4),∑
j∈{3,5}

−Λjᾱj

 sin γ + i(k+k′)
Λj

cos γ

i(ω + ω′)− κ((k + k′)2 − Λ2
j )

 = b(a) = O(ε−6),

with Λ3,Λ5 = O(ε−3) and k + k′, ω + ω′ = O(ε2).
In particular, ᾱ3, ᾱ5 = O(ε−4) and we obtain as previously that

‖W1
BL,ε3;(aMF )‖L2(R2

+) . δε1/2, ‖W1
BL,ε3;(aMF )‖L∞(R2

+) . δ.

In addition, we can prove the following result:
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Lemma 3.6. The boundary term W1
(a) can be lifted by a mean flow W1

MF ;(a)

with divergence free velocity, satisfying the following estimates:

‖Ds
t,x,yW1

MF ;(a)‖L2(R2
+) . δε2, ‖Ds

t,x,yW1
MF ;(a)‖L∞(R2

+) . δε3 .

In particular
∂tW1

MF ;(a) + LεW1
MF ;(a) = r1

(a),MF

with
‖r1

(a),MF ‖L2(R2
+) . δε2 .

Proof. Using the estimates on (u(a),w(a), b(a)) and the fact that k+k′ = O(ε2),
we can check that ᾱj/Λj = O(ε−1) for j = 3, 5, and w(a) = O(1). Integrating
with respect to k, k′,m,m′, we deduce that the boundary term to be lifted W1

(a)

satisfies
‖W1

(a)‖L2(R) . δε3, ‖W1
(a)‖L∞(R) . δε4.

Furthermore we can build a function G ∈ L2 ∩ L∞(R) such that W1
(a) = ∂xG,

given by

G := δ

∫
R4

A0e
i(k+k′)x−i(ω+ω′)t

− w(a)

i(k + k′)
+

∑
l∈{3,5}

1

λl
αl

 .
We then have the following estimates :

‖G‖L2(R) . δε, ‖G‖L∞(R) . δε2.

We then define

W1
MF ;(a)(x, y) = (−G(x)ε2θ′(ε2y), θ(ε2y)∂xG(x), 0)

for some function θ ∈ C∞0 (R) such that θ ∼ 1 in a neighbourhood of zero,
with derivative θ′. As a consequence, the first two-components of W1

MF ;(a) are

divergence free, and by definition W1
MF ;(a) lifts the remaining trace :

W1
MF ;(a)|y=0 = (0,−W1

(a), 0) .

The explicit formula for W1
MF ;(a) leads immediately to

‖W1
MF ;(a)‖L2 . δε2, ‖W1

MF ;(a)‖L∞ . δε3 .

We conclude the proof by observing that each derivative (with respect to x, y)
actually improves the bound by a factor O(ε2). We could also differentiate with
respect to time, which would not change the estimates.
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Step 4 : consistency of the approximation.
Define

W1
(a) := (W1

BL,ε2;(a1) +W1
BL,ε2;(a2) + (W1

BL,ε3;(aII) +W1
BL,ε3;(aMF ))

+W1
II;(a) +W1

MF ;(a).

It satisfies all the properties stated in Proposition 3.3, with the remainder

r1
(a) = r1

(a),L + r1
(a),MF .

Interactions of type (b)

We will now turn to the nonlinear terms which are of size O(ε1/2) in L2, with
an exponential decay of rate O(ε−3). More precisely, we will prove the following
result:

Proposition 3.7. There exists a corrector W1
(b) which satisfies the following

properties:

(i) W1
(b) is a solution of the evolution equation

∂tW1
(b) + LεW1

(b) = −δ × (b) + r1
(b),

with
‖r1

(b)‖L2 . δε2;

(ii) W1
(b) satisfies exactly the homogeneous boundary conditions (1.10);

(iii) W1
(b) can be decomposed as the sum of a mean flow W1

MF ;(b), a second

harmonic W1
II;(b), and an ε3 boundary layer W1

BL,ε3;(b)

W1
(b) =W1

BL,ε3;(b) +W1
II;(b) +W1

MF ;(b) .

– The ε3 boundary layer satisfies

‖W1
BL,ε3;(b)‖L2(R2

+) . δε1/2, ‖W1
BL,ε3;(b)‖L∞(R2

+) . δ .

Moreover, the normal component of the velocity is smaller by a factor
O(ε3). Derivatives with respect to t and x are bounded, while each
derivative with respect to y has a cost O(ε−3).

– The second harmonic satisfies

‖W1
II;(b)‖L2(R2

+) . δε, ‖W1
II;(b)‖L∞(R2

+) . δε3 ;

– The mean flow is much smaller

‖W1
MF ;(b)‖Hs . δε2, ‖W1

MF ;(b)‖W s,∞ . δε3 .

For these second harmonic and mean flow contributions, derivatives
with respect to t, x, y are bounded.
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We start with a computation of Q(W0
BL,ε2 ,W0

BL,ε3), Q(W0
inc,W0

BL,ε3) and

Q(W0
BL,ε3 ,W0

BL,ε2). Using the formulas of the previous section and the leading
order approximation of the Leray projector in this scaling, we obtain that

Q(W0
BL,ε2 ,W0

BL,ε3) =

∫
R4

∑
j∈{2,3}

ÂÂ′aa′5e
i(k+k′)x−i(ω+ω′t)−(λ+λ′5)y×

× (ik′U − λ′5W )

 U ′5
O(ε3)
B′5

 dk dm dk′ dm′,

Q(W0
inc,W0

BL,ε3) =

∫
R4

ÂÂ′a′5e
i(k+k′)x−i(ω+ω′t)−(λ′5−im)y×

× (ik′Uinc − λ′5Winc)

 U ′5
O(ε3)
B′5

 dk dm dk′ dm′,

and

Q(W0
BL,ε3 ,W0

BL,ε2) =

∫
R4

∑
j′∈{2,3}

ÂÂ′a5a
′ei(k+k′)x−i(ω+ω′)t−(λ5+λ′)y×

× (ik′U5 − λ′W5)

 U ′

O(ε3)
B′

 dk dm dk′ dm′,

where we recall that the quadratic term Q(W,W ′) has been defined in (3.1)
and the notations Â, aj , U,W,Uinc,Winc,W0

inc,W0
BL,ε2 ,W0

BL,ε3 have been intro-

duced in (2.14), (2.17), while U5,W5 are the tangential and the normal compo-
nent of the velocity field associated to the boundary layer of decay exp(−y/ε3)
in (2.17).

We have thus to study the solutions to the equation

∂tW + LεW = δ exp(ilx− iαt− µy)

U ′

W ′

B′

 , (3.11)

where µ is such that <(µ) & ε−3, U ′, B′ = O(1), W ′ = O(ε3), and l (resp. α)
so located in an ε2 neighborhood of 0, 2k0, or −2k0 (resp. of 0, 2ω0, or −2ω0).

The strategy will be very similar to the one used in the previous paragraph,
with one major difference : since the scaling is different, the linear operator
contains viscous dissipation in the y direction at leading order.

Step 1 : approximation of the linear operator. At leading order, the equation
then becomes

∂tV + LV −
(
ν0 0
0 κ0

)
(ε6∂yy)V = δ exp(ilx− iαt− µy)V ′ (3.12)

where V : R+ × R2
+ → C2, and V ′ = (U ′, B′)T .
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Lemma 3.8. There exists a matrix M depending on α, ν0, κ0 and m = µε3,
but uniformly bounded with respect to all these parameters, such that

V(t, x, y) = δeilx−µy−iαtMV ′.

is a solution to (3.12).

Proof. We look at a solution to (3.12) of the form

V(t, x, y) = δeilx−µy−iαtV .

Plugging this Ansatz in the equation, we obtain the following system

M−1V :=

(
−iα− ν0m

2 − sin γ
sin γ −iα− κ0m

2

)
V = V ′ ,

where m is an approximate solution with positive real part to

ν0κ0m
2 + iω0(ν0 + κ0) = 0 ,

which is the main order equation for the eigenvalues of order ν−
1
2 = ε−3 in the

critical case with small diffusivity, see section 2.
The matrix M is therefore defined by

M = (sin2 γ − α2 + iαm2(ν0 + κ0) + ν0κ0m
4)−1

(
iα− κ0m

2 − sin γ
sin γ iα− ν0m

2

)
.

We have
det(M−1) = sin2 γ − α2 + iαm2(ν0 + κ0) + ν0κ0m

4

∼ ω2
0 − α2 +

(ν0 + κ0)2

ν0κ0
ω0(α− ω0)

In particular, since α = ±2ω0 +O(ε2) or α = O(ε2), det(M−1) is bounded away
from 0. More precisely, by considering the three different values of α, namely
±2ω0 +O(ε2), O(ε2), we can check that |det(M−1)| ≥ Cω2

0 , where the constant
value C is independent of ν0, κ0. We therefore obtain a uniform bound on M
in all regimes we will consider.

We then define V1
BL,ε3;(b) by superposition :

V1
BL,ε3;(b1) = −δ

∫
R4

∑
j∈{2,3}

ÂÂ′aa′5e
i(k+k′)x−i(ω+ω′t)−(λ+λ′5)y×

× (ik′U − λ′5W )M

(
U ′5
B′5

)
dk dm dk′ dm′,

V1
BL,ε3;(b2) = −δ

∫
R4

ÂÂ′a′5e
i(k+k′)x−i(ω+ω′t)−(λ′5−im)y×

× (ik′Uinc − λ′5Winc)M

(
U ′5
B′5

)
dk dm dk′ dm′,
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V1
BL,ε3;(b3) =

∫
R4

∑
j′∈{2,3}

ÂÂ′a5a
′ei(k+k′)x−i(ω+ω′t)−(λ5+λ′)y×

× (ik′U5 − λ′W5)M

(
U ′

B′

)
dk dm dk′ dm′.

This quantity is an ε3 boundary layer term, whose size is O(δε1/2) in L2 and
O(δ) in L∞ (as the source term (b)). We indeed recall that a, a′ = O(ε−2) and
a5, a

′
5 = O(ε−1).

Step 2 : restoring the divergence-free condition.
We then define the normal velocity ofW1

BL,ε2;(b1),W
1
BL,ε2;(b2) andW1

BL,ε2;(b3)

simply by integrating the divergence free condition. Denoting by M1 (resp. M2)
the first (resp. the second) line of the matrix M , we have

W 1
BL,ε3;(b1) = −δ

∫
R4

∑
j∈{2,3}

ÂÂ′aa′5
i(k + k′)

λ+ λ′5
ei(k+k′)x−i(ω+ω′t)−(λ+λ′5)y×

× (ik′U − λ′5W )M1

(
U ′5
B′5

)
dk dm dk′ dm′,

W 1
BL,ε3;(b2) = −δ

∫
R4

ÂÂ′a′5
i(k + k′)

−im+ λ′5
ei(k+k′)x−i(ω+ω′t)−(λ′5−im)y×

× (ik′Uinc − λ′5Winc)M1

(
U ′5
B′5

)
dk dm dk′ dm′,

W 1
BL,ε3;(b3) =

∫
R4

∑
j′∈{2,3}

ÂÂ′a5a
′ i(k + k′)

λ′ + λ5
ei(k+k′)x−i(ω+ω′t)−(λ5+λ′)y×

× (ik′U5 − λ′W5)M1

(
U ′

B′

)
dk dm dk′ dm′

The size of W 1
BL,ε3;(bj) is O(δε7/2) in L2 and O(δε3) in L∞.

Note that W1
BL,ε3;(b) is a superposition of vectors of the form M1V

i(k+k′)
λ+λ′5

M1V
M2V

 , and

 M1V
i(k+k′)
−im+λ′5

M1V
M2V

 .

By construction,
∑3
j=1W1

BL,ε3;(bj) is divergence free, and it can be easily
checked that it is a solution of

∂t

 3∑
j=1

W1
BL,ε3;(bj)

+ Lε

 3∑
j=1

W1
BL,ε3;(bj)


= −δQ(W0

BL,ε2 ,W0
BL,ε3)− δQ(W0

inc,W0
BL,ε3)

− δQ(W0
BL,ε3 ,W0

BL,ε2) + r1
(b),L,
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where the remainder r1
(b),L (coming from the terms which have been neglected

in Lε, i.e. viscous terms ∂xx, terms involving W 1
BL,ε3;(b) and correctors of order

O(ε3) in the Leray projection) satisfies

‖r1
(b),L‖L2 = O(δε5/2).

Step 3 : Lifting the boundary conditions. Now,W1
BL,ε3;(bj) has a non-zero trace

on the boundary, which must be lifted. Note that this trace has exactly the same
structure as in the previous case, namely

3∑
j=1

 U1
BL,ε3;(bj)

W 1
BL,ε3;(bk)

∂yB
1
BL,ε3;(bj)


|y=0

= −δ
∫
R4

(A0 +AII) ei(k+k′)x−i(ω+ω′)t

u(b)

w(b)

b(b)

 dk dk′ dm dm′,

whereu(b)

w(b)

b(b)

 =
∑

j∈{2,3}

aa′5(ik′U − λ′5W )

 M1
i(k+k′)
λ+λ′5

M1

−(λ+ λ′5)M2

 (U ′5, B
′
5)t

+ a′5(ik′Uinc − λ′5Winc)

 M1
i(k+k′)
−im+λ′5

M1

−(−im+ λ′5)M2

 (U ′5, B
′
5)t

+
∑

j′∈{2,3}

a5a
′(ik′U5 − λ′W5)

 M1
i(k+k′)
λ5+λ′ M1

−(λ5 + λ′)M2

 (U ′, B′)t

= O(ε−4)

 M1
i(k+k′)
λ5+λ′ M1

O(ε−3)

 (U ′, B′)t +O(ε−4)

 M1
i(k+k′)
−im+λ′5

M1

O(ε−3)

 (U ′5, B
′
5)t

+O(ε−4)

 M1
i(k+k′)
λ′5+λ M1

O(ε−3)

 (U ′5, B
′
5)t.

We now lift the contributions of A0 and AII exactly as in the previous para-
graph. Using Lemma 2.3, we first define the boundary layer corrector associated
with AII

W1
BL,ε3;(bII) = δ

∫
R4

AII(k, k′,m,m′)Bnc,BLω+ω′,k+k′ [u(b),w(b), b(b)]dk dk
′ dm dm′

= δ
∑
j=3,5

∫
R4

AII(k, k′,m,m′)βjei((k+k′)x−(ω+ω′)t)−Λjydk dk′ dm dm′
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and the second harmonic flow associated with the term (b)

W1
II;(b) := δ

∫
R4

AII(k, k′,m,m′)Bnc,RWω+ω′,k+k′ [u(b),w(b), b(b)]dk dk
′ dm dm′

= δ

∫
R4

AII(k, k′,m,m′)β2e
i((k+k′)x−(ω+ω′)t)−Λ2ydk dk′ dm dm′.

where Λ2,Λ3,Λ5 denote the roots with positive real parts of the determinant of
the matrix Aν,κ(ω+ ω′, k+ k′,Λj) defined in (2.5), associated to ω+ ω′, k+ k′.
The coefficients βj are defined byβ2

β3

β5

 = C−1

 u(b)

w(b)

− b(b)

sin γ


where the matrix C is defined in (3.8), and satisfies

C−1 ∼ O(ε3)


Λ̃5

Λ3
− Λ̃3

Λ5
Λ̃3 − Λ̃5

1
Λ5
− 1

Λ3

− Λ̃5

Λ2
Λ̃5

1
Λ2

Λ̃3

Λ2
−Λ̃3 − 1

Λ2



= O(ε3)

 O(1) O(ε−3) O(ε3)
O(ε−3) O(ε−3) O(1)
O(ε−3) O(ε−3) O(1)

 .

As a consequence, β2

β3

β5

 =

O(ε−1)
O(ε−4)
O(ε−4)

 .

Note that β3 and β5 are of the same size as α3 and α5. However, β2 =
O(ε−1) is a priori smaller than α2 = O(ε−2). As a consequence, the estimate on
W1
BL,ε3;(bII) is exactly the same as the one onW1

BL,ε3;(aII), but the estimate on

W1
II;(b) is smaller than the one on W1

II;(a) by a factor ε.
We then define the boundary layer part due to A0, namely

W1
BL,ε3;(bMF ) = δ

∫
R4

A0(k, k′,m,m′)Bno,BLω+ω′,k+k′ [u(b), b(b)]dk dk
′ dm dm′.

We finally lift the remaining trace on the w component by the mean flow term

W1
MF ;(b)(x, y) = (−G(x)ε2θ′(ε2y), θ(ε2y)∂xG(x), 0)

where

G := δ

∫
R4

A0e
i(k+k′)x−i(ω+ω′)t

− w(b)

i(k + k′)
+

∑
l∈{3,5}

1

Λl
β̄l

 ,
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and (
β̄3

β̄5

)
=

(
1 1

Λ̃3 Λ̃5

)−1
(

u(b)

− b(b)

sin γ

)
=

(
O(ε−4)
O(ε−4)

)
denoting

Λ̃j = −Λj

 sin γ + i(k+k′)
Λj

cos γ

i(ω + ω′)− κ((k + k′)2 − Λ2
j )

 = O
(
ε−3
)
.

We then have exactly the same estimates as for the interactions of type (a).

Step 4 : consistency of the approximation.
Define

W1
(b) :=

(
W1
BL,ε3;(b1) +W1

BL,ε3;(b2)W
1
BL,ε3;(b3) +W1

BL,ε3;(bII) +W1
BL,ε3;(bMF )

)
+W1

II;(b) +W1
MF ;(b).

It satisfies all the properties stated in Proposition 3.7, with the remainder

r1
(b) = r1

(b),L + r1
(b),MF .

4 Accuracy of the approximation

The aim of this section is to quantify the accuracy of our construction, by
providing an L2 estimate of the difference between the approximate solution
and the solution to the Cauchy problem for (3.2)-(1.10) with initial data

W0 =Wapp(t = 0) =W0(t = 0) +W1(t = 0),

where W0,W1 have been defined in (2.18) and Proposition 3.1 respectively.

4.1 The error estimate

The first step is to estimate the size of the error in the approximation of the
evolution equation, coming from terms of different types :
• the viscosity for the incident wave packet W0

inc;
• the remainder r1 in Proposition 3.1 (corresponding to the error coming from
W1);
• the quadratic interactions (c) in Table 2 that have not been corrected;
• the interactions between W0 and W1 and the self-interactions of W1.

Proposition 4.1. Consider Wapp =W0 +W1, with W0,W1 defined in (2.18)
and Proposition 3.1 respectively. Then Wapp solves

∂tWapp + LεWapp + δQ(Wapp,Wapp) = Rapp
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and satisfies exactly the boundary conditions (1.10), where

Rapp := r1+δ×(c)+δ

(
Q(W0,W1)+Q(W1,W0)+Q(W1,W1)

)
−

ν0ε
6∆u0

inc

ν0ε
6∆w0

inc

κ0ε
6∆b0inc

 .

Moreover,

• ‖Wapp‖L2(R2
+) = O(1), ‖Wapp‖L∞(R2

+) = O(1);

• ‖∇Wapp‖L2(R2
+) = O(ε−2), ‖∇Wapp‖L∞(R2

+) = O(ε−2);

• ‖Rapp‖L2(R2
+) = O(δε2) +O(δ2) +O(ε6).

Proof. The consistency ofWapp can be easily checked by recalling the equations
satisfied by W0,W1 in Lemma 2.7 and Proposition 3.1 respectively. Again, the
sizes ofWapp and∇Wapp are a direct consequence of Lemma 2.7 and Proposition
3.1. Let us estimate the size of the remainder.
• From Proposition 3.1, ‖r1‖L2(R2

+) = O(δε2);

• From Table 2, ‖δ × (c)‖L2(R2
+) = O(δε2);

• From Lemma 2.7, the size of the remainder due to the viscosity applied to the
incident wave packet is O(ε6);
• It remains then to estimate the interactions between Wapp and W1:

δ‖Q(W0,W1)‖L2(R2
+) ≤ δ‖(u0∂x + w0∂y)W1‖L2(R2

+)

≤ δ

(
‖u0‖L∞‖∂xW1‖L2 + ‖w0‖L∞‖∂yW1‖L2

)
= O(δ2);

δ‖Q(W1,W0)‖L2(R2
+) ≤ δ‖(u1∂x + w1∂y)W0‖L2(R2

+)

≤ δ

(
‖u1‖L∞‖∂xW0‖L2 + ‖w1‖L∞‖∂yW0‖L2

)
= O(δ2);

δ‖Q(W1,W1)‖L2(R2
+) = O(δ3).

Remark 4.2. It is natural to wonder whether we could iterate our construction
in order to define an approximate solution up to any order. In other words,
given N ∈ N arbitrary, is it possible to define a solution Wapp (different from
the solution defined above) such that

∂tWapp + LεWapp + δQ(Wapp,Wapp) = O(εN ) in L∞(R+, L
2(R2

+))?

There are several limitations preventing us to do so:
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• First, because of the degeneracy of the root λ2(k+ k′, ω+ω′) in the region
(k + k′,m + m′) ∈ SuppA0, we have chosen to lift the traces W1

(a) and

W1
(b) by correctors that have no physical relevance, namely W1

MF ;(a) and

W1
MF ;(b). In order to reach a better approximation, we need to under-

stand how to lift these traces in a more specific way, which possibly entails
tracking down the exact degeneracy of λ2.

• In a similar fashion, in the above construction, we have treated (I −
P)((u0∂x + w0∂y)W0) as a remainder. If we want to go further in the
definition of the approximate solution, we need to understand the precise
structure of this remainder and to correct it by additional terms.

• The next step in the construction of an approximate solution would be to
consider the remainder terms stemming from the interactions between W0

and W1, namely δQ(W0,W1) and δQ(W1,W0). One could try and apply
the same method as above in order to add a corrector W2, satisfying

∂tW2 + LεW2 = −δQ(W0,W1)− δQ(W1,W0) + r2,

with ‖r2‖L2 � δ2.

However, there is a major difference with the case of the self-interactions
of W0 (i.e. the term Q(W0,W0)). Indeed, the term W0 oscillates in
time around the frequencies ±ω0; whence Q(W0,W0) oscillates around the
frequencies ±2ω0 and 0. Since the resonance frequencies of the rotation
operator L are ±ω0, the definition of W1 does not create any resonance,
see Lemma 3.4. But the terms Q(W0,W1) and Q(W1,W0) contain the
frequencies ±3ω0,±ω0, and therefore resonances may occur.

A more careful look at the quadratic terms shows that in fact, the reso-
nant interactions betweenW0

inc+W0
BL,ε2 andW1

BL,ε2 cancel at main order.

This is due to the fact that the eigenvectors (Uinc, Binc) and (Uλ, Bλ) are
both (1,±i)+O(ε2) when |λ| ∝ ε−2. In more abstract terms, this cancella-
tion comes from the Jacobi identity. However, this algebraic cancellation
no longer holds for the terms involving the ε3 boundary layer. As a con-
sequence, we cannot lift these interactions with the tools developed above,
and new ideas must be introduced if one wants to push the iteration further.

4.2 The stability inequality

Here we will establish the stability inequality (1.12) leading to Theorem 1.1.
Recalling the definitions of Lε and Q(W,W ′) in (3.2), the approximate solution
satisfies the following equation

∂tWapp + PLWapp + δP((uapp∂x + wapp∂y)Wapp) =

ν0ε
6∆uapp

ν0ε
6∆wapp

κ0ε
6∆bapp

+Rapp,
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where

L =

 0 0 − sin γ
0 0 − cos γ

sin γ cos γ 0

 .

We point out that the strong formulation of the system, which is required in
order to get the energy estimate leading to the stability inequality, is actually
satisfied by a sequence approximate solutions, which are smooth by Friedrichs
approximation, see the Appendix. Then the energy inequality for the weak
solution W is obtained by passing to the limit. With a slight abuse of notation,
here we omit this passage and we consider directly the equation for W.
We write the equation for the difference Wapp−W and take the scalar product
against Wapp −W. This yields:

1

2

d

dt
‖Wapp −W‖2L2(R2

+) +

∫
R2

PL(Wapp −W)(Wapp −W) dx dy

+δ

∫
R2

P((uapp − u)∂xWapp + (wapp − w)∂yWapp)(Wapp −W) dx dy

+δ

∫
R2

P((u∂x(Wapp −W) + w∂y(Wapp −W))(Wapp −W) dx dy

= ε6ν0

∫
R2

∆(uapp − u)(uapp − u) + ∆(wapp − w)(wapp − w) dx dy

+ε6κ0

∫
R2

∆(bapp − b)(bapp − b) dx dy +

∫
R2

Rapp(Wapp −W) dx dy.

(4.1)

We analyse each term separately.

• (PL(Wapp −W), Wapp −W)L2 = (L(Wapp −W), P(Wapp −W))L2

= (L(Wapp −W), Wapp −W)L2 = 0,

since P is symmetric by definition and L is skew-symmetric.

• δ|(P((uapp − u)∂xWapp + (wapp − w)∂yWapp, Wapp −W)L2 |
≤ δ‖P((uapp − u)∂xWapp + (wapp − w)∂yWapp)‖L2‖Wapp −W‖L2

≤ δ‖(uapp − u)∂xWapp + (wapp − w)∂yWapp‖L2‖Wapp −W‖L2

≤ δ‖∇Wapp‖L∞‖Wapp −W‖2L2

≤ δε−2‖Wapp −W‖2L2 ,

where P is bounded in L2 by definition and the last inequality follows from
Proposition 4.1.

• Because of the symmetry of P, by integrating by parts the third integral
reads

−δ
2

∫
R
w|y=0(Wapp −W)2|y=0 dx−

δ

2

∫
R2

+

(∂xu+ ∂yw)(Wapp −W)2 dx dy,
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which is zero thanks to the zero trace of the velocity field and the divergence
free condition.

• Integrating by part the term with the Laplacian, one gets

−ε6ν0

∫
R
∂y(uapp − u)|y=0(uapp − u)|y=0 + ∂y(wapp − w)|y=0(wapp − w)|y=0 dx

−ε6κ0

∫
R
∂y(bapp − b)|y=0(bapp − b)|y=0 dx

−ν0ε
6(‖∇(uapp − u)‖2L2 + ‖∇(wapp − w)‖2L2)− κ0ε

6‖∇(bapp − b)‖2L2

= −ν0ε
6(‖∇(uapp − u)‖2L2 + ‖∇(wapp − w)‖2L2)− κ0ε

6‖∇(bapp − b)‖2L2 ,

where the last equality follows from the boundary conditions (1.10).

• It remains to deal with the remainder

|(Rapp,Wapp −W)L2 | ≤ ‖Rapp‖2L2 + ‖Wapp −W‖2L2 ≤ δ2ε4 + ‖Wapp −W‖2L2 .

The Gronwall inequality yields the result.

Remark 4.3. We point out that there is an alternative way to establish the
stability inequality, by estimating the last term in the following way:

|(Rapp,Wapp −W)L2 | ≤ ε2δ−1‖Rapp‖2L2 + δε−2‖Wapp −W‖2L2

≤ δε−2‖Wapp −W‖2L2 + δε6.

This yields
‖(Wapp −W)(t)‖L2(R2

+) ≤ δ
1
2 ε3 exp((δε−2t).

Note that this last version of the stability estimate allows us to have a stable
approximate solution for longer times, of order ε−1, provided that δ ≤ ε3, with
a remainder of size δ

1
2 ε3 (δ

1
2 ε2 in case of secular growths).

However, in the present paper we consider interval of times [0, t] with t = O(1),
then we rather rely on the first version of the stability estimate (1.13), which
provides a smaller remainder for δ < ε2.

Appendix

We present a general approach to proving the global existence of weak solutions
to system (1.9)-(1.10) in R2

+ = R × R+. We adapt the result of existence of
global weak (Leray) solutions for the incompressible Navier-Stokes equations in
[5], in the case of a general domain of Rd, d = 2, 3. Since there are only minor
modifications, we shortly sketch the argument and we refer to the book [5] for
a complete proof.
We point out that another more explicit approach to prove the global existence
existence of (local energy) weak solutions to the 3D incompressible Navier-Stokes
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equations has recently been developed in [15].
We start by recalling the definition of weak solutions to the Cauchy problem
associated with system (1.9)-(1.10). Some of the notations introduced below
have been defined in Section 1.4.

K :=
{
W = (u,w, b) ∈ L2(R2

+)3, ∂xu+ ∂yw = 0
}

;

V := {W = (u,w, b), (u,w) ∈ H1
0 (R2

+)2, b ∈ H1(R2
+), ∇b · n|y=0 = 0};

Vσ := {W = (u,w, b) ∈ V, ∂xu+ ∂yw = 0} ;

V′ = dual space of V;

V′σ = dual space of Vσ.
V◦σ = {W = (u,w, b) ∈ V′, 〈W,W ′〉Vσ×V′ = 0 for any W ′ ∈ Vσ} .

Definition 4.4. A weak solution to the Boussinesq system (1.9)-(1.10) on R+×
R2

+ with initial data W0 ∈ K is

W ∈ C(R+;V′σ) ∩ L∞loc(R+;K) ∩ L2
loc(R+;Vσ)

such that, for any function φ ∈ C1(R+;Vσ),

∫
R2

+

W · φ dx dy +

∫ T

0

∫
R2

+

LW · φ dx dy dt+ ε6

∫ T

0

∫
R2

+

ν0∇u
ν0∇w
κ0∇b

 : ∇φ dx dy dt

−
∫ T

0

∫
R2

+

(u,w)⊗W : ∇φ dx dy dt−
∫ T

0

∫
R2

+

W · ∂tφ dx dy dt

=

∫
R2

+

W0 · φ(t = 0) dx dy.

Moreover, it satisfies the energy inequality in (1.12).

We now provide a sketch of the proof of Proposition 1.1.
There are essentially two main difficulties in dealing with the half plane R2

+.
• The domain is unbounded: this prevents us from using some compactness
results for bounded domains;
• The construction of an approximation for the Leray projection (in other words,
the construction of an approximation with divergence free velocity field at every
step) requires some work to do. In the case of bounded domains, an Hilbertian
basis of K is indeed provided by the spectral theorem for self-adjoint compact
operators in Hilbert spaces, since the inverse of the Stokes operator is compact,
see [5]. In the whole space, the Leray projector has an explicit expression in
terms of the symbol of a pseudodifferential operator homogeneous of degree
0, see [2]. In the case of the half space, the embedding of H1

0 ⊂ L2 is only
continuous and we cannot use the Fourier transform in the vertical direction,
then a more implicit approach is needed.
The strategy presented in [Chapther 2, [5]] consists in the following main steps.

49



1. Construct a family of orthogonal projectors Pη, η ∈ R, on K. This is done
as in [[5], Chapter 2], by proving that the inverse of the Stokes operator

B : K→ Vσ ⊂ K, BF =W, W −

ν0ε
6∆u

ν0ε
6∆w

κ0ε
6∆b

−F ∈ V◦σ

is continuous, self-adjoint, one-to-one, contractive and with range R(B)
dense in K. This allows us to define the inverse of B as an unbounded
operator A with a dense domain of definition. Since A is self-adjoint, the
Stokes operator A − Id is also self-adjoint and then one can apply the
spectral theorem to get the following result.

Proposition 4.5. There exists a family of orthogonal projectors on K,
denoted by Pη, with η ∈ R, which commutes with the Stokes operator
A− Id and satisfies the following properties.

• PηPη′ = Pinf(η,η′) for any (η, η′) ∈ R2;

• Pη = 0 for η < 0 and for any W ∈ K

lim
η→∞

‖PηW −W‖K = 0.

• The family Pη satisfies the right continuity, then for every W ∈ K

lim
η′→η, η′>η

‖Pη′W − PηW‖K = 0.

• For any W ∈ K, the function η → (PηW,W)K = ‖PηW‖2K is increas-
ing, and

‖W‖2L2(R2
+) =

∫
R
d(PηW,W)K;

‖∇W‖2L2(R2
+) = ((A− Id)W,W)K =

∫
R
ηd(PηW,W)K.

• PηW ∈ Vσ for any W ∈ K and

‖∇PηW‖L2(R2
+) ≤ η

1
2 ‖W‖Vσ .

2. Show that the family of smoothing operators Pη can be extended to the
dual space V′, see [Corollary 2.2, [5]] and converges to the Leray projector
P in the sense of the K norm: for any W ∈ K,

lim
µ→+∞

‖PµW − PW‖K = 0,

as in [Proposition 2.4, [5]].
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3. Denoting by Kk the space PkK for any integer k, define the approximate
system of ODEs (Friedrichs approximation)

Ẇk(t) = −PkLWk + ε6Pk

ν0∆uk
ν0∆wk
κ0∆bk

− δPk((uk∂x + wk∂y)Wk),

Wk(0) = PkW0,

where Wk(t) ∈ Kk for every k.

Then the rest of the proof and the uniqueness result follow in the usual way, as
for the case of Leray solutions to the 2D incompressible Navier-Stokes equations
in bounded domains, see [5] for further details.
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Équations aux Dérivées Partielle” (2010).

[23] H. Sandstrom, The importance of the topography in generation and propa-
gation of internal waves, Ph.D. thesis, University of California, San Diego,
La Jolla, 1966.

52


