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The last decades saw dramatic progress in brain research. These advances were often buttressed by probing single variables to make circumscribed discoveries, typically through null hypothesis significance testing. New ways for generating massive data fueled tension between the traditional methodology, used to infer statistically relevant effects in carefully-chosen variables, and pattern-learning algorithms, used to identify predictive signatures by searching through abundant information. In this article, we detail the antagonistic philosophies behind two quantitative approaches: certifying robust effects in understandable variables, and evaluating how accurately a built model can forecast future outcomes. We discourage choosing analysis tools via categories like 'statistics' or 'machine learning'. Rather, to establish reproducible knowledge about the brain, we advocate prioritizing tools in view of the core motivation of each quantitative analysis: aiming towards mechanistic insight, or optimizing predictive accuracy.

' [Deep] neural networks are elaborate regression methods aimed solely at prediction, not estimation or explanation. ' Efron & Hastie [1, p. 371]

The emergence of richer datasets alters everyday data-analysis practices

There is a burgeoning controversy in neuroscience on what data analysis should be about.

Similar to many other biomedical disciplines, there are differing perspectives among researchers, clinicians, and regulators about the best approaches to make sense of these unprecedented data resources. Traditional statistical approaches, such as null hypothesis significance testing, were introduced in a time of data scarcity and have been revisited, revised, or even urged to be abandoned. Currently, a growing literature advertises predictive pattern-learning algorithms hailed to provide some traction on the data deluge [START_REF] Lecun | Deep learning[END_REF][START_REF] Jordan | Machine learning: Trends, perspectives, and prospects[END_REF]. Such modeling tools for prediction are increasingly discussed in particular fields of neuroscience [for some excellent sources see: 4, 5-9].

Ensuing friction is aggravated by the incongruent historical trajectories of mainstream statistics and emerging pattern-learning algorithms -the former long centered on significance testing procedures to obtain p-values, the latter with a stronger heritage in computer science [START_REF] Breiman | Statistical Modeling: The Two Cultures[END_REF][START_REF] Donoho | 50 Years of Data Science[END_REF][START_REF] Bzdok | Classical statistics and statistical learning in imaging neuroscience[END_REF]. We argue here that the endeavor of sorting each analysis tool into categories like 'statistics' or 'machine-learning' is futile [START_REF] Blei | Science and data science[END_REF][START_REF] Jordan | Frontiers in Massive Data Analysis[END_REF].

Take for instance ordinary linear regression, as it is routinely applied by many neuroscientists. The same tool and its underlying mathematical prosthetics can be used to achieve three diverging goals [15, pp. 82-83, 16, ch. 4.12]: a) exploration, to get a first broad impression of the dependencies between a set of measured variables in the data at hand, b) inference, to discern which particular input variables contribute to the target variable beyond chance level, and c) prediction, to enable statements about how well target variables can be guessed based on data measured in the future.

Confusion can arise because it is the motivation for using linear regression that differs between these scenarios. The mathematical mechanics underlying model parameter fitting are indistinguishable. Taken more broadly, instead of attaching labels of opposing camps to each analysis tool, it would be more productive, we would argue, to focus on the desired goal of a specific quantitative analysis. The goal, rather than the choice of a particular tool, is the major factor that ultimately determines what statements can confidently be made about brains, behavior, or genes, or for that matter -any other question of interest.

Exploration, inference, prediction: A typology of different modeling goals

The initial description of a correlative relation in brain data is a common first step in many research projects. An important distinction arises when deciding on how to venture into identifying reproducible findings in quantitative analysis. How a particular analysis tool is used in a certain application domain may often be more important than which class of analysis tool is chosen.

a) Exploration of correlative associations: In various studies, a straightforward approach to charting candidate associations in brain data is Pearson's correlation (without computing pvalues). A simple statistic is thus computed between two series of measurements for descriptive purposes. As one concrete example, this analysis can quantify the relationship between amygdala activity measured in an fMRI experiment and some behavioral response.

Such tentative data exploration can also be done in situations involving one input and one output variable by fitting a linear regression to the data. In these informal settings, the modeling goal is limited to a descriptive, correlational summary of the raw data that one happened to observe. Estimating linear-regression parameters alone does not license the importance of certain variable relationships (i.e., inference). Neither does a fitted linear regression itself declare whether these variable relationships hold up for other individuals or future data points (i.e., prediction).

b) Inference of statistically significant (and possibly causal) associations: Another goal is to try to isolate the specific contributions of single variables, to uncover how the observed response depends on each particular measurement. This is a common agenda in many wellcontrolled experimental designs. For instance, those looking into the effects of geneknockout in mice or clinical trials examining the impact of a specific treatment in patients.

Historically, this type of deductive reasoning has often drawn on null hypothesis significance testing (NHST). The framework however is sometimes ill-suited and frequently misunderstood [START_REF] Wasserstein | The ASA's statement on p-values: context, process, and purpose[END_REF][START_REF] Szucs | When null hypothesis significance testing is unsuitable for research: a reassessment[END_REF][START_REF] Amrhein | The earth is flat (p> 0.05): significance thresholds and the crisis of unreplicable research[END_REF]. As an alternative to NHST, one may draw formal inference by means of false discovery rate (FDR), Bayesian posterior inference, or other tools [1, ch. 3 and 15].

Inferences also need to take into account various biases [START_REF] Steyerberg | Poor performance of clinical prediction models: the harm of commonly applied methods[END_REF] to avoid making claims that represent false positives (in the NHST framework), underestimated FDR (in the FDR framework), or exaggerated posterior parameter distributions (in the Bayesian framework) [1, ch. 3, 21, ch. 18.7]. Much debate has emerged about what inferential statements about relevant variable contributions mean [START_REF] Breiman | Statistical Modeling: The Two Cultures[END_REF][START_REF] Blei | Science and data science[END_REF][START_REF] Norvig | On chomsky and the two cultures of statistical learning[END_REF], and how significant associations tends towards the holy grail of uncovering causal influences [START_REF] Pearl | Causal inference in statistics: An overview[END_REF].

c) Generalization of predictive associations: One way to substantiate the explored correlations or inferred significance statements is by verifying whether these quantitative relationships still hold up in other data points or new individuals. This goal common to many observational, naturalistic, and prospective epidemiological studies. For instance, increasingly, predictive pattern-learning algorithms are used to derive the behavioral response of individuals from whole-brain neural activity or derive health risk from genomic profiling [cf. [START_REF] Fusar-Poli | The science of prognosis in psychiatry: A review[END_REF][START_REF] Bzdok | Inference in the age of big data: Future perspectives on neuroscience[END_REF][START_REF] Rosenberg | Prediction complements explanation in understanding the developing brain[END_REF]. Predictive modeling can also be carried out by standard linear regression. Several fields of clinical medicine have already accumulated a large literature of predictive scores and tools [START_REF] Siontis | Predicting death: an empirical evaluation of predictive tools for mortality[END_REF][START_REF] Siontis | Comparisons of established risk prediction models for cardiovascular disease: systematic review[END_REF]. Currently, usage of predictive approaches lacks standardization and few are rigorously validated [START_REF] Siontis | External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination[END_REF]. Even fewer are evaluated for replication in different settings and groups of individuals [START_REF] Goldstein | Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review[END_REF]. Increasingly complex predictive models use hundreds and thousands of parameters and/or try to benefit from non-linear interactions in extensive data, like electronic health records [START_REF] Rajkomar | Scalable and accurate deep learning with electronic health records[END_REF]. Notably, it has so far rarely been shown that accounting for complex non-linearity in "big" medical data has considerably improved the predictive performance. The low success rate is perhaps partly due to the still insufficient sample sizes or to limited quality of the measurements [START_REF] Woo | Building better biomarkers: brain models in translational neuroimaging[END_REF][START_REF] Steyerberg | Poor performance of clinical prediction models: the harm of commonly applied methods[END_REF][START_REF] Arbabshirani | Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls[END_REF].

To be clear, exploration, inference, and prediction are not strictly mutually exclusive. Rather, quantitative investigations often involve a combination of the three approaches, prioritized to different degrees. In many neuroscience domains that are starting to amass "big data" predictive pattern-learning algorithms are becoming popular alternatives to classic linear-regression applications [START_REF] Lecun | Deep learning[END_REF][START_REF] Jordan | Machine learning: Trends, perspectives, and prospects[END_REF]. Such algorithmic tools include support vector machines, random forests, or artificial neural network. Regardless of whether linear-regression approaches or pattern-learning algorithms are used, the main goal of the prediction enterprise is to put the built model, with already estimated model parameters, to the test in some independent data [21, ch. 7]. In this analysis regime, the investigator wishes to achieve the highest-possible forecasting performance.

She is not necessarily worrying about how the model works or whether its fitted parameters carry biological insight.

Inference and prediction serve distinct goals

Scientific insight has been a primary focus of the statistical methodology traditionally used in fields like psychology, experimental neuroscience, and evidence-based medicine assessments.

The underlying inferential approach is particularly suited for asking questions such as, 'Which specific gene location contributes to or has an effect on a behavioral trait?' Somewhat counterintuitively, in many cases, genetic variants identified via such an inferential approach may not serve best to detect whether somebody has that behavioral trait or not [START_REF] Shmueli | To explain or to predict?[END_REF][START_REF] Lo | Why significant variables aren't automatically good predictors[END_REF]. This is because modeling for prediction typically asks a more heuristic type of question, 'Which gene locations are collectively useful to distinguish individuals with or without the behavioral trait?'

Finding answers to this latter type of question follows the perhaps more superficial agenda of prioritizing successful recognition of any data relationships that are able to derive the specified outcome in independent individuals. Such predictive approaches put less emphasis on mechanistic insight into the biological underpinnings of the coherent behavioral phenotype (Table 1).

Inferring new scientific insight is often about answering questions such as 'which input variable within a given dataset is an important contributor to the outcome?' (or, 'a relatively important contributor, compared to other input variables'?) Ideally, this modeling regime aims at mechanistic understanding of the impact of the input on the target variable. The investigator is interested in understanding the way in which an outcome y is affected by a change in the input variables X 1 , …, X p . To put it more mathematically, with X denoting the measurement vector X The priority to maximize prediction performance may require exploitation of more complicated non-linear relationships in brain data, in contrast to widely adopted linear modeling.

Recognizing complex relationships between variables is something that many black-box patternlearning algorithms are particularly good at. The more transparent linear-regression approaches have served well in neuroscience and medicine, and are arguably epitomized in the successful era of genome-wide association studies (GWAS) [START_REF] Visscher | 10 years of GWAS discovery: biology, function, and translation[END_REF]. By contrast, the data-led identification of predictive principles from non-linear relationships between variables has a strong legacy in the machine-learning community [10, 37, ch. 1.2].

A contrast between modeling goals lies in the readiness of non-linear predictive models to capture and capitalize on higher-order interactions among variables. Complex variable-variable(variable-...) interactions are probably common in brain phenomena. However, to best "see" these higher-order interactions, the data need to be measured with little noise. When adequate data are available, more sophisticated analysis tools are generally advantageous in cases of higher-order variable interactions. Some non-transparent pattern-learning algorithms, capitalizing on nonlinear interactions, have frequently ranked among the top solutions in international data-analysis competitions involving a diversity of challenging data types (e.g., http:/www.kaggle.com). In brain research, there is always greater accuracy of measurements and more complete capture of the variables that drive higher-order interactions. Thus, advanced pattern-learning algorithms may eventually outperform linear models even more often than is currently the case. Importantly, though, the superiority of modeling complex patterns over simple linear approaches should not be taken for granted, and merits case-by-case evaluation. Altogether, compared to modeling for inference, the predictive analyst may favor tools extracting regularities from data in a way that is advantageous for prediction accuracy. High forecasting accuracy is favored even if opaque to human intuition, with "deep" neural-network algorithms offering an extreme example of such tools.

Besides challenges in parameter interpretation, predictive tools are typically less suited to detect causal relationships in data [START_REF] Pearl | Causal inference in statistics: An overview[END_REF]. Nevertheless, a useful predictive model with high accuracy may be built based on measurements which are expected to have little causal relation to the outcome of interest. For instance, it has been acknowledged that 'Neuroimaging studies per se [...] only provide insights into neural correlates but not into neural causes of cognition' [START_REF] Weichwald | Causal interpretation rules for encoding and decoding models in neuroimaging[END_REF].

Neuroimaging measurements such as fMRI are only indirectly related to the dynamic activity changes in neuronal assemblies underlying cognitive processes. However, such signals carry intermediate information that can serve for accurate predictions of inter-individual differences in cognition such as propensity to attentional lapses, general intelligence, or health status [START_REF] Gabrieli | Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience[END_REF][START_REF] Finn | Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity[END_REF].

To recapitulate, we emphasized two types of motivations that could drive a specific scientific inquiry: 'providing insight', for the purpose of inference, or 'accurately modeling the world', for prediction. The inferential regime prioritizes statements about the relevance of each individual input variables. The predictive regime instead prioritizes the relevance of the model's output for precise forecasting. Predictive modeling describes what 'does' happen. Prediction often does not equally well address the question of 'how', and may be less apt for the question of 'why'.

Additionally, prediction is not always feasible and may remain mediocre in certain applications, despite recent technical advances in data analytics. These considerations encourage trade-offs between model transparency for easy interpretability and model complexity that would enable predicting particularly complicated relationships (Figure 1). One could make the case that there are some brain phenomena that are so complicated such that impenetrable predictive patternlearning algorithms may be all neuroscientists can hope for [cf. 22]. Moreover, accelerating data aggregation and wider availability of computation power are opening a 'shortcut' path to useful outcome predictions, circumventing the traditional milestone of mechanistic discovery as an essential step towards effective predictive capabilities.

Implications for clinical brain research

Many clinical studies in brain research set out to identify variables that are statistically significantly associated with a disease. This includes significant differences in specific brain regions, their neural activity or anatomical abnormality, connections between brain regions, gene variants, and more. Deviations in such measurements in patients, however, may not always be best-possible choices for building successful predictive approaches [20, 41, p. 185]. This is perhaps not too surprising, given that certain questions beg modeling for the inference goal. For instance, 'Which particular demographic indicator, ethnic background, or clinical parameter is robustly associated with adverse reaction of patients to a drug?'. The context of predictive modeling begs a different question at the heart of the study, even when using the same statistical technique. For instance, 'How well can we know in advance the risk of a particular patient for an adverse reaction to that drug?'. Predictive modeling regimes, we would argue, provide a natural path towards clinical relevance, by immediately acting on clinical endpoints [START_REF] Paulus | Pragmatism instead of mechanism: a call for impactful biological psychiatry[END_REF]. In fact, an official report of the American Statistical Association (ASA) emphasized that 'Statistical significance is not equivalent to scientific, human, or economic significance. Smaller p-values do not necessarily imply the presence of larger or more important effects, and larger p-values do not imply a lack of importance or even lack of effect.' [START_REF] Wasserstein | The ASA's statement on p-values: context, process, and purpose[END_REF].

Modeling for inference and prediction are two different tasks. Increasing this awareness will probably foster new research directions. Centering on clinical endpoint predictions can complement the quest for identifying the biological causes of disease. Historically, in research on the neural and genetic basis of brain disease, a prevailing philosophy has been to progress in two consecutive steps: discovery of new pathophysiological mechanisms, which are then used as a stepping stone to designing new targeted treatments [START_REF] Insel | Brain disorders? Precisely[END_REF]. Yet, one might argue, after >50 years of biological research on the brain aimed at inference, there are relatively few definitively established etiopathological pathways. Neither are there many reliable biomarkers for most mental disorders [START_REF] Weinberger | Finding the elusive psychiatric "lesion" with 21st-century neuroanatomy: a note of caution[END_REF].

Even in the ideal case of brain diseases caused by a single gene with considerable penetrance, such as in 22q11.2 deletion linked to schizophrenia risk [START_REF] Bassett | Schizophrenia and 22q11. 2 deletion syndrome[END_REF] and expansion of CAG triplet repeats linked to Huntington's disease [START_REF] Bates | Huntington disease[END_REF], certain clinical endpoints can profit from patient-tailored predictive approaches. All individuals with such a genetic variant carry an escalated risk of developing the disease. However, various inter-individual differences can still arise, including the timing of symptom onset, the constellation of symptoms displayed, disease severity, clinical trajectory, and treatment response. These clinical scenarios illustrate the distinction between the pursuit of scientific insight and the wish to forecast patient-specific disease manifestations -aiming at elucidating disease-causing biological mechanisms or prognostic value with relevance for medical care. Without doubt, there potentially are immediate gains of the pragmatic intention to search signatures in complex data that can be exploited to predict clinical endpoints. Such research program does not conflict with or question the value of the longer-term endeavor to understand the primary biology of brain diseases.

Predictive approaches are increasingly adopted, recommended, and even expected by policymakers [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF][START_REF] Bzdok | Machine learning for precision psychiatry: Opportunites and challenges[END_REF]. However, there are several requirements before they can be considered suitable for wide application in real-world clinical settings (Box 1). Beneficial conditions for successfully translating new predictive approaches into clinical practice include the following:

i) The input variables for the predictive approach should be unambiguously defined as well as measured in a straightforward and standardized way.

ii) The prediction performance needs to be better than what can be achieved by already existing clinical means for diagnosis and monitoring.

iii) Accurate predictions need to be carefully validated in diverse settings [START_REF] Moons | Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio) marker[END_REF] vi) Successful predictive models that are easy-to-use and transparent are likely to be adopted more readily by the medical community. Health professionals will probably avoid complex modeling approaches that are harder to interpret, require extra training or depend on hard-toget information.

vii) Randomized clinical trials may need to certify the utility of a new predictive approach for patients [START_REF] Ioannidis | What makes a good predictor?: the evidence applied to coronary artery calcium score[END_REF][START_REF] Paulus | A roadmap for the development of applied computational psychiatry[END_REF]. This important cornerstone of evidence-based medicine will most likely continue to bolster clinical guidelines in the "big data" era.

Finally, we outline various obstacles in the journey towards establishing predictive approaches for clinical management and intervention: i) When using medical data, strong non-linear effects have seldom been explicitly modeled or reported [START_REF] Steyerberg | Risk prediction with machine learning and regression methods[END_REF]. Even if complex interactions exist between measured variables, they may be difficult to extract from today's datasets, particularly those of still limited sample sizes [START_REF] Steyerberg | Poor performance of clinical prediction models: the harm of commonly applied methods[END_REF].

Consequently, simple, less data-hungry predictive approaches are likely to remain among the go-to choices in many clinical settings. Elaborate predictive pattern-learning algorithms often cannot yet be used to their full potential, let alone "deep" neural-network algorithms [cf. 53].

ii) It is often hard to know the optimal sample size for a particular prediction-oriented clinical research program beforehand. This limitation stands in contrast to the availability of power calculations in classical statistics. Reasons include the unknown complexity of the aspired prediction function, amount of relevant input variables and noise in the data [20, 54, 55, p. 124].

iii) A small signal-to-noise ratio plagues various forms of medical data. Examples of noisy measurements include read-outs of histone modifications in genomics and brain activity changes scanned using functional MRI, EEG, or MEG. As a rule of thumb, the more complex the predictive model, the higher its susceptibility to random variation in the data. Hence, it is trickier for advanced pattern-learning algorithms to identify reproducible relations among the measured variables. iv) Similarly, flexible predictive pattern-learning algorithms with high capacity are more prone to overfitting idiosyncrasies in the data [START_REF] Steyerberg | Towards better clinical prediction models: seven steps for development and an ABCD for validation[END_REF]. Thus, the various "bells and whistles" of many of the sophisticated predictive approaches need to be chosen in a principled fashion [START_REF] Steyerberg | Risk prediction with machine learning and regression methods[END_REF]. These considerations underscore the need for reproducible modeling practices as a core activity in brain research [cf. 57].

v) The lacking transparency of predictive approaches going beyond mainstream linear modeling is a particular concern that can erode the trust needed for implementation in clinical practice [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF][START_REF] Steyerberg | Risk prediction with machine learning and regression methods[END_REF]. Indeed, skewed or wrong predictive approaches can systematically inflict harm by driving poor decision making [START_REF] Shah | Big Data and Predictive Analytics: Recalibrating Expectations[END_REF].

vi) Because of methodological constraints, much clinical brain research may not directly target real-world settings. Rather, clinical studies routinely enroll patients based on stringent exclusion criteria, such as medication use or common comorbidities. These study designs may impede our ability to make predictions in realistic clinical settings. For instance, assessing the effectiveness of drugs or other treatments is particularly hindered when it comes to groups of patients that are relatively rarely recruited in clinical studies, such as children and the elderly [START_REF] Naci | How good is "evidence" from clinical studies of drug effects and why might such evidence fail in the prediction of the clinical utility of drugs?[END_REF].

vii) Electronic health records are soon likely to provide rich resources to build effective predictive approaches. Yet, standardized health records involving large samples of patients are still scarce. Additionally, a bias towards sicker people has been noted in the few existing studies using such patient data provided by medical institutions [START_REF] Goldstein | Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review[END_REF][START_REF] Djulbegovic | Precision medicine for individual patients should use population group averages and larger, not smaller, groups[END_REF].

Concluding remarks and future perspectives

The advent of "big data" in neuroscience and biomedicine started transforming many important sectors. In the 21 st century, large-scale data aggregation, catalyzed by new modes of data dissemination and open science [START_REF] Leonelli | Data-centric biology: a philosophical study[END_REF], has reached an unprecedented scale. Yet, it remains unclear whether these emerging opportunities also prompt a deeper revision of the traditional "value system" pertaining to scientific evidence. The data-rich neuroscientist can ask many new questions that could probably never be addressed quantitatively before. We encourage investigators and clinicians to re-think data analysis in the context of a repertoire of modeling goals (see Outstanding Questions). Choosing a data-analytic strategy for a research question at hand should not be a matter of tradition, habit, or taste.

It is worth reiterating that a specific analysis tool can serve multiple modeling goals. Linear regression, for instance, has been often used for exploratory summaries of possible relationships among measured variables. The same tool, however, can be used for inferring the most relevant mechanistic candidates among the measured variables, as well as predicting outcomes by applying the built model to new data points. Conversely, many machine-learning algorithms have a longstanding track record in serving the predictive goal. Yet, despite the increased complexity of many of these algorithmic tools, they can also be partly used towards the aim of data exploration, or even inference to isolate individually important input variables.

More broadly, like any scientific method, modeling for inference or prediction both come with certain strengths and weaknesses [START_REF] Amrhein | The earth is flat (p> 0.05): significance thresholds and the crisis of unreplicable research[END_REF][START_REF] Lo | Why significant variables aren't automatically good predictors[END_REF][START_REF] Wu | Genome-wide association analysis by lasso penalized logistic regression[END_REF][START_REF] Bzdok | Statistics versus machine learning[END_REF]. Inferential modeling has been an established practice for decades [START_REF] Ioannidis | What makes a good predictor?: the evidence applied to coronary artery calcium score[END_REF][START_REF] Manrai | In the era of precision medicine and big data, who is normal?[END_REF]. In contrast, the most effective use cases still need to be identified for deploying predictive approaches in neuroscience and personalized medicine.

Ultimately, deducing scientific insights and making pragmatic predictions are intimately related, but also differ in important ways.

Table 1: The inference-prediction continuum of modeling goals (cf. Figure 1)

Inference <- ------------------------------------------------------- Accordingly, these models tend to be preferred in this context, such that every single parameter can be cleanly attributed its share of the explained variance. Usually, the meaning of each parameter should be readily understood and hence the model often allows for a simplified narrative; statements are centered on single parameters, rather than the prediction performance of the collective model parameters Opaque black box: While simple linear-regression models may perform reasonably well in terms of predictive power, if the goal is to maximize prediction accuracy, it is often beneficial to exploit complicated non-additive associations in the data. In many realworld situations, the target variable depends on the input variables in convoluted ways, which can hinder assigning to single input variables a clear relative contribution to the output; model parameters are often treated as instrumental intermediates to achieve high prediction performance, without necessarily aiming to assign specific meaning to each parameter estimate per se Formally justified: Many traditional analysis techniques were rigorously characterized by mathematical theory; simple linear models lend themselves well for theoretical model criticism, and carry well-understood modeling limits; another benefit is the typically lower computational load Empirically justified: Predictive models can be explicitly and quantitatively evaluated by applying the entire set of model parameters to unseen independent, newly generated, or future observations or individuals; formal performance guarantees are often challenging; these models are closely related to more computationally demanding cross-validation, bootstrapping, and other resampling schemes Data-efficient: Many classical statistics methods were designed long ago to handle data that are scarce, as well as laborious and expensive to collect Data-hungry: Compared to classical statistics methods, many complicated predictive approaches require more data, especially when complex non-linear relationships are modeled, and more hyper-parameters need to be tuned; comparably more data are also needed if each observation tends to have many input variables, and random noise is expected to be prominent (e.g., medical data) Problem-tailored: Each approach is designed to solve a particular data-analysis question, typically based on a Versatile: Approaches are devised to provide useful solutions to various types of data and data-analysis problem-specific probability model of how the data are believed to have come about questions Box 1: Stages of translating predictive approaches in brain research into practice 1. Model building: To fit the parameters of the chosen predictive model, one first needs empirical measurements from the brain systems of interest. One common preparatory analysis is probing variable-variable relationships using pairwise correlation plots. Another is estimating genetic relatedness between the participants using principal component analysis of the genomic profiles. In behavioral experiments in animals or humans, exploratory data summaries can identify collinearity in response times. Such collinearity in response times foreshadows hindered statements about the relevance of individual experimental conditions (i.e., inference); but hardly affects forecasting condition response latencies in new participants (i.e., prediction).

2. Internal validation: These procedures guard against overly optimistic modeling performances. Internal validation procedures, unlike external ones (point 3), do not require new, independent data and are based only on the original subject sample or dataset that was used during model building [START_REF] Steyerberg | Prediction models need appropriate internal, internalexternal, and external validation[END_REF]. Cross-validation and bootstrapping are resampling methods [21, ch. 7] that can estimate metrics of model quality [START_REF] Moons | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration[END_REF], such as expected prediction accuracy on future data, uncertainty of parameter estimates, and variability of prediction errors. Indeed, 'working scientists often find the most interesting aspect of the analysis in the lack of fit rather than the fit itself' [16, p. 92]. Yet, inter-individual variability may still be under-appreciated by using these internal validations alone [START_REF] Fusar-Poli | The science of prognosis in psychiatry: A review[END_REF].

3. External validation: For further validation, predictive associations identified from the original subject sample or dataset need to be checked in other individuals or in datasets measured later [START_REF] Djulbegovic | Precision medicine for individual patients should use population group averages and larger, not smaller, groups[END_REF][START_REF] Manrai | In the era of precision medicine and big data, who is normal?[END_REF][START_REF] Austin | Geographic and temporal validity of prediction models: different approaches were useful to examine model performance[END_REF]. Successful application of a predictive model of disease risk, for instance, requires validation in different groups of individuals [START_REF] Fusar-Poli | The science of prognosis in psychiatry: A review[END_REF][START_REF] Siontis | External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination[END_REF]. This step is important to combat reproducibility issues [START_REF] Nosek | Promoting an open research culture[END_REF]. Currently, such model validations are not done as often as they should be [START_REF] Studerus | Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting[END_REF]. It is however important to comprehensively benchmark the value of each predictive approach for clinicians, policy makers, and clinical guidelines [START_REF] Damen | Prediction models for cardiovascular disease risk in the general population: systematic review[END_REF]. For instance, external validation may be performed in different geographical areas, time periods, and settings (e.g., secondary vs. primary care). Generally, some authors proposed that 'the most stringent external validation involves testing a final model developed in one country or setting on subjects in another country or setting at another time. This validation would test whether the data collection instrument was translated into another language properly, whether cultural differences make earlier findings nonapplicable, and whether secular trends have changed associations or base rates' [16, ch. 5.3.1].

4. Generalizability and transposability: When testing the predictions of a model on new individuals, the more different these individuals are from the original subject sample, the stronger the test for generalizability [START_REF] Naci | How good is "evidence" from clinical studies of drug effects and why might such evidence fail in the prediction of the clinical utility of drugs?[END_REF][START_REF] Steyerberg | Prediction models need appropriate internal, internalexternal, and external validation[END_REF]. Prediction accuracies are typically lower than in preceding steps. For instance, our ability to predict the clinical utility of drugs tends to be particularly hindered for certain groups of patients, including women, children, the elderly. Common comorbidities are also frequently underrepresented or excluded in clinical studies. Meta-analysis methods can be useful for summarizing and examining a model's predictive performance across different scenarios. Large datasets from multiple studies and electronic health records or registry databases provide promising opportunities for examining the generalizability of predictive approaches [START_REF] Riley | External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges[END_REF].

To enhance reproducibility, accurate and complete reporting in studies applying predictive models is imperative. Such reporting is crucial for being able to critically appraise predictive models; to perform acid-test validations of them; to evaluate their impact; and ultimately, to translate them Neuroscience and biomedicine had a long-dominating focus on scientific insight using simple and thus transparent models. Such approaches are well suited to work towards the goal of inference on mechanistic understanding. This goal is epistemologically distinct from and sometimes practically incompatible with maximizing predictive power. The pragmatic goal of optimizing predictive accuracy can exploit large datasets even at the cost of opting for black-box models that cannot easily be interrogated. In practice, the actual ratio between transparency and predictability depends on the specific analysis tool being used and the particular dataset at hand. Abbreviations: GLM: generalized linear models; LASSO (least absolute shrinkage and selection operator): a recently introduced constrained regression for high-dimensional data analysis, which is a special instance of GLM.
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 1 Figure 1: The trade-off between model transparency, which allows for scientific understanding, and theoretical model capacity, which affords sophisticated predictions
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	learning algorithms (e.g., feature importance scores	penalized linear regression
	from random-forest algorithms)	
	Theory-guided: Candidate variables are often hand-	Pattern-guided: A large and diverse array of "found"
	picked by the investigator, in a targeted fashion based	variables is typically considered in the statistical analysis
	on existing substantive knowledge. Research questions	in a heuristic data-led fashion. It can be unknown how
	are explicitly articulated before data collection in a	the data were generated, and the exact research
	carefully controlled experiment. The chosen variables	question may be detailed as the data are being
	are evaluated by an often simple, inflexible model that	analyzed. The adaptive, sometimes very flexible model
	ideally, is pre-specified by the investigator before	extracts a general prediction rule directly from the data
	seeing the data; but data dredging, and thus high false-	themselves
	positive rate is common in practice	
	Explainable narrative: Statements about the specific	
	contribution of individual input variables are the	
	priority. Such claims of variable relevance are often	
	more readily available in simple linear regression	
	models.	
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