Exploration, inference and prediction in neuroscience and biomedicine - Archive ouverte HAL
Article Dans Une Revue Trends in Neurosciences Année : 2019

Exploration, inference and prediction in neuroscience and biomedicine

Résumé

The last decades saw dramatic progress in brain research. These advances were often buttressed by probing single variables to make circumscribed discoveries, typically through null hypothesis significance testing. New ways for generating massive data fueled tension between the traditional methodology, used to infer statistically relevant effects in carefully-chosen variables, and pattern-learning algorithms, used to identify predictive signatures by searching through abundant information. In this article, we detail the antagonistic philosophies behind two quantitative approaches: certifying robust effects in understandable variables, and evaluating how accurately a built model can forecast future outcomes. We discourage choosing analysis tools via categories like 'statistics' or 'machine learning'. Rather, to establish reproducible knowledge about the brain, we advocate prioritizing tools in view of the core motivation of each quantitative analysis: aiming towards mechanistic insight, or optimizing predictive accuracy.
Fichier principal
Vignette du fichier
TINS_opinion_R4_feb1_clean.pdf (664.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02044120 , version 1 (21-02-2019)

Identifiants

Citer

Danilo Bzdok, John P. A. Ioannidis. Exploration, inference and prediction in neuroscience and biomedicine. Trends in Neurosciences, 2019, ⟨10.1016/j.tins.2019.02.001⟩. ⟨hal-02044120⟩
196 Consultations
741 Téléchargements

Altmetric

Partager

More