
HAL Id: hal-02044101
https://hal.science/hal-02044101

Preprint submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging and optimization of HPC programs in mixed
precision with the Verrou tool

François Févotte, Bruno Lathuilìère

To cite this version:
François Févotte, Bruno Lathuilìère. Debugging and optimization of HPC programs in mixed precision
with the Verrou tool. 2019. �hal-02044101�

https://hal.science/hal-02044101
https://hal.archives-ouvertes.fr


Debugging and optimization of HPC programs in mixed

precision with the Verrou tool

François Févotte1 and Bruno Lathuilière1

francois.fevotte@edf.fr, bruno.lathuiliere@edf.fr

1EDF R&D, Palaiseau, France

November 12, 2018

Abstract

The analysis of Floating-Point-related issues in HPC codes is becoming a topic of major
interest. First, parallel computing and code optimization often break the reproducibility
of numerical results across machines, compilers and even executions of the same program.
Second, mixed precision is more and more used to reduce memory footprint and bandwidth
wherever possible, thereby benefiting more from SIMD units.

This paper presents how the Verrou tool can help during all stages of the Floating-Point
analysis of HPC codes: diagnostic, debugging and optimization. Recent developments of
Verrou are presented, along with examples illustrating the interest of these new features for
industrial codes.

As an example, Verrou allows debugging code aster, an industrial, parallel, mixed-
precision code for the simulation of structural mechanics. Re-using existing infrastructure
from the non-regression testing process, setting up Verrou requires limited effort. The first
useful debugging information can be obtained after only 25 minutes, while the full automated
debugging process takes 10 hours to complete.

Keywords: Floating-point arithmetic, Verrou, mixed precision, Verification & Valida-
tion

1 Introduction

Floating-Point (FP) arithmetic is becoming a hotter and hotter topic in High-Performance Com-
puting (HPC). First, high computational performance is often achieved at the expense of a loss
of control over the order in which FP operations are executed. Vectorizing code is a crucial part
of the necessary optimizations to leverage the full power of modern CPUs [22]. However, loop
vectorization (especially for reductions) often requires using algorithms which have the same
semantics as sequential ones for real, but not FP arithmetic.

Even without changing the algorithms and source code of a program, aggressive compiler
optimizations often achieve greater performance by changing the order in which FP instructions
are executed (e.g. automatic vectorization) or simplifying arithmetic expressions (using real
arithmetic semantics).

Moreover, the exact same binary executable is not always executed in the same way on modern
hardware: whether parallelism is used at the scale of multi-core processors, multi-processor nodes
or multi-node clusters, it involves running concurrent computations, often without much control

1



on the order in which they are executed (the cost of a synchronization ensuring repeatability in
the order of computation is often considered too large).

Since FP arithmetic is not associative, this change in the order of operations leads to a loss of
the reproducibility of the results, which can in turn have a wide array of consequences, ranging
from benign difficulties in the debugging process, to more serious issues with the Verification &
Validation (V&V) process.

Second, optimizing the use of FP precision is often key to achieving high performance. Using
smaller-precision FP numbers allows reducing the memory bandwidth usage as well as increasing
the number of simultaneous FP operations performed by a single SIMD instructions. Therefore,
high FP precision should only be used where it is needed to ensure the required results quality;
FP precision should be reduced everywhere possible. With the current trend of ever increasing
SIMD register widths (for example, AVX-512 introduces 256-bit registers), and the large number
of available FP formats since IEEE 754-2008 [14], such code optimizations are not to be neglected.
Over the last few years, the use of mixed precision has therefore become a point of major interest
for the HPC community [18, 24, 21]. However, it is important to keep in mind that optimizing
mixed precision programs should always be considered as a search for the optimal balance between
results accuracy and run times. The quantification of FP-related losses of accuracy is an essential
part of this process.

In this paper, we present how the Verrou tool [9] can help deal with these issues in the context
of large, industrial, high-performance scientific computing codes such as the ones developed and
used by leading actors in the industry. Verrou is a free tool based on Valgrind, available under
an open-source licence at http://github.com/edf-hpc/verrou.

Verrou is mainly developed by EDF, the main French electric utility, which heavily relies on
Scientific Computing Codes (SCC) and numerical simulation to operate its industrial processes.
As such, Verrou primarily targets development teams which need techniques and tools to address
FP-related issues, both for the development and debugging of SCCs and for their Verification &
Validation.

Part 2 of this paper presents an overview of the FP analysis techniques and tools. In part 3,
the Verrou tool and its architecture will be briefly presented. Emphasis will be put on the recent
development of new features, released in version 2.1.0 and specifically targeting high-performance
codes. This part will also concentrate on the core features of Verrou, which are related to the
diagnostic of FP issues. This is in contrast to part 4, where the debugging features of Verrou and
its ecosystem will be detailed. Part 5 will be devoted to more methodological topics and show
how Verrou can be used to debug large industrial scientific computing codes and help optimize
their use of mixed precision.

The interest of the various features described in this paper will be illustrated by examples
taken from the analysis of code aster [2], a structural mechanics simulation tool of more than 1.2M
lines of code. A previous study [11] details the complete analysis and debugging of code aster,
and shows how the FP analysis process with Verrou can greatly complement a more traditional
Quality Assurance (QA) process. In the case of code aster, this QA process relies on around
4 000 test cases, of which around 2 000 are run daily.

2 Overview of FP analysis techniques & tools

Studying the impact of Floating-Point arithmetic on the quality of results computed by scientific
computing codes is not a new topic. Even after it was standardized in IEEE-754, FP arithmetic
has been considered a tricky and error-prone subject [12], and much work has therefore been

2

http://github.com/edf-hpc/verrou


devoted to tools and techniques helping to diagnose FP-related losses of accuracy in computing
codes.

2.1 Guaranteed methods

Some of these techniques, such as Interval or Affine Arithmetic [23, 15] give strong guarantees on
the results, but can produce largely overestimated error bounds and are often limited to small
programs. Such techniques and tools are therefore much used for the verification of small but
crucial parts of larger programs (such as for example the computation of mathematical function
in the standard libm [7]) or of full programs which can have large impacts (such as all Cyber-
Physical Systems [3, 1]).

An important advantage of these guaranteed methods is their ability to provide guarantees
for a range of inputs, in contrast to other techniques presented hereafter, which often provide
only unwarranted indications that are only valid for a single input dataset.

2.2 Comparison between several precisions

Other techniques can be used, such as the comparison between an analyzed result and a reference
computed in higher precision. Such techniques offer far less guarantees, but are far simpler.
For example, fpDebug [4] performs the Dynamic Binary Instrumentation (DBI) of an input
executable, in order to compare each floating-point value in the program with one obtained with
higher precision. FpDebug outputs a graph indicating, for each floating-point operation, whether
inaccuracies come from input data or from the operation itself.

The rpe [6] library uses the same idea in a reversed way: it emulates the use of reduced
floating-point precision in order to estimate whether some parts of the program might be re-
developed in reduced precision without entailing too much change in the results.

Tools like Precimonious [24] also rely on comparisons between single-, double-, and quadruple-
precision results in order to automatically determine which variables in a program can benefit
from using a lower precision without perturbing the results too much. This results in an optimized
mixed-precision implementation. In this case, program instrumentation is performed at the
compilation level (based on LLVM).

2.3 Stochastic arithmetic

Between theses two classes of techniques, the broad family of stochastic methods give far less
guarantees, but are much more adapted to large and complex programs such as those developed
by the HPC community to meet the industrial need for high-fidelity simulations of physical sys-
tems. Stochastic methods model the inaccuracies introduced by round-off errors as uncertainties
on the results of computations. These uncertainties are estimated by transforming inaccurate
results into random variables, which can be sampled and studied in a statistical way. Two main
stochastic methods have emerged.

On the one hand, the CESTAC methodology [27] models round-off errors by random rounding:
the result of every inexact computation in a program is randomly rounded upward or downward.
This effectively transforms the global result of a complete computation into a random variable,
of which the standard deviation can be linked (under some hypotheses) to the inaccuracy of
the results. CADNA [16, 19] is the most used library implementing Discrete Stochastic Arith-
metic (DSA), a synchronous variant of CESTAC in which all random samples of a given operation
are computed at once. Using CADNA requires accessing and modifying the source code of the
analyzed program, which is not always easy or even possible for large code bases. Nevertheless,

3



successful uses of CADNA have been reported on large simulation codes [20], which validates
the adequateness of the CESTAC method in industrial contexts.

PROMISE [13] is a mixed-precision optimization tool which leverages the same kinds of
algorithms as Precimonious to find optimal sets of variables which could use lower-precision
floating-point numbers. In contrast to Precimonious, PROMISE relies on CADNA to assess the
validity of the mixed-precision configurations that it considers.

On the other hand, Monte-Carlo Arthmetic (MCA) [26] models several types of FP-related
problems while allowing the user to choose an arbitrary “virtual precision”. This allows estimat-
ing the behavior of a given program with a different precision than what appears in its source
code, in contrast to CESTAC, which always models round-off errors at the precision which is im-
plemented in the program. MCA is implemented in various libraries such as mcalib [10]. Tools
such as Verificarlo [8] allow leveraging the full power of MCA for the analysis of large, industrial
code bases. Verificarlo presents itself as a custom compiler based on LLVM, and implements
MCA by instrumenting programs at the end of the compilation, after most optimization passes.

This paper focuses on Verrou, an FP analysis tool which performs the Dynamic Binary
Instrumentation (DBI) of any given program. This eliminates the need for an instrumentation
of the program sources or even a recompilation.

Verrou originally addressed diagnostics and debugging, and implemented several forms of
random rounding: an asynchronous CESTAC method, and a variant of MCA with virtual preci-
sion equal to the real precision. We describe hereafter how recent versions of Verrou have been
extended to implement other forms of FP analysis, and also address mixed-precision-related
issues.

3 Presentation of the Verrou tool

Verrou is a tool aiming at helping diagnose, debug and optimize FP-related issues in large,
industrial scientific computing codes. An earlier version of the Verrou tool has been presented
in [9], where internal arithmetic-related algorithms were presented in detail. Only the most
important aspects of Verrou will be recalled here, and this paper will rather focus on recent
developments in Verrou, released in version 2.1.0. Specifically, the features related to the use of
Verrou for the diagnosis of mixed precision programs will be detailed. Also, this paper will focus
more on the presentation of the features themselves, and less on the internal implementation.

From a user standpoint, Verrou instruments the program (in its binary form), replacing each
FP instruction in it with a variant implementing another type of FP arithmetic. Results of
the computation are output like in any normal execution, except that they are affected by the
cumulative effect of all perturbed FP instructions. Analyzing the observed change in the results
allows estimating the global impact of FP arithmetic for the code.

In its recent versions, the architecture of Verrou closely follows this description, with 3 major
components which will be described in more details in the remainder of this section.

• The front-end is the part of Verrou responsible for running the user-given program, replac-
ing each FP instruction with a variant.

• The back-end implements variants of all FP instructions, effectively defining a new arith-
metic to be used in place of the original one. Different back-ends can be used in Verrou,
implementing various arithmetics.

• A post-processing stage is needed in order to analyze the effect resulting from the use of
an alternate arithmetic. This is mostly left for the user to implement, but advice can be
given as to what kind of post-processing should be performed.

4



This architecture of Verrou in three parts stems from the Interflop1 initiative, which aims at
providing a uniform API allowing interoperability between front-ends and back-ends of several
FP intrumentation tools such as Verrou and Verificarlo [8].

3.1 Front-end

Verrou is based on Valgrind to perform a Dynamic Binary Instrumentation (DBI) of the given
program, and replace each FP instruction by a variant implemented by the user-chosen back-end.

The main advantage of using Valgrind is the ease of use of Verrou for end-users: there is no
need to manually change the program or even recompile it. All that is needed is to prefix the
usual command-line with in order to invoke Valgrind with the Verrou tool:

valgrind --tool=verrou [VERROU ARGS] PROGRAM [ARGS]

The development teams of many scientific codes already rely on Valgrind for their mem-
ory debugging, so that defining such command-line prefixes might even already be part of the
standard development-test-debugging routine.

It is also worth noting that relying on DBI makes the core parts of Verrou independent of
the tools or languages used for the development of the program. Verrou is therefore language-
agnostic: it works for multi-language applications such as code aster [11], which internally uses
Fortran, C, C++ and Python. Successful uses of Verrou have also been reported with languages
less commonly used by the HPC community, such as JAVA or Rust. For the same reasons, Verrou
works with any compiler and set of compilation options, which allows instrumenting programs
exactly as they will later be used for industrial purposes. A consequence of great importance for
the HPC community is that Verrou is naturally compatible with any MPI implementation:

mpirun [MPI ARGS] valgrind --tool=verrou [VERROU ARGS] PROGRAM [ARGS]

Also, programs analyzed with Verrou are not restricted in the libraries that they use: Verrou
can analyze any part of the program as a whole, even third-party libraries, even closed-source.
Again, it might be of interest for the HPC community to note that Verrou can also instrument
multi-threaded applications using any framework (pthreads, tbb, OpenMP. . . ). But an impor-
tant limitation of Valgrind in this case is that threads will be “sequentialized”, which may incur
a large performance overhead.

In the commands above, VERROU ARGS allows changing several aspects of Verrou, particularly
the arithmetic back-end to be used (described in the next paragraph). It is also worth noting
that the Verrou front-end can be instructed to only instrument part of a program. This feature
is key to the debugging methodologies described in part 4.

3.2 Back-ends

Several back-ends in Verrou define variants of FP arithmetic to be used in place of the stan-
dard FP arithmetic. The back-end to be used in a given analysis can be selected using the
--rounding-mode command-line option to Verrou.

Before entering the details of what type of arithmetic is implemented in each back-end, we
discuss here a generic feature which all back-ends implement. When a Not-a-Number (NaN)
appears in the results, Verrou emits a Valgrind error, which is reported to the user, along with
the current back-trace. When combined with the usual Valgrind debugging features, this allows
for an integrated debugging process.

1https://github.com/interflop/interflop

5



Another interesting point to mention here is the verification process of Verrou itself. Recent
versions rely on the UCB Floating-Point tests database2 to check the correctness of all arithmetic
backends in all cases. This includes tricky corner cases such as denormalized numbers, non-finite
values, positive and negative zeros, etc. Provided that Verrou has access to Fused Multiplication
and Addition (FMA) operations, its back-ends correctly pass all UCB tests.

The verification process of Verrou also relies on a set of small programs which include various
types of operations (including FMA). For these programs, tests are performed to check that
rounding modes emulated by Verrou produce the exact same results as when the program is run
without Verrou and the corresponding roundings are performed by the hardware.

3.2.1 Deterministic Rounding (DR)

In order to debug Verrou itself and check for instrumentation-induced non-reproducibilities, a
Deterministic Rounding back-end re-implements within Verrou any of the 4 standard rounding
modes defined by IEEE-754. This back-end can also be used as a cheap way of assessing the
impact of round-off errors in FP computations. As discussed in [17], some insight on FP errors
can be obtained from the comparison of a few results obtained with the same program, using
different rounding modes.

As an extension to this scheme, an additional 5th deterministic rounding mode can be em-
ulated by Verrou. Named “farthest” (--rounding-mode=farthest), this mode always rounds inexact
computations in the opposite way to the standard round-to-nearest mode.

3.2.2 Random Rounding (RR)

The historical Verrou backend implements a stochastic arithmetic variant in which the result of
each inexact FP instruction is randomly rounded either upward or downward. Depending on
the chosen probability law, this can be similar to an asynchronous CESTAC arithmetic [27] or a
variant of Monte-Carlo Arithmetic [26].

• --rounding-mode=average: in this mode, the probability of rounding upward or downward
is determined such that the expected value of the randomly rounded result equals the real
mathematical result. Suppose an operation z = x ◦ y is to be computed, where x and y are
the (FP) operands, z is the real result, and ◦ ∈ {+,−,×,÷} is the operator. The randomly
rounded result Z is defined with probabilities given by

P[Z = z] =
z̄ − z
z̄ − z

and P[Z = z̄] =
z − z
z̄ − z

,

such that

E[Z] = z.

In the equations above, z and z̄ respectivey denote the value of z rounded downward
and upward. With the terminology defined in [26], this mode is equivalent to an “output
precision bounding” MCA in which the virtual precision is set to the actual FP precision.

• --rounding-mode=random: in this mode, roundings are upward or downard equiprobably.
With the notations defined above, we have

P[Z = z] = P[Z = z̄] =
1

2
.

This is equivalent to an asynchronous CESTAC arithmetic.

2http://www.netlib.org/fp/ucbtest.tgz

6

http://www.netlib.org/fp/ucbtest.tgz


-------------------------------------- --------------------------------------

Operation Instruction count Operation Instruction count

‘- Precision ‘- Precision

‘- Vectorization ‘- Vectorization

-------------------------------------- --------------------------------------

add 216251889 div 23350051

‘- flt 4761556 ‘- flt 597054

‘- llo 2074760 ‘- llo 597054

‘- vec4 328316 ‘- dbl 22752997

‘- vec8 2358480 ‘- llo 22752997

‘- dbl 211490333 --------------------------------------

‘- llo 210679861 mAdd 71551834

‘- vec2 808672 ‘- flt 71543338

‘- vec4 1800 ‘- llo 71543338

-------------------------------------- ‘- dbl 8496

sub 32673605 ‘- llo 8496

‘- flt 6115214 --------------------------------------

‘- llo 6115214 conv 2227250

‘- dbl 26558391 ‘- dbl=>flt 614010

‘- llo 26558391 ‘- scal 614010

-------------------------------------- ‘- flt=>dbl 1594854

mul 327064720 ‘- scal 1594854

‘- flt 12151586 ‘- dbl=>int 707

‘- llo 9464790 ‘- scal 707

‘- vec4 328316 ‘- dbl=>sht 17679

‘- vec8 2358480 ‘- scal 17679

‘- dbl 314913134 --------------------------------------

‘- llo 313498574

‘- vec2 1412796

‘- vec4 1764

--------------------------------------

Figure 1: Number of FP operations output by Verrou for a run of code aster on test case
ttlv300a

Changes to this back-end have recently been introduced in order to correctly verify mixed-
precision programs: type conversions subject to rounding (e.g. double → float) are now
instrumented and perturbed when applicable. To the authors’ knowledge, Verrou is the first tool
based on stochastic arithmetic which correctly handles type conversions.

Figure 1 illustrates the need for correctly handling these conversions. This listing presents
the number of FP operations, as output by Verrou at the end of the execution of a code aster
calculation. This calculation (performed on the ttlv300a test case) makes use of complex
third-party libraries, such as the PETSc double-precision fGMRES solver preconditioned by a
single-precision direct linear solver from the MUMPS library. As can be seen in the number of
operations, a significant fraction of the FP operations have been performed in single precision. For
example, around 19% of the subtractions, and more than 99% of the FMAs (Fused Multiplication
and Addition) have used single precision in this case. Around 28% of the type conversions are
potentially inexact double → float conversions.

3.2.3 Reduced Precision (RP)

A Reduced-Precision back-end has been introduced in newer versions of Verrou. As its name
suggests, this back-end emulates the use of an IEEE-754-compliant FP arithmetic with reduced
precision. It is currently implemented in only one variant, which reduces double precision FP
numbers to single precision. This is similar to what is performed in the rpe library [6], except
that Verrou performs the analysis directly at the level of the executable binary, rather than by
instrumenting the sources like what is needed for rpe.

For legacy Fortran codes, which often feature a monolithic architecture, such a feature can be
an easy way to foresee any problem which might arise when reducing the FP precision of variables.
For more modern codes, for example developed in C++ with templated FP type, developers are
often better served by simply recompiling their project with the reduced precision.

This back-end really shines when it is combined with the Verrou features allowing to restrict
the scope of perturbations to only part of a program: functions and/or source code lines. In this

7



case, Verrou allows emulating any mixed-precision variant of the program, where an arbitrary
part uses single-precision arithmetic, while the rest remains in double precision. Debugging and
optimization methodologies relying on such techniques are detailed in part 5.

3.3 Post-processing

Due to the changes introduced by the arithmetic emulated by Verrou, each execution of a given
program (with a given dataset) produces perturbed results. An analysis of these results should
be performed in order to assess the impact of FP arithmetic on the results quality.

Such post-processing is highly dependent on the nature and format of the results and, as
such, it is mostly left for the user to implement for their own code. However in most instances,
only a limited amount of work is needed when a Quality Assurance process with automated non-
regression testing has been put in place. For example, it is possible to simply check whether the
non-regression test suite succeeds when running the program within Verrou with the reduced-
precision arithmetic back-end. If so, this gives a good indication that the program can be changed
to use single-precision FP arithmetic while remaining “valid”.

Post-processing can get more complicated in the case of stochastic arithmetic, where several
sampled results are needed to compute statistics. This aspect is detailed in [25]. It is shown there
that several statistics can be computing, yielding different accuracy estimators along with the
corresponding confidence intervals. In particular, if it can be assumed (or verified in practice)
that perturbed results follow a Gaussian distribution, the authors recommend computing the
quantity

ŝcnh = − log2

(
σ̂

µ̂

)
− δcnh,

where µ̂ and σ̂ respectively denote the sample average and variance, and δcnh is a tabulated
quantity depending on the number of samples and the targeted level of confidence. The computed
quantity ŝcnh gives a lower bound for the number of significant bits (i.e bits which can be expected
to be found in agreement between successive runs of the same computation).

4 Debugging HPC codes with Verrou

The core features of Verrou which have been presented above aim at diagnosing and quanti-
fying FP-related losses of accuracy. However, these features can also be leveraged to set up
methodologies aiming at debugging FP-related issues in industrial codes.

This debugging methodology is based on two techniques, aiming at detecting different kinds
of FP-related issues.

1. Unstable tests are tests for which the branch taken depends on previous round-off errors).
These can be detected by combining a Verrou analysis to a code coverage analysis. The
analyzed program can be recompiled so that it generates code coverage data3. After a
standard run and another run perturbed by Verrou, code coverages can be compared in
order to determine where execution flows differ.

2. Unstable functions (or source code lines) are parts of the code which, when perturbed,
produce large perturbations in the results. The detection of such unstable code parts uses

3With gcc, this is performed for example using the -fprofile-arcs -ftest-coverage command-line switches
during compilation. Later, code-coverage data can be analyzed using the gcov utility.

8



Data: ∆search: search space (set of symbols or lines)
Data: ∆fixed: list of validated deltas (default: empty)
Data: g: granularity (default value 2)

{∆1, . . . ,∆g} ← split(∆search, g) ;

for j ∈ J1, gK do
if test(∆fixed + ∆j) = 3 then

return DDmax(∆search −∆j ,∆fixed + ∆j , g − 1);
end

end

if g = size(∆search) then
return ∆fixed ;

end

return DDmax(∆search,∆fixed,min(2 g, size(∆search))) ;

Algorithm 1: DDmax, as implemented in verrou dd

the Delta-Debugging [28] algorithm to perform a binary search in the source code. It
heavily relies on the Verrou ability to restrict the scope of FP perturbations to a part of
the source code. A dedicated utility in the Verrou ecosystem, verrou dd, automates most
of the Delta-Debugging process.

No specific development has been made recently regarding unstable tests detection, and this
feature will not be detailed further here; the interested reader can get the details in [11]. However,
recent improvements have been incorporated into verrou dd. They are described in more details
in the following paragraphs.

4.1 Delta-Debugging algorithms

The Delta-Debugging methodology [29, 28] is built in the Verrou ecosystem thanks to the
verrou dd utility, which automates the full process. The Delta-Debugging process is based
on two key ingredients:

• A search space, i.e. a set ∆ of program parts in which instabilities are to be searched for.
In our case, this is a list of functions (or source code lines), which is automatically built by
verrou dd.

• A test function, which determines whether introducing Verrou-induced perturbations in a
subset of ∆ produces instabilities. Most of this testing process is automated, but two user-
defined scripts are required in order to specify how to run the analyzed program and how
to validate its results. Based on these two user-defined scripts, the automatically-generated
test function either validates (3) a given subset of ∆, or detects instabilities (7) in it.

As an illustration, at the beginning of the Delta-Debugging process, the test function should
fulfill the two following requirements:

• test (∆) = 7: perturbing the whole program leads to instabilities (i.e. there are problems
to look for);

• test ({}) = 3: perturbing no part of the program should produce an acceptable result.

9



Data: ∆search: search space (set of symbols or lines)
Data: g: granularity (default value 2)

{∆1, . . . ,∆g} ← split(∆search, g) ;

for j ∈ J1, gK do
if test(∆j) = 7 then

return DDmin(∆j , 2);
end

end

for j ∈ J1, gK do
if test(∆search −∆j) = 7 then

return DDmin(∆search −∆j , g − 1);
end

end

if g = size(∆search) then
return ∆search ;

end

return DDmin(∆search,min(2g, size(∆search))) ;

Algorithm 2: Zeller’s DDmin

Initial versions of the Delta-Debugging used the DDmax algorithm (cf. alg. 1), which returns
a 1-maximal stable subset ∆max ⊂ ∆, characterized by:

test(∆max) = 3,

test(∆max ∪ {δ}) = 7, ∀δ ∈ ∆.

In other words, all program parts (functions or source code lines) in ∆max can be perturbed
together, without producing invalid results. But as soon as another program part is perturbed,
instabilities appear. For practical use, verrou dd returns the set ∆−∆max.

The DDmax algorithm is traditionally described in the literature, and implemented, in terms
of its DDmin counterpart (see below). However, verrou dd implements a standalone DDmax
algorithm, presented in algorithm 1, which avoids some of the work and is therefore a bit more
efficient.

Recent versions of Verrou include extensions to the verrou dd tool, which leverage Zeller’s
DDmin algorithm (cf. alg. 2). This algorithm returns a 1-minimal subset of symbol ∆min ⊂ ∆,
characterized by

test(∆min) = 7,

test (∆min − {δ}) = 3, ∀δ ∈ ∆min.

In other words, instabilities appear as soon as all parts in ∆min are perturbed together; no single
part of ∆min can be left unperturbed without making instabilities disappear. DDmin is used by
verrou dd in the following recursive process (cf. alg. 3):

1. search for a minimal subset generating instabilities,

2. remove this subset from the search space,

10



Data: ∆: search space (set of symbols or lines)

∆current ← ∆ ;
R← {} ;

while test(∆current) = 7 do
∆min ← DDmin(∆current);
R← R ∪ {∆min} ;
∆current ← ∆current −∆min ;

end

return R;

Algorithm 3: Recursive DDmin (rDDmin)

3. restart the process if there are still instabilities to find.

This recursive DDmin (rDDmin) algorithm has nice properties. First, rDDmin produces a
set of unstable subsets. This is a richer information than DDmax algorithm, which would in
principle4 return the union of all these subsets.

This is illustrated in Table 1, which shows the output of verrou dd using the rDDmin algo-
rithm for code aster on the same test-case as in section 3.2.2 and Figure 1. In this case, a total
of 32 functions (or rather, symbols) are detected as unstable (in the sense of 1-minimality). A
DDmax algorithm could have returned the same 32 unstable symbols, but rDDmin results are
structured in a finer way. 30 of these symbols are unstable by themselves, but 2 are coupled
together, forming rDDmin subset #2: these two symbols produce instabilities only if they are
perturbed together.

Second, each DDmin step produces results which are immediately useful; the user can start
analyzing them even before the full algorithm terminates. In the example of Table 1, around
10 hours are needed for the whole rDDmin algorithm to terminate its search fro unstable sym-
bols. However, the first unstable symbol (KSPFGMRESBuildSoln from PETSc) is found after only
25 minutes, which allows the user to start investigating much sooner.

These results also highlight the role played by third-party libraries and the interaction be-
tween them. Unsurprisingly, a significant fraction of the unstable symbols are found in linear
algebra libraries such as PETSc or OpenBLAS, for algorithms related to dot products. In these
cases, additional information like Call Site Paths (CSP) would be very useful to help determine
whether which parts of the program itself (code aster in this case) should be investigated. Such
information is already available with tools like Veritracer [5], and are an important perspective
for the development of Verrou.

4.2 Delta-Debugging in stochastic contexts

The algorithms mentioned above were designed for deterministic test functions. When the test
function involves Stochastic Arithmetic, as it is the case with Verrou, successes and failures get
non-deterministic. A practical way to deal with this issue consists in performing several Verrou
samples within each call to the test function. As soon as one Verrou sample fails the user-
defined validation criteria, the test is considered to be failing. Conversely, the test succeeds if all
Verrou samples meet the user-defined criteria. By increasing the number of samples5 the test

4The set of unstable program parts is not unique; it depends on the order in which subsets are tested.
5The VERROU DD NRUNS environment variable allows controlling this parameter.

11



Table 1: DDmin subsets output by verrou dd for code aster on test case ttlv300a with 10
Verrou samples.

rDDmin Symbol name Library
subset

1 KSPFGMRESBuildSoln libpetsc.so.3.8.2

2 KSPFGMRESCycle libpetsc.so.3.8.2
KSPGMRESClassicalGramSchmidtOrthogonalization libpetsc.so.3.8.2

3 MatMult SeqAIJ libpetsc.so.3.8.2

4 VecMAXPY Seq libpetsc.so.3.8.2

5 VecMDot Seq libpetsc.so.3.8.2

6 smumps fac asm master m MOD smumps fac a... asterd

7 smumps fac front aux m MOD smumps fac mq... asterd

8 smumps fac front aux m MOD smumps fac mq... asterd

9 amumpm asterd

10 amumpp asterd

11 ascopr asterd

12 assvec asterd

13 daxpy k HASWELL libopenblasp-r0.2.12.so

14 ddot k HASWELL libopenblasp-r0.2.12.so

15 dfdm3d asterd

16 dscal k HASWELL libopenblasp-r0.2.12.so

17 elraga asterd

18 elrfdf asterd

19 elrfvf asterd

20 op0024 asterd

21 sgemm kernel HASWELL libopenblasp-r0.2.12.so

22 smumps facto send arrowheads asterd

23 smumps gather solution asterd

24 smumps ldlt asm niv12 . omp fn.0 asterd

25 smumps solve driver asterd

26 smumps solve node . omp fn.7 asterd

27 strsm kernel LN HASWELL libopenblasp-r0.2.12.so

28 strsm kernel LT HASWELL libopenblasp-r0.2.12.so

29 te0051 asterd

30 te0054 asterd

31 te0057 asterd

32 te0061 asterd

12



Table 2: Comparison of ddmax and rddmin algorithm for an evaluation of test function with 2,5
and 10 samples

Algorithm Total First
(#samples) #tests #runs #tests #runs %Success %Failure

DDmax(2) 17.0 24.2 17.0 24.2 8.6 70.6
rDDmin(2) 18.2 29.4 6.9 10.9 30.6 49.0

DDmax(5) 21.1 50.2 21.1 50.2 72.0 20.0
rDDmin(5) 18.0 49.9 6.5 17.9 86.0 10.0

DDmax(10) 22.3 81.5 22.3 81.5 99.4 0.4
rDDmin(10) 17.7 75.6 6.1 26.4 99.6 0.2

function can approach a deterministic behavior. However, this often increases prohibitively the
computational cost of the Delta-Debugging.

The numerical experience reported in table 2 aims at evaluating the effectiveness and robust-
ness of the DDmax and rDDmin algorithms with respect to the non-determinism of the test

function. In this experiment, the Delta-Debugging is performed with a fake Verrou, which simu-
lates a program comprising 10 symbols. 3 of these symbols, randomly distributed in the ∆ list,
independently produce failures with probability 0.5.

Table 2 reports a comparison of the DDmax and rDDmin algorithms, each tested with 2, 5
and 10 Verrou samples per evaluation of the test function. The same experiment is performed
500 times, and averaged results are presented in the table columns:

• Total #tests (resp. #runs): total number of test function calls (resp. number of
individual runs of the analyzed program) for the whole DD algorithm;

• First #tests (resp. #runs): number of test function calls (resp. number of individual
program runs) needed to obtain the first useful result;

• %success: fraction of experiments where the unstable set produced contains the 3 unstable
symbols and only these;

• %fail: fraction of experiments where false positive are found. Finding a strict subset of the
expected result is neither considered a fail nor success, which explains why %fail + %suc-
cess 6= 100%.

The main result reported table 2 is that rDDmin performs almost always better that DDmax
for all metrics. In terms of computational cost, rDDmin needs approximately 3 times less runs
of the analyzed program before it produces its first useful result. Although both algorithms
perform similarly for a relatively large numbers of samples (10), the results relevance is improved
by rDDmin when using a reduced number of samples (2 or 5). And this metric does not take
into account the structure of the partition of 1-minimal set.

4.3 Filtering

A last improvement, which is valid for both rDDmin and DDmax, consists in reducing the search
space (i.e. the ∆ set in the DD terminology). In previous versions of Verrou, the search space
contained all symbols during the execution of Verrou. In recent versions of Verrou, the generation
of the ∆ set only considers symbol which contain instrumented FP operations.

13



Code
+

Dataset

Accuracy evaluation
select outputs and

analysis criteria

Verrou
back-end RR

Sufficient
accuracy?

Sufficient
perfor-
mance?

Done

Yes

Full Stochastic
write the code in single precision

Double/Stochastic Reference
Verrou

back-end RP

Search for a mixed-precision configuration

No

S
im

p
li
fy

th
e

te
st

ca
se

F
ix

th
e

p
ro

b
le

m
:

co
d

e
o
r

d
a
ta

se
t/

p
a
ra

m
et

er
s

Basic comparisons

Debugging

Delta-Debugging:
write ddRun and
ddCmp scripts

Code Coverage:
recompile with

coverage analysis

Analyze

No

Yes

Problem not understoodProblem understood

No

Figure 2: Full process for the analysis and optimization of a scientific computing code with
Verrou

For code aster, with the test case ttlv300a, this pre-filtering of the ∆ set leads to a drastic
reduction of the number of symbols considered by the Delta-Debugging: from an initial list
comprising 4459 symbols, the filtered set is reduced to only 154 symbols. With such a small
resulting search space, one could wonder whether using a Delta-Debugging algorithm is still an
optimal choice.

5 Optimizing mixed precision with Verrou

The debugging techniques presented above can be used to optimize mixed-precision implemen-
tations of a given code. Indeed, two complementary workflows can be devised, which help
developers decide where high FP precision is needed and, conversely, for which variables a low
FP precision might be sufficient.

14



5.1 Double/Stochastic Reference

The “stochastic reference” methodology used by PROMISE [13] can provide the basis for a first
Verrou-based way of finding optimal uses of mixed precision in a given program.

This methodology relies on the assumption that the program produces “valid” results in
double precision (i.e. results which meet user-defined quality criteria). The validity of these
results can either be postulated (in which case double-precision results are taken as reference
without further questioning), or verified using Verrou with its Random Rounding back-end (in
which case reference results could be obtained by averaging the results produced by all double-
precision Verrou samples).

The same test case then can be run again, this time using Verrou with its Reduced Preci-
sion back-end (see §3.2.3). A comparison between reduced-precision results and the reference
allows determining whether more work needs to be done. If reduced-precision results meet the
user-defined quality criteria, then the whole program could benefit from using single precision
variables, without affecting results quality too much. Conversely, if reduced-precision results
are too different from the reference, then the Delta-Debugging techniques described above can
be used to determine which parts of the program have to keep using double-precision variables.
Everything else should be considered for the introduction of single-precision variables.

5.2 Full Stochastic

A second optimization methodology can be devised, which is closer in spirit to the so-called “Full
Stochastic” methodology of the PROMISE tool.

In contrast to the method presented above, this methodology is based on a single-precision
version of the analyzed program. As such, it is probably more adapted to newer scientific
computing codes, where the possibility to (uniformly) change the FP precision is often built-in
(for example via typedefs or C++ templates).

This time, a direct application of the Verrou Delta-Debugging techniques exhibits the program
parts which have to be switched back to double precision (or redesigned with more accurate
algorithms).

5.3 Overview of a full debugging and optimization process

Figure 2 presents a full Verrou-based workflow which can be used to analyze, debug and optimize
industrial HPC codes in mixed precision. Actions printed in orange in the figure correspond to
setup work, which needs to be done once in order to take into account the specifics of the analyzed
program. Actions printed in red correspond to manual steps which have to be performed by the
user.

The process starts with a program to analyze and the associated dataset. The user may then
proceed to the standard diagnostics procedure, based on the Random Rounding Verrou backend.
At this stage, the only work required consists in extracting the results of interest for the code
output, and decide on relevant analysis criteria. Usually, for industrial codes with an emphasis
on Quality Assurance, much of this preliminary work has already been performed, for example
in order to setup non-regression testing.

At the end of the diagnostics, the user should have enough insight to determine whether code
results are sufficiently accurate. If not, a first good option might be to try and find another
smaller unstable test case, which will simplify and speed-up the debugging process.

Once a simple enough test case has been identified, the user may proceed to a debugging
stage. Experience shows that a simple analysis and comparison of the program output between
Verrou samples sometimes allows to quickly find the origin of errors. This comparison might

15



consider not only the results themselves, but also the full log of the computation (number of
iterations. . . ) and the number of FP operations counted and output by Verrou. If such a simple
analysis is not fruitful, the user may use more complex debugging methodologies, relying either
on code coverage comparisons in order to find unstable tests, or on Delta Debugging in order to
find unstable functions or source code lines. In both cases, some work is required in order to
setup these debugging processes.

After the debugging stage, the user should be able to try and implement fixes in the program
(whether by changing the code itself, its parameters, or the test-case).

Once all FP-related issues have been fixed and the program produces sufficiently accurate
results, the optimization stage may begin. Depending on the program being analyzed, the user
may choose between the “Full Stochastic” and “Double/Stochastic Reference” methodologies
described above.

With the “Full Stochastic” methodology, some work needs to be done in order to reduce the
FP precision in the program (or in a part of it). The same diagnostics & debugging process can
then be started over with this reduced-precision code. However, the debugging process should be
easier since a natural fix consists in increasing the precision for all detected unstable code parts.
At the end of this process, the developer should have an optimized mixed-precision version of
the program, which meets the accuracy criteria on the given test case.

The “Double/Stochastic Reference” methodology might be more adapted to legacy code,
where it is often difficult – if possible at all – to change the FP precision. Indeed, no additional
work is needed for this optimization methodology. The diagnostics process just needs to be
started over, this time using the Reduced Precision Verrou backend. Unstable parts of the
program that are detected this way are parts of the code which have to remain in double precision.
At the end of this process, developers should have enough insight to guide the development of
an optimized mixed-precision version of the program.

6 Conclusions

Verrou is an open-source tool which aims at helping development teams during the whole
Floating-Point analysis process, from diagnosing FP-related issues, to debugging them, and
finally optimize the code for mixed-precision. Verrou specifically targets large, industrial, high-
performance codes, and is freely available under an open-source licence at

http://github.com/edf-hpc/verrou

In this paper, we presented various new features which have been recently been implemented
in Verrou and released in version 2.1.0. These features extend the original capabilities of Verrou,
and target more specifically the HPC needs.

The diagnostics stage of the Verrou analysis mainly relies on Random Rounding. This feature
has been adapted and extended correctly handle mixed precision codes, which nowadays represent
a fair share of the HPC codes.

As for the debugging stage of the analysis, the Verrou ecosystem provide a dedicated verrou dd

utility which automates most of the search for unstable code parts. This utility, which relies on
the Delta-Debugging family of algorithms by Zeller, has been extensively reworked. It now in-
cludes a new Recursive DDmin (rDDmin) algorithm, which is more robust and provides faster
and more accurate results than the original DDmax algorithm. This is especially advantageous
in the case of FP-related issues which appear infrequently and are thus hard to reproduce. When

16

http://github.com/edf-hpc/verrou


searching for unstable parts of the source code (functions/symbols or source code lines), a pre-
filtering feature also allows dramatically reducing the size of the search space by considering only
functions (or source code lines) which actually perform FP operations.

In terms of the mixed-precision optimization of HPC codes, Verrou now includes a new back-
end which emulates the use of single precision in the program (or any part of it). In combination
with the debugging features of Verrou, this can be used to identify which parts of the source
code are sensitive to FP issues and should remain in double precision.

The interest of these features was illustrated throughout the paper by examples taken from
the analysis of code aster, an industrial structural mechanics simulation tool. As an example,
the Delta-Debugging process now produces its first useful results after only 25 minutes, which
allows developers to start analyzing and debugging the code much sooner.

These new features make it possible to use Verrou not only as a diagnostic tool, but also as
an help and guide during the development.

References

[1] Erika Ábrahám. Techniques and tools for hybrid systems reachability analysis. In Rigorous
Systems Engineering of Cyber Physical Systems, RISE4CPS 2017, Heidelberg, Germany,
July 2017.

[2] Code Aster: Structures and thermomechanics analysis for studies and research.
http://www.code-aster.org/.

[3] Stanley Bak and Parasara Sridhar Duggirala. Simulation-equivalent reachability of large
linear systems with inputs. In Proceedings of the 29th International Conference on Computer
Aided Verification. Springer, 2017.

[4] Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic program analysis to
find floating-point accuracy problems. In 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 453–462, New York, NY, USA, June
2012. ACM.

[5] Yohan Chatelain, Pablo de Oliveira Castro, Eric Petit, David Defour, Jordan Bieder, and
Marc Torrent. VeriTracer: Context-enriched tracer for floating-point arithmetic analysis. In
IEEE Symposium on Computer Arithmetic (ARITH), Amherst, MA, USA, June 2018.

[6] A. Dawson and P. D. Düben. rpe v5: an emulator for reduced floating-point precision in
large numerical simulations. Geoscientific Model Development, 10(6):2221–2230, 2017.

[7] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. Certifying the floating-
point implementation of an elementary function using Gappa. IEEE Transactions on Com-
puters, 60(2):242–253, 2011.

[8] Christophe Denis, Pablo de Oliveira Castro, and Eric Petit. Verificarlo: Checking Floating
Point Accuracy through Monte Carlo Arithmetic. In 23nd IEEE Symposium on Computer
Arithmetic, ARITH 2016, Silicon Valley, CA, USA, July 10-13, 2016, page 55–62, 2016.

[9] François Févotte and Bruno Lathuilière. VERROU: Assessing Floating-Point Accuracy
Without Recompiling. October 2016.

17



[10] Michael Frechtling and Philip H.W. Leong. Mcalib: Measuring sensitivity to rounding
error with monte carlo programming. ACM Transactions on Programming Languages and
Systems, 37(2):5, 2015.

[11] François Févotte and Bruno Lathuilière. Studying the Numerical Quality of an Industrial
Computing Code: A Case Study on code aster. In 10th International Workshop on Numer-
ical Software Verification (NSV), page 61–80, Heidelberg, Germany, July 2017.

[12] David Goldberg. What every computer scientist should know about floating-point arith-
metic. ACM Computing Surveys, 23(1), March 1991.

[13] Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, and Bruno Lathuilière.
Auto-tuning for floating-point precision with discrete stochastic arithmetic. working paper
or preprint, June 2016.

[14] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, 2008.

[15] Maxime Jacquemin, Sylvie Putot, and Franck Védrine. A reduced product of absolute and
relative error bounds for floating-point analysis. In Andreas Podelski, editor, Static Analysis,
pages 223–242, Cham, 2018. Springer International Publishing.

[16] Fabienne Jézéquel, Jean-Marie Chesneaux, and Jean-Luc Lamotte. A new version of the
CADNA library for estimating round-off error propagation in Fortran programs. Computer
Physics Communications, 181(11):1927–1928, 2010.

[17] William Kahan. How futile are mindless assessments of roundoff in floating-point computa-
tion? Technical report, 2006.

[18] Michael O Lam and Jeffrey K Hollingsworth. Fine-grained floating-point precision analysis.
The International Journal of High Performance Computing Applications, 32(2):231–245,
2016.

[19] Jean-Luc Lamotte, Jean-Marie Chesneaux, and Fabienne Jézéquel. CADNA C: A ver-
sion of CADNA for use with C or C++ programs. Computer Physics Communications,
181(11):1925–1926, 2010.

[20] Sethy Montan. Sur la validation numérique des codes de calcul industriels. PhD thesis,
Université Pierre et Marie Curie (Paris 6), France, 2013. in French.

[21] Ralph Nathan, Bryan Anthonio, Shih-Lien Lu, Helia Naeimi, Daniel J. Sorin, and Xiaobai
Sun. Recycled Error Bits: Energy-Efficient Architectural Support for Floating Point Accu-
racy. In International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’14), pages 117–127. IEEE Press, nov 2014.

[22] Laurent Plagne and Kavoos Bojnourdi. Portable vectorization and parallelization of C++
multi-dimensional array computations. In ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming (ARRAY), pages 33–39, 2017.

[23] Nathalie Revol. Introduction to the IEEE 1788-2015 Standard for Interval Arithmetic, pages
14–21. Springer International Publishing, Cham, 2017.

[24] Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan,
Koushik Sen, David H. Bailey, Costin Iancu, and David Hough. Precimonious: Tuning
assistant for floating-point precision. In Proc. of SC13, 2013.

18



[25] Devan Sohier, Pablo De Oliveira Castro, François Févotte, Bruno Lathuilière, Eric Petit,
and Olivier Jamond. Confidence Intervals for Stochastic Arithmetic. Preprint.

[26] D. Stott Parker. Monte Carlo arithmetic: exploiting randomness in floating-point arithmetic.
Technical Report CSD-970002, University of California, Los Angeles, 1997.

[27] Jean Vignes. A stochastic arithmetic for reliable scientific computation. Mathematics and
Computers in Simulation, 35:233–261, 1993.

[28] Andreas Zeller. Why Programs Fail. Morgan Kaufmann, Boston, second edition, 2009.

[29] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Transactions on Software Engineering, 28(2):183–200, 2002.

19


	1 Introduction
	2 Overview of FP analysis techniques & tools
	2.1 Guaranteed methods
	2.2 Comparison between several precisions
	2.3 Stochastic arithmetic

	3 Presentation of the Verrou tool
	3.1 Front-end
	3.2 Back-ends
	3.2.1 Deterministic Rounding (DR)
	3.2.2 Random Rounding (RR)
	3.2.3 Reduced Precision (RP)

	3.3 Post-processing

	4 Debugging HPC codes with Verrou
	4.1 Delta-Debugging algorithms
	4.2 Delta-Debugging in stochastic contexts
	4.3 Filtering

	5 Optimizing mixed precision with Verrou
	5.1 Double/Stochastic Reference
	5.2 Full Stochastic
	5.3 Overview of a full debugging and optimization process

	6 Conclusions

