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Abstract

Fast urbanization generates increasing amounts of travel flows, urging the need for efficient transport planning poli-
cies. In parallel, mobile phone data have emerged as the largest mobility data source, but are not yet integrated to
transport planning models. Currently, transport authorities are lacking a global picture of daily passenger flows on
multimodal transport networks. In this work, we propose the first methodology to infer dynamic Origin-Destination
flows by transport modes using mobile network data e.g., Call Detail Records. For this study, we pre-process 360
million trajectories for more than 2 million devices from the Greater Paris as our case study region. The model
combines mobile network geolocation with transport network geospatial data, travel survey, census and travel card
data. The transport modes of mobile network trajectories are identified through a two-steps semi-supervised learn-
ing algorithm. The later involves clustering of mobile network areas and Bayesian inference to generate transport
probabilities for trajectories. After attributing the mode with highest probability to each trajectory, we construct
Origin-Destination matrices by transport mode. Flows are up-scaled to the total population using state-of-the-art
expansion factors. The model generates time variant road and rail passenger flows for the complete region. From
our results, we observe different mobility patterns for road and rail modes and between Paris and its suburbs. The
resulting transport flows are extensively validated against the travel survey and the travel card data for different
spatial scales.

Keywords: Mobile phone data, Origin Destination Matrix, Transport mode, Urban mobility, Travel flows,
Machine Learning

1. Introduction

In the upcoming decades, travel flows and travel times are expected to skyrocket, following tremendous pop-
ulation growth in urban territories. The increasing congestion on transport networks threatens cities efficiency
at several levels such as citizens well-being, health, economy, tourism and pollution. Thus, local and national
authorities are urged to promote transport planning innovation by adopting supportive policies leading to effec-
tive measures. Prior to decision making processes, it is crucial to estimate, analyze and understand daily urban
mobility. Traditionally, information on population mobility has been gathered through national and local reports
such as census and surveys. Thus, traditional transport planning models, such as four steps and activity based
models, extensively rely on travel surveys (McNally, 2000; Bhat and Koppelman, 1999). However, surveys are
constrained by their important cost, inducing extremely low-update frequency and lack of temporal variability. In
particular, surveys generally report one day of trips per individual, which is not sufficient to capture all the tempo-
ral variations in mobility (e.g., seasonality, weekly patterns). In recent years, public transport operators have been
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collecting daily travel card data (Pelletier et al., 2011; Ma et al., 2013; Munizaga and Palma, 2012). In most urban
areas, multiple transport operators are in charge of public transport. Each operator possesses mobility data on its
own transport network. Therefore, transport operators usually lack a global picture of real-time travel flows on
multimodal transport networks. Such knowledge could be a valuable asset for transport planning, to evaluate the
impact of transport policies on urban mobility (e.g., evaluate the evolution of the market share of public transport
against private vehicles), predict the effect of perturbations (e.g., congestion, public transport interruption, public
transport strikes, road closure, meteorological events etc.) and design new mobility services from the analysis of
urban mobility.
On the meantime, mobile phone data has become the largest mobility data source as most individuals carry their
mobile phone everywhere through their daily trips and activities. In particular, the pervasiveness and high pen-
etration rates of mobile networks enable mobile phone operators to collect unprecedented quantity of up-to-date
geolocation data from Call Detail Records (CDR), across all categories of population, at no additional cost. Sev-
eral research works have described the potential of mobile network data for mobility analysis (Chen et al., 2016;
Gadziński, 2018; Blondel et al., 2015). The most popular research areas are human mobility models (Gonzalez
et al., 2008a; Pappalardo et al., 2015; Ni et al., 2018), travel demand modeling (Toole et al., 2015; Wang et al.,
2013; Huang et al., 2018), itinerary reconstruction (Asgari et al., 2016; Becker et al., 2011), traveler behavior un-
derstanding (Calabrese et al., 2013; Wang et al., 2018; Ahas et al., 2010), population density estimation (Bachir
et al., 2017; Khodabandelou et al., 2016, 2018), transport mode detection (Wang et al., 2010; Bachir et al., 2018),
traffic state estimation (Demissie et al., 2013; Dong et al., 2015), passenger flow estimation (Zhong et al., 2017),
anomaly detection (Pang et al., 2013), mobility and activity patterns extraction (Jiang et al., 2017; Chen et al.,
2014). In addition, mobile network data offer the possibility to build day-to-day Origin-Destination (OD) matrices
of flows (Çolak et al., 2015a; Iqbal et al., 2014; Alexander et al., 2015; Toole et al., 2015; Wang et al., 2010; Berlin-
gerio et al., 2013a; Di Lorenzo et al., 2016; Ni et al., 2018; Aguiléra et al., 2014; Calabrese et al., 2011). Therefore,
such data represent an inexpensive and up-to-date supplement to travel surveys and provide large-scale multimodal
mobility information to complement data collected from travel cards. Still, mining meaningful mobility insights
from mobile phone geolocation raises new technical challenges such as computational efficiency, data processing,
integration, evaluation, validation and user privacy.
In this work, we present an end-to-end model for the estimation of dynamic Origin-Destination matrices by trans-
port mode using mobile network data. An earlier version of this work briefly presents the transport mode inference
model (Bachir et al., 2018). The main contributions of our work are listed below.

• This is the first study combining five different types of real datasets for mobility, collected from multiple sources,
over long periods. The datasets involve hundreds of millions mobile network trajectories over two months, multi-
modal transport networks, census data, detailed travel survey information and one month travel card data. The
case study is the Greater Paris region, which is a 12000 km2 wide area with more than a thousand towns. In
addition, the density of Greater Paris transport networks is among the highest worldwide, with an heterogeneous
density between Paris and its suburb. Thus our model is generalizable to both high density and low density areas.

• Our transport mode inference model is semi-supervised as we rely on a small subset of labeled data for Base
Transceiver Stations. Although mobile network geolocation is sparse and noisy, the mode inference is robust
to both low data collection frequency and imprecise geolocation. A trajectory has a minimum of two distinct
positions and no data filtering is required. Thus this is the first method identifying road and rail transport modes
for all mobile network trajectories.

• The model estimates total flows for road and rail modes over time (e.g., per day, per hour), with Origin Destina-
tion aggregated at different spatial scales. From our results, we analyze the recent mobility patterns and modal
shares in the region.

• For performance evaluation, extensive validation tests are conducted against two external transport data i.e.,
survey and travel cards. Estimates are validated with high Pearson correlations, reasonable absolute differences
with the survey and small errors with travel cards data.

2



In Section 2, we review the literature on mobile network data, transport mode detection and OD matrices. The
mobile network data and the case study are described in Section 3. Data pre-processing and transport mode infer-
ence are detailed in Section 4. The transport mode of trajectories is inferred through a two-steps semi-supervised
model which identifies the trip mode among rail or road usage. Each trajectory is represented as a sequence of
visited locations on the mobile network. During the first step, a clustering algorithm is applied to mobile network
locations to determine their transport mode. The second step is the Bayesian inference of transport probabilities
associated to trajectories. The OD matrices of flows are thus generated for both transport modes. As the number
of mobile phones is limited by operators market share, mobile phone flows are rescaled to the total population
with expansion factors using census data. In Section 5 we summarize our main results. Finally, we perform the
validation study against household travel survey and travel card data in Section 6.

2. Literature

In the past decade, several works addressed mobility related topics using geolocation data collected from
smartphones and mobile networks. Two types of mobile network data have been described so far: communication
records such as Call Detail Records (CDR) and mobile network records. The following section describes the
traditional mobile network data, followed by a review of previous works on transport mode detection and Origin-
Destination matrices estimation. In particular, we highlight limitations in past studies and provide comparison with
our methodology.

2.1. Mobile Network Data Types

The first mobile network data type is communication events, or active events, used by mobile phone providers
for billing purposes. Such data are traditionally collected in the CDR format and have been used in several mobil-
ity studies (Jrv et al., 2014; Calabrese et al., 2013; Dong et al., 2015). The CDR report communications between
phones, including calls (i.e., voice communications, unanswered calling attempts), text messages and sometimes
Internet usage. Each record contains the anonymized ID (aimsi) of the caller, and optionally of the callee, a times-
tamp with a duration, the ID of the telecommunication equipment (cell ID) connected to the device and the type
of record i.e. incoming or outcoming, voice or text etc. The second data type is network records which are gen-
erated from an interaction between a device and the mobile network (Calabrese et al., 2015). Several records can
be produced during a call or when the phone is not being used. The phone is said to interact ‘passively’ with
the network while ‘active’ communications are collected in the CDR. Generally, network records have a higher
frequency compared to CDR. Still, the sampling rate can vary depending on operators needs, material resources
and legislation. In addition, mobile operators can combine CDR and network records to obtain a greater collection
frequency. Such data is named Data Detail Records (XDR) (Graells-Garrido et al., 2018) or sightings (Chen et al.,
2016; Wang and Chen, 2018) or signaling data (Huang et al., 2018).
When a device connects to the mobile network, it is located inside a signal area of a Base Transceiver Station
(BTS). Such an area is called a network cell. Mobile phone positions are commonly approximated at the cellular
scale which is coarse, with radii varying from hundred meters to several kilometers. Mobile network geolocation
can have a finer-grained spatial resolution through triangulation (Calabrese et al., 2013; Wang and Chen, 2018;
Alexander et al., 2015; Jiang et al., 2017). Triangulation requires signal frequencies of at least three nearby anten-
nas to estimate the coordinates of a device. In addition of being resource expensive, triangulation usage is severely
restricted in several countries to protect users’ privacy. Consequently triangulation remains a limited practice
worldwide.
In our work, we process mobile network geolocation from CDR and Location Area Updates (LAU) in France,
where triangulation is prohibited. A record is retrieved at the beginning and end of a call, when a text is sent or
received, when a data session starts and ends and when cellphones change their Location Area. Details on the
mobile network data are provided in Section 3. (sightings)
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2.2. Transport Mode Detection
Few research has been conducted on transport mode detection with mobile network data. Previous methods

have employed map-matching on transport networks (Yuan et al., 2010; Asgari et al., 2016) and supervised learning
algorithms (Gonzalez et al., 2008b; Reddy et al., 2010), which became popular initially with GPS data. Contrary
to GPS positioning, mobile network geolocation is coarse, noisy and sparse. Two consecutive geolocation can be
separated by long distances (from hundred meters to kilometers) and long time periods (ranging from seconds to
hours). Consequently, mobile network trajectories are an imprecise and incomplete representation of users’ real
paths. Thus, traditional methods for transport mode detection implemented for GPS data are difficult to transpose.
On the one hand, map-matching requires a substantive number of positions to find users’ routes. Hence such
technique is hardly generalizable to all mobile network trajectories which may contain a few geolocation points.
On the other hand, supervised models require training datasets with transport labels. Transport modes are either
annotated manually, which is a costly task, or collected from mobile applications where users provide their travel
information. Supervised models are thus constrained by the small number of labeled samples. Mobile network
trajectories are unlabeled regarding transport modes. A transport classification of such data requires unsupervised
or semi-supervised approaches. Among the literature on transport mode detection, few studies attempted unsuper-
vised learning. Biljecki et al. (2013) calculated a transport score between consecutive GPS traces using boolean
conditions on speed, distances to transport network and previous mode. Still, this work lacked a performance
evaluation. Larijani et al. (2015) and Aguiléra et al. (2014) used indoor base stations inside Paris underground to
identify underground flows from CDR. No additional modes were addressed in these works. Wang et al. (2010)
used triangulated CDR from Boston area U.S., to identify two transport modes, road and public transport. Authors
estimated Origin-Destination flows and applied a k-means clustering on travel times, followed by a comparison
with Google travel times. Still, CDR frequency induces important incertitude and delay on start and end travel
times of CDR trips. Consequently a device may not be detected as traveling when the real trip begins and ends.
Moreover the presented approach was applied on one single Origin and Destination (OD) which is not sufficient to
validate the method. In dense urban areas, travel times can be affected by traffic states (e.g., rush hours), transport
incidents (e.g., delayed train), and can be identical for several modes, depending on the OD.
In our work, we combine clustering and Bayesian inference to identify two transport modes, road and rail, for
all mobile network trajectories in the Greater Paris. Trajectories are unlabeled as the real transport mode of each
individual trajectory is unknown. To compensate this issue, we have extracted transport labels (road and rail) for a
subset of mobile network areas. Consequently we consider our method as semi-supervised. Due to the absence of
individual ground truth, a performance evaluation on individual trajectories is impossible. Instead, we perform a
validation by comparing our estimated transport flows with two external datasets i.e., travel survey and travel card
flows. Details on our transport mode identification model are provided in Section 4.

2.3. Origin-Destination Matrices
Mobile network data have been used to derive time-variant and pervasive OD matrices for large populations.

Common applications are the estimation of travel demand (Wang et al., 2013; Toole et al., 2015; Huang et al.,
2018), the evaluation and planning of traffic (Demissie et al., 2013; Dong et al., 2015), the identification of optimal
locations for new transport routes (Berlingerio et al., 2013b), the determination of trips purposes (Alexander et al.,
2015) and of weekly travel patterns (Calabrese et al., 2011), studying the effects of urban facilities and transport
access on mobility (Ni et al., 2018), to name a few. Past studies on OD matrices constructed with cellular data
share a common methodology. The first step is to identify cellphones trips. This is traditionally done by segmenting
‘stay’ records and ‘moving’ records. In past studies, segmentation algorithms compare the duration and distance
between consecutive points to some thresholds (Wang et al., 2013; Jiang et al., 2013; Toole et al., 2015). The
second step is the identification of the origin and destination of each trip, generally first and last visited cells. To
form the OD matrix, trips are grouped by origin-destination and departure time. The last step is OD flows rescaling,
converting mobile phone flows to total population flows.
Recent studies employed CDR from Dahka, Bengladesh (Iqbal et al., 2014), Boston and San Francisco, U.S.
(Wang et al., 2012), Singapore (Jiang et al., 2017), triangulated sightings from Boston, US (Çolak et al., 2015b;
Alexander et al., 2015) and XDR from Santiago, Chile (Graells-Garrido et al., 2018). For Dahka, OD flows were
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first generated at the tower-to-tower level, a tower being a base station. The matrices were converted to the node-
to-node scale on road networks. Each road node obtains an increment vote when a record occurs at a nearby
tower. The tower-to-node conversion rule attributes the road node with highest vote over one month for a given
phone. Flows were up-scaled using an optimization algorithm minimizing the difference with traffic counts. In
our opinion, the tower-to-node conversion is unpractical for regions having high density of multimodal transport
networks due to mobile networks coarse granularity. In other studies, OD flows are traditionally aggregated at
the same scale as census and survey units. The state-of-the-art rescaling is performed by multiplying flows with
expansion factors (Çolak et al., 2015b; Alexander et al., 2015; Jiang et al., 2017). For each user, the home location
is identified as the location of longest stay duration during night time. Expansion factors are calculated as the ratio
between census population and number of mobile phone subscribers living in the same area.
To the best of our knowledge, only the work of (Graells-Garrido et al., 2018) estimates OD matrices with transport
modes using XDR. This study proposes an inference model for rail, car, bus, rail+bus and pedestrian modes at the
city level, for commuters in Santiago, Chile. The model inputs a matrix of visited BTS frequencies (columns) for
users (rows). The mode inference is based on a non-negative matrix factorization followed by k-means clustering.
The study compares transport share from the XDR to the ones from travel survey. In the results, 2% of XDR trips
are identified as pedestrian compared to 23% in the survey. Although the model makes strong assumptions on the
pedestrian mode i.e., trips within a small distance from home and work, the results suggest that tracking walkers
on mobile networks may be infeasible.
For our work, OD matrices are constructed with mobile network data for the Greater Paris (see Section 3). The three
state-of-the-art steps, namely segmentation, origin-destination identification and rescaling are successively applied.
Details for each step are provided in Section 4. Our approach shares a few similarities with the one of (Graells-
Garrido et al., 2018) despite initial differences in data type and pre-processing. Both approaches for transport mode
inference are semi-supervised, involving a subset of labeled base stations. Still, Graells-Garrido et al.’s model is
different from ours on many aspects. We focus on three main dissimilarities. First, Santiago OD flows are generated
for commuting trips, i.e., between users home and work places, which are not representative of the full spectrum
of daily activities. Meanwhile our study identifies the mode for all trips involving all activities in order to estimate
total OD flows per mode. Second, the Santiago model is static in time. The estimated modal shares correspond to
the full observation period i.e., several weeks. On the contrary, our model is dynamic over time and generates OD
flows per mode for any time slot resolution and thus can be used for real-time applications. Last, Graells-Garrido
et al.’s estimates from 2016 are compared to the travel survey from 2012 using Spearman correlations and absolute
differences. The study lacks a performance evaluation with ground truth data over an identical period. Our model
performance is assessed through several indicators (confidence intervals of transport probabilities, modal balance
index, robustness) and a detailed validation study. Our estimated OD flows are extensively compared against survey
flows for different spatial scales. Eventually, we calculate errors with one month travel card flows.

3. Case Study Data

In this work, we process two-months of mobile network geolocation data from all subscribers of a specific
mobile providers, living in the case study region. Our mobility study focuses on the Greater Paris which is among
the densest areas in transport networks worldwide. In this section, we present the raw mobile network data,
including its spatio-temporal characteristics. Then we describe the case study region and the different spatial
scales used for the mobility analysis.

3.1. Mobile Network Data

Our main data are mobile network records (see Table 1) representing billions of rows each day (Terabytes).
The mobile operator providing the data has a market share of 11.7% in France, at the time of the study. Records
are collected for the Greater Paris region over a two months period during spring. Records are produced at the
start and end of voice calls, and every time a message is sent or received. Data records are generated at the start
and end of 3G and 4G data sessions (i.e., IMSI attach/detach). When a mobile phone changes Location Area
(LA), a data record is generated from a Location Area Update (LAU), occurring for mobility management of
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Table 1: Example rows for our mobile network records

User ID Timestamp Sector ID Type

9221959679262440000 2018-06-01 20:49:01 1500 Start Voice
9221959679262440000 2018-06-01 20:55:00 3452 End Voice
9221959679262440000 2018-06-01 21:13:05 4708 Data
9221959679262440000 2018-06-01 21:34:30 4708 Text

Figure 1: Tri-sector base station with three signal
directions and nine overlapping cells

Figure 2: Classic voronoi
centered on base stations

Figure 3: Our voronoi centered
on mobile nework sectors

the mobile network. Location areas contain several base stations and are wide from several kilometers. At last,
periodic location updates are recorded each 30 minutes. Such location updates occur in order to optimize the speed
of signal transmission from the network in case of a new communication. With data records, the time interval
between two distinct consecutive records decreases from several hours to a few minutes (4 min in median and
55 min in average). Although the LAU are passively generated, the data frequency remains moderate and is still
dependent of the mobile phone usage i.e., when devices are being used (calls, sms).
In addition, mobile phone providers have no access to GPS coordinates of the devices. One way to estimate the
coordinates of a mobile phone is to use triangulation. Yet this practice is currently unauthorized in France, except
for emergency calls and authorities demands, as it is considered to bypass user consent and privacy. Instead, we use
the raw geolocation of mobile phones on the mobile network. Each record is associated to a coarse signal area of the
mobile network, traditionally a cell, surrounding a base station (see Fig. 1). Although mobile phones are located
near base stations, it is extremely rare to encounter devices positioned exactly at the base station coordinates.
Mobile phones can be anywhere inside the cells. Mobile network cells are represented by circular shapes with
radii ranging from a hundred meters in congested areas up to several kilometers in low density areas. Each base
station is equipped with several antennas projecting several cells toward different directions. Cells constitute a
multitude of overlapping areas. Consequently, we pre-process raw geolocation in order to merge overlaps. In order
to obtain distinct non-overlapping areas, we use the direction angle of the antenna to create separate subdivisions
around the base stations per signal direction. The resulting partitions are called mobile network sectors. Each
record is associated to its corresponding sector position. In the literature, mobile network cells are sometimes
represented as voronoı̈ areas centered on base stations (see Fig. 2). For our case study, we rather use sectors
which grant a finer spatial scale, as we have in average three sectors per base station. Therefore, we create sectors
voronoı̈ (see Fig. 3). Sectors centroids are calculated as the barycenter of cells centroids from the same sector.
Greater Paris sectors have a median area of 38 m2, an average area of 386 m2 and a standard deviation of 2570 m2.
Although mobile network geolocation is sparse, coarse and noisy, our data have higher spatio-temporal precision
than classic CDR and are compliant with data legislation.
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3.2. Case Study Region

This work focuses on the case study of the Greater Paris region which has 12 millions inhabitants and spans
over 12000km2. Different spatial scales are provided in the census, travel survey and mobile phone data. The
spatial resolutions used for our study are presented in Table 2. The Greater Paris is subdivided into administrative
areas of different levels. The three coarser areas are the city center formed by Paris, the first suburb ring and the
second suburb ring. The region contains 8 departments. Paris corresponds to one department, the first ring consists
of three departments while the second ring groups 4 departments. Rings and departments are represented in Fig.
4. In addition, the Greater Paris has 100 cantons and 1276 postcodes represented in Fig. 5. Postcode areas are the
smallest administrative territorial division in France. The region benefits from dense transport networks, including
several public transport facilities and a high density of roads. In total there are 5 overground lines (RER), 16
underground lines (metro), 9 tramway lines and 8 train lines (transilien). The road network spans over more than
1300 km, including 450 km of highspeed roads.

Table 2: Spatial scales and characteristics of spatial units in the Greater Paris.

Scale name Nb. of units Notations Area range Provider

Rings 3, including Paris CC, R1, R2 102 − 104 km2 Census & Travel survey
Departments 8, including Paris CC, D2,...,D8 102 km2 Census & Travel survey
Cantons 100 z1,z2,...z100 101 km2 Census & Travel survey
Postcodes 1382 None 1 − 101 km2 Census
Mobile Network Sectors 7859 S 1,S 2,...,S n 101 − 102 m2 Mobile Operator

Figure 4: Greater Paris region for rings and departments scales Figure 5: Greater Paris region for cantons and postcodes scales

4. Method

4.1. Overview

In this section, we present our method for OD flows estimation per transport mode using mobile network data.
The model workflow is shown in Fig. 6 below. The first step of the model is the collection of the mobile net-
work data presented in Section 3. The geolocation scale on the mobile network corresponds to mobile network
sectors, described in Section 3.1. Anonymized mobile network records are pre-processed to generate trajectories
as sequences of sectors, see Section 4.2. Then, we successively construct sectors features (see Section 4.4) and
extract sectors transport labels (see Section 4.5) using transport networks. In this study, we perform a bi-modal
separation between road and rail trips to infer transport flows. The mode inference is two-fold: we first perform
clustering on mobile network sectors (see Section 4.6) followed by Bayesian inference used to calculate the trans-
port probabilities for trajectories (see Section 4.7). The essence of the mode inference is that the mobile network
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trajectories are decomposed in order to learn the most probable transport mode from each record without the need
of the complete real itinerary. Each time a mobile phone event is recorded, one knows the location of a device on
mobile network sectors. The clustering aims at producing clusters of sectors grouped by transport usage. This step
is equivalent to a transport land-use partitioning of the mobile network. Using a small labeled subset of sectors
(e.g., base stations inside train stations, near highways etc.) we derive transport mode probabilities per cluster. A
transport mode probability is assigned to each sector, depending on its cluster. Then, Bayesian inference is applied
to each anonymized trajectory. The prior transport mode probability is derived from the travel survey and each
newly observed record updates the prior. For each trajectory, the posterior probability is computed and the mode
with the highest probability is retained. Once transport modes are obtained, we construct modal OD matrices of
flows (see Section 4.8). To evaluate the model performance we use several evaluation metrics, presented in Section
4.9. Results are provided in Section 5 followed by validation against travel cards and travel survey in Section 6.
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Figure 6: Workflow of the model for construction of OD matrices per transport mode

4.2. Trajectory Pre-Processing

Anonymized raw data are collected and pre-processed by the mobile phone provider. First, the operator filters
oscillations identified as ‘impossible jumps’ (Wu et al., 2014). A mobile phone with three consecutive records
detected in cells ’A’, ’B’ and back in ’A’ (i.e., ’ABA’) is assigned to position ’A’ if the inter-event interval is
below a certain time threshold (e.g., ∆t ≤ 60 s) and the speed is above some threshold (e.g., ∆v ≥ 150 km/h).
Second, a smoothing algorithm is applied to strengthen noise reduction. Raw geolocations are smoothed with
a weighted moving average, using the technique of (Csáji et al., 2013). Trajectory smoothing is followed by
trajectory segmentation, also based on two conditions on speed and time. Stay points are grouped according to a
speed threshold ∆v < 10 km/h and an elapsed time threshold ∆t > 15 min. Thus, a device is considered as non
moving if the elapsed time between the first and last stay points lasts several minutes, with a low speed. Records
not fulfilling this condition are categorized as moving points. As noise reduction and trip segmentation are applied
prior to the authors work, these steps are not further detailed in this study. After segmentation, moving points are
grouped together to form a trajectory corresponding to one trip. For a moving device u, a trajectory is defined as a
sequence of visited sectors locations: T u

j = {(S 0, t0), ..., (S l, tl)}, where j is the trajectory index, (S , t) is the position
recorded at timestamp t and S = (x, y) are the centroid coordinates of the visited sector. For this study, 360 millions
trajectories are constructed from 2.4 million anonymized mobile phones during two months. Trajectories with at
least 2 distinct moving positions are retained, since a single moving point could be noise. When comparing results
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with the travel survey, we select users living in the Greater Paris region using their home location. Home locations
are identified using the cells where phones are detected the most during night time.

4.3. Feature Construction with Transport Networks

A trajectory is a sequence of visited sectors for which we aim to find transport mode probabilities. In this
perspective, we construct sectors features based on related spatial information between the mobile network and
transport networks. The road networks are collected from OpenStreetMap (OSM, 2018). In order to reduce the
computational cost of feature construction, we filter out residential roads. The rail infrastructures are retrieved for
underground, overground, tramway and train stations from the STIF Open Data platform (STIF, 2018). In addition,
high-speed rails are collected from OpenStreetMap. The following sectors features are constructed:

• d j,road: shortest euclidean distance between the centroid of sector j and the road network. The shortest distance
is the length of the segment formed by the sector centroid and the closest road point, which is perpendicular to
the tangent to the road.

• d j,rail: shortest euclidean distance between the centroid of sector j and the rail network.

• d j,station: euclidean distance between the centroid of sector j and the centroid of the closest train station.

• N j,road: number of roads intersecting sector j.

• N j,rail: number of rail lines intersecting sector j.

• A j,station: area of train stations calculated as the sum of train stations areas intersecting sector j, such as A j,station =∑
i Ai∩ j, where i is a train station.

4.4. Feature Normalization

The range of the sector features is impacted by the densities of transport networks and mobile networks, which
are both heterogeneous. Indeed, the city center benefits from a higher concentration of base stations with smaller
sectors and denser transport networks. On the contrary suburbs have larger sectors with transport networks of lower
densities. Thus, our strategy is to normalize each feature to unit norm, sector by sector, in order to reduce the bias
induced by urban density over transport usage. For each sector j, each feature d j,m (distance to transport network
for mode m) is divided by the sum of the distance features to all transport networks. Similarly each feature N j,m

(intersection with transport network for mode m) is divided by the sum of the intersection to transport networks,
for a given sector j. Train stations areas A j,station are divided by sector area A j.

d̂ j,m =
d j,m∑
i d j,i

∈ [0, 1] (1)

N̂ j,m =
N j,m∑
i N j,i

∈ [0, 1] (2)

Â j,station =
A j,station

A j
∈ [0, 1] (3)

where d j,m ∈ {d j,road, d j,rail, d j,station} and N j,m ∈ {N j,road,N j,rail}. The normalized features are noted d̂ j,m, N̂ j,m and
Â j,station, resulting from the normalization of features d j,m, N j,m and A j,station.

4.5. Label Extraction

For our work, we construct labels for a small subset of Base Transceiver Stations (BTS), see algorithm 1. First,
we assess whether BTS coordinates are within a small distance to transport networks (e.g., 100 m). The mobile
operator has the information whether the BTS are constructed outdoor or indoor. For indoor BTS, it is straight-
forward to infer that BTS matching rail networks are inside the underground or train stations and BTS matching
roads are inside tunnels. Meanwhile outdoor BTS cover most roads and overground rails. For outdoor BTS, a label
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is assigned in case there is only one mode in the sector (i.e., only roads or only rails). As a result, we obtain 4%
sectors with rail labels and 11% sectors with road labels, hence a total of 15% transport labels for Greater Paris
sectors. Initially, we use categorical transport labels i.e., {road, rail} on our subset of sectors. Still, categorical
transport labels are not appropriate for most sectors, such as outdoor equipment. Indeed, in dense urban areas such
as the Greater Paris, the classic scenario is to encounter several transport modes inside an outdoor sector because
of mobile networks coarse granularity. BTS constructed near roads or rail are not guaranteed to exclusively detect
only one transport mode. When several transport networks are present in a sector, users could have taken any
mode in this sector. Yet sectors may have a dominant mode. Thus, we aim to find continuous transport probabili-
ties P ∈ [0, 1] for all sectors, using the prior knowledge of the categorical transport labeled subset. The maximal
transport probabilities are P ∈ {0, 1} and are restricted to indoor labeled BTS.

Input: Voronoi areas of mobile network sectors ;
Coordinates of Base Transceiver Stations ;
Transport networks for roads, rails and train stations ;
Output: Labels of sectors
foreach sector j do

get the coordinates (x,y) of the BTS associated to j ;
calculate d as the shortest euclidean distance between (x,y) and the closest transport network ;
if d < ε then

if the BTS is indoor then
return the label corresponding to the closest transport mode

else
if j has one transport mode then

return the label corresponding to this mode
else

j is unlabeled
end

end
else

j is unlabeled
end

end
Algorithm 1: Label Extraction

4.6. Mobile Network Sectors Clustering

In order to find groups of sectors with similar transport usage we use an agglomerative hierarchical clustering.
Clusters are merged according to an euclidean distance-based ward criterion, which minimizes the sum of squared
errors. The optimal number of clusters is identified by minimizing the S dbw validity index (Halkidi and Vazirgian-
nis, 2001). The S dbw performs a trade-off between clusters compactness and separability. A small S dbw grants
smallest clusters dispersions and highest density of points around clusters centroids.
For each cluster k we calculate the score pk,m of a given transport mode m ∈ {rail, road} (see Eq. 4). Such score
is calculated as the proportion of labeled sectors in cluster k for a mode m, noted Lk,m, among the total number of
labeled sectors for mode m, noted Lm. The score pk,m is normalized by the sum of transport scores for cluster k, for
road and rail modes (see Eq. 5). This normalized score is the probability P(m|S i,k) ∈ [0, 1] of taking transport mode
m given a visited a sector S i,k belonging to cluster k. The probabilities satisfy the condition:

∑
j P(m j|S i,k) = 1.

Thus, the transport probabilities calculated for unlabeled sectors depend on their cluster membership. In addition,
we update the probabilities of outdoor labeled sectors using Eq. 5 while indoor labeled sectors have maximum (or
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minimum) transport probabilities in {0, 1}.

pk,m =
Lk,m

Lm
(4)

P(m|S i,k) =
pk,m∑
j pk, j

(5)

4.7. Inference of Trajectory Transport Mode
Bayesian inference is used to determine the main transport mode associated to a mobile phone trajectory.

The probability P(m|T u
j ) to take a transport mode m ∈ {rail, road} knowing the trajectory T u

j is computed for
each mobile phone trajectory. Trajectories are sequences of sectors {S 0, ..., S l} visited by mobile phone holders.
Therefore, we have P(T u

j |m) = P(S 0, ..., S l|m). An independence assumption between the probabilities to visit
sectors given the mode is formalized: P(S i, S i+1|m) = P(S i|m)P(S i+1|m). Thus, we have P(T u

j |m) =
∏l

i=0 P(S i|m).
The Bayes theorem is then recursively applied.

P(m|T u
j ) =

P(T u
j |m) ∗ P(m)

P(T u
j )

=
P(m)
P(T u

j )

l∏
i=0

P(S i|m) (6)

Using Eq.5 we inject P(m|S i) to Eq. 6:

P(m|T u
j ) =

∏l
i=0 P(S i)
P(T u

j )
P(m)1−l

l∏
i=0

P(m|S i) (7)

The prior transport probability P(m) is obtained from the travel survey and depends also on users’ home locations.
From the survey, we calculate average trip counts per user to obtain the prior for each department Di. The prior for

rail mode can be rewritten as: P(rail) = P(rail,Di) =
CTS

rail(Di)
CTS

rail(Di)+CTS
road(Di)

∈ [0, 1] and P(rail,Di) = 1 − P(road,Di),

where CTS
rail(Di) and CTS

road(Di) are the average rail and road trip counts in the travel survey (TS) for individuals
living in department Di. Finally we affect the mode obtaining the highest probability to each trajectory. Details of
the transport mode inference algorithm are provided in Algorithm 2.

Input: List of transport modes m ∈ {rail, road} ;
A trajectory T u = {S 0, ..., S l} for mobile phone u;
Survey transport probability P(m) given the home location of u ;
Output: Transport probabilities P(m|T u) ;
Dominant transport mode m for T u ;
foreach m do

foreach S i ∈ T u do get P(m|S i);
Calculate joint sectors probabilities ;
P(m|T u)←

∏l
i=0 P(m|S i) ;

Update the trajectory probability ;
P(m|T u)← P(m)1−l.P(m|T u) ;
Normalization ;
P(m|T u)← P(m|T u)∑

i P(mi |T u) ;
end
m* = arg max

m
P(m|T u)

Algorithm 2: Transport Mode Inference

4.8. Origin-Destination Matrices
After modal inference, we construct OD matrices of flows which represent the total number of trips per mode.

Each user trip corresponds to a cellphone trajectory on the mobile network. The sectors corresponding to first and
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last record of the trajectory are considered as the origin and destination of a trip. A matrix is a 3-dimensional array
noted F = ( fo,d,t), such as an element fo,d,t is the number of flows from origin location o to destination location
d, for a given time-slot t. In particular we define respectively the total flows Ftot, total out-flows Fout and total
in-flows Fin as follows:

Ftot =
∑
o,d,t
o,d

fo,d,t (8)

Fout
o =

∑
d,t

o,d

fo,d,t (9)

Fin
d =

∑
o,t

o, j

fo,d,t (10)

The choice of the spatial granularity, for the aggregation of OD flows, is an important parameter which can affect
the accuracy of OD matrices. First, there exists an uncertainty on the detected origin and destination positions. This
uncertainty is caused by the potential delay between mobile phone use and the start or end of a trip. In addition, the
noise inherent to mobile network geolocation also contributes to inaccurate origin and destination positions. For
our matrices, we chose two levels of spatial aggregations: departments and postcodes. These scales are considered
coarse enough to reduce the errors on the origin and destination. For each mode and for each day, the department
OD matrix has 128 elements and the postcode OD matrix has 3.8 · 106 elements, considering the two ways of
travel.
In addition, our mobile phone data corresponds to users from one mobile phone operator only. Therefore, we
rescale flows up to the total population, using expansion factors (Alexander et al., 2015). Such expansion factors
are the inverse market share per area, calculated as the ratio of the total number of residents divided by the number
of mobile subscribers of the operator living in the same area. Population counts are obtained from the most recent
census. Subscriber home locations are identified as the area of longest stay duration during night time. The mean
and median expansion factors are respectively 9.9 and 8.6 for Greater Paris departments. For postcode scale,
mean and median expansion factors are 31.6 and 14.7. In Section 5 and Section 6 we present model results using
expansion factors calculated for departments.

4.9. Evaluation Metrics
In order to assess model performance, we use several evaluation metrics. First, we assess the separability

between transport mode probabilities, using confidence intervals. Second, we propose a new metric, the transport
mode Balance Index, to evaluate transport behaviors for round-trips. Third, Pearson correlation coefficients and
normalized root mean square error (NRMSE) are used during validation to compare our results to external data.

4.9.1. Confidence Interval
In order to measure the separability between rail and road modes, the confidence interval z∗ ⊂ [0, 1] of the

corresponding probability distributions is estimated. The transport mode of a trajectory is considered as uncertain
when transport probabilities are highly similar, the extreme case being a trip with identical probabilities (e.g.,
P(rail) = P(road) = 0.5). Uncertain mode trips have their probabilities falling into a certain range q ⊂ [0, 1].
The confidence interval of the transport probabilities distributions is z∗ = [0, 1] r q. With N(P ∈ q) the number
of uncertain trips and N(P ∈ [0, 1]) the total number of trips, we calculate the ratio α of uncertain trips over total
trips: α =

N(P∈q)
N(P∈[0,1]) . Then, q is found when 1 − α = 0.95.

4.9.2. Transport Mode Balance Index
In this study, we define a new metric: the transport mode Balance Index. This metric assesses whether travelers

performing round-trips take the same mode during both ways of their trip (e.g., leaving by road in the morning
and coming back by road in the evening, for a pair of locations). This index constitutes a coherence indicator for
the estimated transport modes. OD flows are filtered such as only mobile phones that traveled in both ways during
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the same day are retained. This index indicates whether traveling devices used the same transport mode every day
for round trips. Let A and B be a pair of locations, such as A , B. For each transport mode m, a certain amount
of mobile phones traveled from location A to location B, noted NA→B,m. The amount of mobile phones that came
back from B to A is noted NB→A,m. Thus, the transport mode Balance Index is defined as follows.

∆BI(A, B) =
NA→B,m

max(NB→A,m, 1)
−

NB→A,m

max(NA→B,m, 1)
∈ [−1, 1] (11)

where ∆BI = 0 iff all phones have taken the same mode for both ways, ∆BI = 1 iff all phones have switched from
rail to road and ∆BI = −1 iff all phones have switched from road to rail.

4.9.3. Correlation with external data
The Pearson correlation coefficient r is used to calculate the correlation between mobile phone data results,

noted x, and external data, noted y : r(x, y) =
COV(x,y)
σxσy

, where COV(x, y) is the covariance between vectors x and y,
and σx and σy are the standard deviations of resp. x and y.

4.10. Comparison with travel card data

The NRMSE is used during validation, in order to compare the estimated rail flows to travel card data:

NRMSE= 1
x̄i

√∑N
i=1(xi−x̂i)2

N where xi is the vector of daily rail outflow over N days, x̂i is the daily travel card outflow
over the same period, x̄i is the daily average travel card outflow and i is a postcode area.

5. Results

This section presents the main results obtained with our model. First, the results of the clustering on mobile
network sectors are reported in Section 5.1. Second, results on transport mode estimation obtained with Bayesian
inference are described in Section 5.2. Third, from the estimated OD matrices per transport mode, we analyze the
Greater Paris mobility patterns in Section 5.3.

5.1. Transport Clustering of Mobile Network Sectors

A clustering algorithm is applied on mobile network sectors from the Greater Paris, as described in Section
4.6. The mobile network is dynamic as the signal strength of mobile network equipments is continuously updated
for signal optimization and the number of base stations can also evolve in time. In this Section, we provide results
for the mobile network sectors configuration of one given month (April 2018). The S dbw minimization criterion
is used to determine the optimal number of clusters k. The minimal S dbw value is 0.305, achieved for k = 9. The
transport probabilities are calculated for each of the nine clusters and given in Table 3.

Table 3: Transport Mode probabilities and cluster size for k = 9

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9

Size 16.3% 7.04% 13.2% 19.9% 1.73% 2.25% 3.38% 17.4% 18.8%
PRAIL 0.651 0.949 0.639 0.191 0.350 0.896 0.557 0.400 0.027
PROAD 0.349 0.051 0.361 0.809 0.650 0.104 0.443 0.600 0.973
Main mode multimodal rail multimodal road multimodal rail multimodal multimodal road

Greater Paris sectors are represented on Fig. 7. Clusters are considered to be dominated by a mode when
the probability for this mode is significantly high, i.e. above 0.7. When there is no dominant mode, the cluster
is considered as multimodal, i.e. having both substantial road and rail mode usage. Clusters C1, C3 and C7
are multimodal clusters with a higher probability for rail while C5 and C8 are multimodal clusters with a higher
probability for road. Clusters C2 and C6 are rail dominated clusters. Eventually, C4 and C9 are road dominated
clusters. Clusters are equally present in the city center and the suburb, except for C2 and C6. Most sectors from
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these two clusters are located in the city center as the underground network is limited to Paris and its closest suburb
areas. At the time of this study, the mobile network of the Greater Paris region contains nearly 10% rail sectors,
39% road sectors and half of the sectors are multimodal. The rail mode is predominant among sectors from the
city center while the road mode dominates sectors from the suburb.

Figure 7: Sectors projected on the Greater Paris area (1) with a zoom on Paris (2). The color gradient gets a darker blue tone when the rail
probability is high. Lighter sectors have higher road probabilities.

5.2. Performance Evaluation of Transport Mode Inference

5.2.1. Trajectories Probabilities
Using Bayesian inference, we derive the transport mode probability distribution of trajectories (see Fig. 8). The

confidence interval for transport probabilities is z∗ = [0, 0.345] ∪ [0.645, 1]. This shows that 95% of all transport
probabilities are below 0.345 or above 0.645. The remaining 5% of trips, with probabilities outside the range z∗,
are categorized as uncertain mode. The transport mode can be uncertain when devices are detected in multimodal
sectors. As an example, the mode is uncertain for a device having the same number of records in sectors from C3
and C5 being multimodal.

Although half of sectors (52%) are considered multimodal, only 5% trajectories are categorized as uncertain.
The reason is that multimodal sectors still have a dominant mode in their transport probabilities i.e., either the
rail or the road probability is higher and probabilities are never identical. As a result, the transport probabilities
of trajectories are well separated given the confidence interval z∗. Here, we observe the strength of the mode
inference method through the decomposition of the trajectories into sectors. In case mobile phones are visiting
several multimodal sectors, a minimum of one rail sector, or one road sector, can discriminate the mode probability.
In addition, we assess the effect of the observed sectors compared to the influence of the prior, on the posterior
probabilities P(m|T ), see Eq. 7. Such probabilities are determined by two terms. The first term is P(m)1−l, where
l is the number of sectors in T . The second term is the product of the probability of the mode given the visited
sectors P(m|S i). After testing random values for P(m), the results for P(m|T ) remain unchanged by a factor 10−3.
Consequently, the term P(m) is not predominant in deciding P(m|T ) while the likelihood terms P(m|S i) determines
the posterior P(m|T ). Thus, the observed trajectory has a dominant effect on the transport probability compared
to any prior assumption, in the Bayesian inference scheme. This finding reveals that the model can be applied
in urban areas for which travel survey information might not be available everywhere, for instance at the country
level. The model can still be validated for a particular region benefiting from a survey.
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in function of sectors frequency

5.2.2. Balance Index of OD Flows
To further assess the performance of the transport mode inference, we calculate the Balance Index ∆BI for OD

flows, assessing whether the same mode is taken during round trips (see Fig. 9). Users that change mode for their
return trip are assumed to represent a small proportion of the population. Thus, we expect to have a reasonably low
amount of round trips with mode switch per OD. After calculation of ∆BI for each OD, we obtain an average and
median value both equal to 0 with a standard deviation of ±0.16. This reveals that, for 95% of OD locations, there
is less than 16% round trips where a mobile phone switched modes. As expected, the vast majority of devices used
the same mode for both ways of travel. After observing Fig. 9, we identify that non-zero |∆BI | values correspond
to OD with lowest flows i.e., having small number of trips (less than 1000 trips a month), although there is no
correlation between the two variables. This reveals that round trips having a mode-shift are found in areas with
fewest travelers.

5.2.3. Robustness of Mode Inference
Eventually, we assess the robustness of the mode inference to low frequency in mobile network geolocation.

First, we determine whether the actual number of observed sectors influence the transport probabilities. Thus, we
visualize P(m|T ) in function of the number of visited sectors ns in Fig. 10. The corresponding Pearson correlation is
0.22 showing there is a small correlation between P(m|T ) and ns. The average and median probabilities gradually
increase with the number of sectors. The probabilities converge to 1 for ns > 10. For ns ≥ 2 the range of
probabilities is above 0.8. showing that high transport probabilities can be obtained with few sectors i.e., few
records. Second, we select a subset of trajectories, such as ns ≥ 10 and randomly delete records until the median
value for ns i.e., n′s = 4. The same operation is also repeated until having only two sectors left i.e., n′s = 2. The
deletion of records at random enables to evaluate the effect of records frequency independently of the distances of
real trips, as longer trips generally benefit from more records. The variation between the probabilities is calculated
as ∆P = |P(m|T )ns≥10 − P(m|T )n′s |. For n′s = 4, the median and standard deviation for ∆P are respectively 0 and
±0.15, resulting in a mode changed for 5.1% trajectories, in total, over two months. For n′s = 2, the median
and standard deviation for ∆P are respectively 0 and ±0.25, resulting in a mode changed for 11.3% trajectories.
Consequently, the mode inference strategy appears robust to geolocation low frequency.

5.3. Analysis of the Greater Paris Mobility

5.3.1. Visualization of Top Transport Flows
Top passenger flows for rail and road modes are displayed in Fig. 11 and Fig. 12. The top rail passenger

flows involve an origin or a destination located in Paris. Top road passenger flows involve at least an origin or a
destination in the suburb, or Paris périphérique (the ring road surrounding Paris). In addition, we observe top rail
flows between Paris and the suburb in Fig. 13. Three long-distance arcs are visible and correspond to the three
directions for high-speed trains (Paris-Bordeaux, Paris-Marseille and Paris-Strasbourg). Inter-suburb rail flows are
depicted in Fig. 14. Two areas attract most suburb flows (La Défense and Saint-Denis).
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Figure 11: Top 100 rail passenger flows in the Greater
Paris (zoom on Paris and the close suburb)

Figure 12: Top 100 road passenger flows in the Greater
Paris, for trips having a distance d > 5 km

Figure 13: Top 100 rail passenger flows between Paris
and the suburb

Figure 14: Top 100 rail passenger flows in the suburb,
for trips having a distance d > 5 km

5.3.2. Temporal Patterns
Temporal patterns for transport flows are represented for a typical week, over a two month period, at the

department scale. Daily average rail and road flows are shown in Fig. 16 and Fig. 18. Flows are averaged per week
day, per start hour and per home department for rail mode in Fig. 15, and road mode in Fig. 17. For business days,
peak hours occur in the morning and early evening. A midday peak can also be observed at lunch time. Morning
and evening rail peaks are more balanced than road peaks. Rail morning peaks are slightly thiner and higher than
in the evening, this phenomenon being more visible in Paris (department 75). On the contrary the number of road
flows is higher in the evening, for any week day. The phenomenon is more pronounced for departments from
the second suburb ring (i.e. departments 77, 78, 91 and 95). This suggests that road users travel several times in
the end of the day. Unlike for rail mode, the road midday peak height is comparable to the road morning peak.
During week-ends, peaks are less visible. Compared to working days, there is a significant drop of mobility, more
pronounced for rail transport than for road flows. For rail mode there is a loss of 37% flows on Saturday and 52%
on Sunday. For road mode the overall mobility loss is about 12% on Saturday and 24% on Sunday.

6. Validation

Our estimates are confronted to two external datasets for validation. First, results are extensively compared
to the household travel survey from 2010 to obtain a global validation for transport OD flows at coarse scales.
Second, results are validated against public transport data, consisting of travel card counts per train stations during
one month. To ensure a correct validation between the different data sources, the data is processed to match the
same area and time period, as well as the same spatio-temporal scales.
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Figure 15: Weekly pattern for rail passenger flows per home department
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Figure 17: Weekly pattern for road passenger flows per home department
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Figure 18: Boxplot for daily average road
flows per home department

6.1. Comparison with the Travel Survey

The results with mobile phone data are provided for the period of April-May for the past year (2017) and
compared with the latest travel survey (EGT, 2010) of the Greater Paris region, for year 2010. For this comparison
study, we exclude week-ends and holidays, from the two datasets. The survey gathers responses from 43000
individuals among the 12 million residents of the Greater Paris. Transport modes are divided into two main
categories. The first category is motorized modes, including public transport (e.g. underground, tramway, bus) and
private vehicles (e.g. cars, motorbikes, taxi). The second category is unmotorized modes i.e, walk and bike.
In the Greater Paris, 1.5% of trips are realized by bike while 38.8% of trips are made by walkers, according to the
survey. In particular, 99% of walk trips are shorter than 2 km. As a result, walkers have short trip distances, in
addition to small speeds i.e., below 10 km/h. During CDR pre-processing, devices with low-speed are considered
as non-moving. Thus, chances are high for walkers to be either undetected or considered in a non-moving state,
hence not accounted in the travel flows. Besides, the double effect of large mobile network areas and geolocation
low-frequency (i.e., non-active phone), strengthen the risk of undetected non-motorized trips. Therefore we rather
use the CDR to estimate the total OD flows for motorized modes on roads and rails, which have higher speeds and
longer trip distances.
In what follows, we compare our results to the survey for rail and road flows. In this perspective, we group
underground, overground and tramway flows from the survey into survey rail flows. Similarly, private vehicles and
bus flows from the survey are aggregated into survey road flows. Our comparison with the survey is achieved in
three steps. First, we confront the total sum of transport flows in the region averaged per day and per hour. Second,
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we benchmark our estimated OD flows, between zones, to the survey OD flows. At last, we consider the average
number of trips performed each day per individual to compare the modal share per area.

6.1.1. Total transport flows
The total transport OD flows are estimated with our model, per day and per hour, for Greater Paris residents.

Flows are grouped by departure hour and averaged over all days for each hour. As a result, we obtain the average
transport OD flows per hour for a typical business day. Similarly, we collect the transport flows corresponding to a
business day from the survey. First, the Pearson correlations between survey and mobile phone flows per hour are
equal to 0.95 for rail trips and 0.97 for road trips. Therefore, the hourly patterns of a typical business day remain
identical for survey and mobile phone data for both modes, as observed in Fig. 19. Secondly, we compare the
absolute values for the sum of flows during 24 hours of a business day (see Table 4). In the year 2010, the survey
reported 6.0 million rail flows for a business day. After rescaling MP rail flows, the average rail flows obtained is

Table 4: Total flows per transport mode in the Greater Paris for a typical business day. Flows are calculated with mobile phones (MP)
before and after rescaling. In the column ‘Survey’ all road and rail trips from the 2010 survey are considered. In the column ‘Survey*’, we
filter short-distance trips i.e., shorter than 1.5 km in suburb ring 1 and shorter than 2.5 km in suburb ring 2 to cope with the heterogeneous
density and coarseness of the mobile network.

Mode MP (raw) MP (rescaled) Survey Survey* (filtered)

Rail flows 1227284 6383103 5999183 5843650
Road flows 2128750 11034581 18215180 11368597
Rail flows
Road flows 0.55 0.58 0.33 0.51

6.4 millions. Compared to year 2010, our results show a raise of +6.4% rail transport flows, during spring 2017.
Comparatively, the Greater Paris transport authority reported a +10.9% annual rise for public transport trips in
2016 compared to 2010 (Source: Île-de-France Mobilités 2017). The 4.7% difference between our results and the
transport authority estimates can possibly be caused by seasonal variations or by undetected mobile phones.
Meanwhile, after rescaling MP road flows, we find 11 millions road trips against 18.2 millions in the survey, for a
business day. This corresponds to 39% of road flows being undetected from the CDR for a typical business day.
Our findings reveal that a consequent part of road flows are undetected while our estimated rail flows are close
to the survey by a few percents. One possible interpretation for this phenomenon is that mobile network cells are
denser and smaller in Paris while the size of mobile network cells gradually increases in the suburb. Consequently,
a subset of CDR trips occurring in the suburb might be too short compared to the mobile network scale and hence
remain undetected.

Thus, we decide to filter trips shorter than 1.5 km in suburb ring 1 and shorter than 2.5 km in suburb ring 2
to cope with the coarseness and heterogeneity of the mobile network due to a heterogeneous urban density. As a
result, we obtain a total of 11.3 million survey road flows. In comparison, our estimates show a loss of 3% road
flows. For rail trips, filtering out the small-distance trips results in less than 1% difference. For the case study of
the Greater Paris, we believe this reveals that the inter-distance between train stations is higher than the filtered
distance thresholds. When comparing the difference of transport ratio Rail flows

Road flows , our results reveal a modal shift of
16% from road to rail mode since 2010, considering that small-distance trips are filtered out from the survey.
Compared to the survey, our estimates with CDR (see Fig. 19) reveal that flows during peak hours remained
relatively identical for the rail mode (−2% between 7-9 AM and −1% between 4-7 PM ) and have decreased for
the road mode (−9% between 7-9 AM and −27% between 4-7 PM). Meanwhile off-peak hours flows have increased
by 14% for rail mode and 5% for road mode between 9AM-4PM. In addition, we observe a rise of evening flows
between 7-11 PM by 48% for rail mode and 28% for road mode. Then, we compare the evolution of the transport
trends between the two surveys from 2010 and 2001. The 2010 survey has indicated that the number of road trips
has been decreasing during morning peak (- 8 % between 7-9 AM) while it has increased during off-peak hours (+
7% between 9AM-4PM) and evening peak time (+ 6 % from 4-7 PM) since 2001. Thus, our findings for off-peak
hour flows remain consistent with the trend announced in 2010. Meanwhile our results for 2017 suggest that road
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and rail flows span over a longer period during the evening.

6.1.2. Origin-Destination Flows
In addition, we estimate the OD flows for rail and road modes at the ring scale (see Fig. 20). The Pearson

correlation for OD flows are respectively 0.94 and 0.97 for rail and road flows. The absolute differences are
calculated between our estimates and the survey in Table 5 to supplement Fig. 20. From our results we observe a
raise for rail flows for trips inside Paris, trips from ring 1 to ring 1 and trips between Paris and ring 1. The highest
raise for the rail mode concerns flows with an origin and a destination in ring 2 which are multiplied by a factor
2.5. Note that trips starting and arriving in suburb rings may pass by Paris. For the road mode, flows have been
considerably reduced in Paris and between Paris and ring 1. However, road flows starting from or arriving to ring
2 have increased. Yet, as the road flows contain both private vehicles and public transports for bus mode, it is
unclear whether public transports have increased or decreased. For instance multi-modal trips combining rail and
bus modes are common in the region e.g., bus-rail-bus, bus-rail etc.
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Figure 19: Daily pattern for survey and CDR flows during a business
day. We have filtered survey road trips shorter than 1.5 km in ring
1 and shorter than 2.5 km in ring 2 to cope with the heterogeneous
density and coarseness of the mobile network.
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Figure 20: Average daily OD flows estimated with the survey and
our model for road and rail modes between Greater Paris rings. We
have filtered survey road trips shorter than 1.5 km in ring 1 and
shorter than 2.5 km in ring 2.

Table 5: Absolute percentage difference on OD Flows between estimates and survey

OD Paris-Paris Paris-R1 Paris-R2 R1-Paris R1-R1 R1-R2 R2-Paris R2-R1 R2-R2

Rail +37 −17 −20 +20 +25 −23 −2 −5 +151
Road −72 −20 +73 −21 −2 +20 +47 +34 +27

6.1.3. Average day trips per person
The average daily trips per individual are calculated from the survey. The survey data is reported for 3 spatial

resolutions. The coarser scale contains the three rings (i.e., Paris, ring 1 (R1) and ring 2 (R2)). The intermediate
scale contains the eight departments. Paris forms its own department and the remaining departments are noted D2
to D8. The smaller survey scale corresponds to a partition of the region into 100 canton zones noted z1 to z100.
In the survey, an individual i has a weight wi and reported ni,m,t trips for a mode m during a day t. The weights
wi are given in the survey. Such weights are assumed to be calculated with socio-demographic information (e.g.,
age, sex, job type, home address). The weights are used to rescale the subset of surveyed individuals to the entire
population such as the sum of weights equals the total residential population. The function associating a home area
j given an individual i is noted H such as H(i) = j. For the survey, the average number of trips per resident of an
area j, for a mode m, is noted CTS

m ( j) (see Eq. 12). In addition, for each mobile phone i, we calculate the number
of trips ni,m,t per mode m for each day t during a period of T days, considering a total of U mobile phones. For a
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mode m, the average number of trips per day and per mobile phone, with a home address in area j, is noted CMP
m ( j)

(see Eq. 13). At last, the ratio between the average road trips over the average rail trips per person in an area j is
noted Cratio( j).

CTS
m ( j) =

∑k
i=1 wi · ni,m∑k

i=1 wi
where ∀i H(i) = j (12)

CMP
m ( j) =

U∑
i=1

T∑
t=1

1
U

1
T

ni,m,t where ∀i H(i) = j (13)

Cratio( j) =
Croad( j)
Crail( j)

(14)

The Pearson correlation coefficients are calculated between CTS
m ( j) and CMP

m ( j) using different spatial scales for
the home area j (i.e., rings, departments and cantons). Results are shown in Table 6.

Table 6: Pearson correlation coefficients between the travel survey (TS) and mobile phones (MP) on average day trips per individual.
Results are given considering different spatial scales for the home. The scales are the rings, the departments, the cantons, and cantons with
suburb R2 filtered out.

Home Scale for j r(CTS
Motor,C

MP
All ) r(CTS

Road,C
MP
Road) r(CTS

Rail,C
MP
Rail) r(CTS

Ratio,C
MP
Ratio)

Rings (CC, R1, R2) 0.993 0.995 0.990 0.999
Departments (CC, D2-8) 0.751 0.960 0.986 0.978
Cantons (z1-z100) 0.466 0.931 0.874 0.764
Cantons (rR2) 0.669 0.951 0.933 0.901

Table 7: Daily average trips per individual calculated for business days (source: EGT 2010-Île de France Mobilités-OMNIL-DRIEA)

Home Area j
Travel Survey (TS) Mobile Phone (MP)

CTS
All CTS

Motor CTS
Rail CTS

Road CTS
Ratio CMP

All CMP
Rail CMP

Road CMP
Ratio

All population 4.16 2.45 0.61 1.85 3.03 2.10 0.80 1.30 1.62
Paris (CC) 4.37 1.93 1.11 0.83 0.75 1.94 1.22 0.72 0.59
1st Ring (R1) 4.03 2.25 0.61 1.64 2.69 2.07 0.80 1.27 1.60
2nd Ring (R2) 4.18 2.86 0.38 2.49 6.55 2.24 0.50 1.74 3.45

When comparing survey motorized trips to all CDR trips, the highest correlation (0.99) is obtained for the ring
scale, which is the coarsest. Meanwhile the smallest correlation (0.466) is obtained for the canton scale. When
filtering out the cantons from the suburb ring R2, a higher correlation is obtained (0.669). The most probable
cause of the lower correlation is a higher number of undetected trips in R2. A second possible explanation could
be a sampling bias in the survey induced by a lack of surveyed individuals in cantons from R2. The rail and road
modes achieve high correlations for all scales, ranging from 0.87 for cantons, up to 0.99 for rings. The obtained
correlations reveal that the average numbers of trips per individual, calculated across different geographic areas,
are consistent with the survey for road and rail modes.
The daily average trips per individual are provided at the region level and for the ring scale in Table 7. According
to the survey, Greater Paris residents performed a total of 4.16 daily trips in 2010, among which 2.45 trips are
realized using motorized modes. Meanwhile mobile phone users have an average of 2.1 day trips during spring
2017 (see table 7). For Paris residents, the daily average motorized trips for mobile phones users is identical to
the survey: CTS

Motor ' CMP
All . Compared to survey motorized trips (CTS

Motor), the value for mobile phones trips (CMP
All )

decreases for first and second suburb rings, respectively by −8% and −22%. Similarly, the daily average road trips
witness a loss of respectively −13.2% for Paris residents, −22.5% for R1 residents and −30% for R2 residents.
When comparing the average daily trips, we observe an increase of rail trips and less road trips compared to the
survey, as CTS

Rail < CMP
Rail and CTS

Road > CMP
Road. Although we are aware of undetected road trips, the results suggest
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an increase for rail transportation usage in the Greater Paris since 2010. In particular, we assume our results are
the most reliable for Paris residents for which CTS

Motor ' CMP
All . Paris results show a global modal transfer of 13% of

road trips in favor of rail transportation. Concerning the suburb, the results are biased by undetected trips, therefore
the modal share transfer rate remains uncertain. Still, it is possible to estimate a modal share transfer considering

6.2. Validation with Public Transport Data
Greater Paris travelers swipe their travel cards when entering public transport, yet it is not required to swipe a

second time when exiting the transport system. The validation dataset consists of daily entry counts of travel cards,
swiped when entering train stations, for one month data (May 2017). Our model generates OD matrices containing
daily and hourly rail flows between postcode areas, for the same month. Through this validation step, two datasets
obtained from different sources, namely mobile phone data and public transport data, are compared. The success
of the validation depends on the ability to conciliate the spatial and temporal scales from both datasets. Therefore,
train stations are aggregated per postcode in order to up-scale the validation data. The rail outflows, calculated as
the sum of travel card entry counts, is calculated for stations grouped by same postcode zone. Similarly, mobile
phone flows are aggregated per day and per origin location at the postcode scale. For each day and each postcode,
the daily outflows (i.e., the number of trips starting in the area) are obtained for both mobile phones and travel card
holders.
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First, Pearson correlation coefficients for daily rail outflows are calculated between our estimates and the validation
data (see Fig. 21). The median correlation obtained is 0.98. The minimum correlation value is 0.68, appearing
as an outlier for ring 2. This value corresponds to a major leisure area in the second ring, containing Disneyland
and the largest shopping center of the region, with two train stations. Disneyland station serves mostly highspeed
trains, yet the validation dataset does not account for highspeed train tickets, which are different from travel cards.
Highspeed train passenger flows are accounted in our estimates while not accounted in the validation data, which
explains the lower correlation for this postcode zone. The second outlier in the second ring corresponds to the zone
with the biggest airport (roissy charles de gaulle) which also has a highspeed train station. Still, the corresponding
correlation of 0.93 remains high.
Second, a linear relation is found between mobile phone rail outflows and travel card outflows (see Fig. 23).
Consequently we apply linear regression models between the two datasets. The lowest NRMSE values are obtained
after applying several linear regression models, one model being applied to each postcode area. The median
NRMSE value is 0.062 (see Fig. 22). In comparison, with the state of the art rescaling method based on expansion
factors, the median NRMSE value is 0.346. Here, the calibration with travel cards, aggregated per postcode zone,
enables to account for bias specific to each train station. The main bias is caused by the existence of two transport
operators in the Greater Paris. Consequently, travelers might need to swipe their travel cards more than once if
they change lines. Thus, validation counts contain both departures and transfers. Meanwhile our OD estimates
account for rail flows starting at the station. A second bias is fraud rates (i.e., travelers not swiping any travel card),
fluctuating among train stations. At last, the travel card counts are not a perfect validation data as some technical
problems and anomalies can affect the precision of this data. Still, the validation results regarding correlations and
NRMSE show the performance of our model at the postcode scale for daily rail flows.
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7. Discussion

In this paper, we propose the first methodology to estimate daily Origin-Destination flows of the total popula-
tion, for rail and road transport modes, at the intra-region level. Mobile network geolocation, transport networks
and travel survey information are jointly used in our transport mode inference model associating a mode to mo-
bile network trajectories. The modal OD flows are rescaled using expansion factors calculated with both mobile
network data and census data. The resulting OD matrices of transport flows present high correlations with travel
survey flows and modal share, with reasonable absolute differences, despite minor dissimilarities since 2010. Al-
though similar mobility trends are observed compared to the survey, such as a rise of flows during off-peak hours,
a different pattern has also been revealed by our study which is the spreading of the evening-peak over a longer
period, for both modes. Yet it remains unclear whether this observation is due to the difference of year between
the datasets or to a seasonal effect, as our mobile phone data corresponds to two months in spring. In addition,
our results unveil a raise of the rail transport mode usage for inter-ring trips (i.e., Paris-Paris, R1-R1, R2-R2).
Meanwhile, we report an increase of road trips starting from or arriving in the farthest suburb (R2), given trip dis-
tances greater than 2.5 km. Still, the proportion of private vehicles and bus transportation involved in this increase
remains unknown. To justify the growth in rail transport usage in the region we formulate two hypothesis. One is
the construction of new transport lines in the region e.g., six new tramways and two rail lines expansions (M4 and
RER E). A second hypothesis is the adoption of a unique fare for travel cards since year 2015, which may have
encouraged public transport usage in the region.
For the validation with travel card data, we obtain both high correlations and small NRMSE. Compared to the
state-of-the-art rescaling method, the validation error is reduced after calibrating the estimated rail outflows with
the travel card outflows through regression models. This step is necessary to account for several bias in the travel
card data i.e., pass-by flows, fraud rates and highspeed train tickets not accounted. The extensive comparison of
our results with these two external transport datasets verifies the validity of our method at different spatial scales.
The survey enables to assess the model for coarser scales such as rings, departments and cantons while the travel
cards are used for postcode zones validation. The model can be reproduced by practitioners that have access to
mobile network data and is generalizable to other areas for which transport networks, census and travel survey are
available. In order to obtain the best results, mobile network data should be used jointly with travel surveys, public
transport data and traffic counts, whenever possible, for effective calibration of OD flows at finer granularities.
Although our results stand for a good model performance, our work has several open issues. The first limitation
of the method is that we consider a bi-modal separation into road and rail trips. This paper lefts aside the difficult
task of separating private vehicles from road public transport users, such as bus passengers. This requires to have
access to bus networks which are often shared with car routes. In addition, non-motorized modes by bike and
walk are often preferred for short distance trips, thus those modes are hard to detect with coarse mobile network
geolocation. A second limitation of this work is that we associate one mode to each trip while in real life scenarios,
multimodal trips can occur. Detecting when users switch mode during their trip is a delicate task in reason of noisy
and coarse geolocation, and delayed times for start and end of a detected trip. Besides, these aforementioned issues
remain open challenges due to the lack of up-to-date validation datasets for bus, multimodal flows etc.
Despite open issues, the presented work has several applications such as the evaluation of the impact of a transport
policy on urban mobility, the determination of optimal locations for the construction of new transport infrastruc-
tures or studying the effects of particular events such as meteorological events, transport strikes, protests, sports
events e.g., world cups, Olympic games etc. In particular, the modal OD matrices estimated with mobile net-
work data could be used to strengthen traditional transport planing models such as the four step model during trip
generation, trip distribution and mode choice. Therefore, we believe this work will help the transport community
in planing travel demand, analyzing daily large-scale urban mobility, developing smart transport solutions and
encourage the collaboration between transport authorities and mobile phone operators.
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