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EMERGENCE OF HOMOGAMY IN A TWO-LOCI STOCHASTIC
POPULATION MODEL

CAMILLE CORON, MANON COSTA, FABIEN LAROCHE, HÉLÈNE LEMAN,
AND CHARLINE SMADI

Abstract. This article deals with the emergence of a specific mating preference pattern
called homogamy in a population. Individuals are characterized by their genotype at two
haploid loci, and the population dynamics is modelled by a non-linear birth-and-death
process. The first locus codes for a phenotype, while the second locus codes for homogamy
defined with respect to the first locus: two individuals are more (resp. less) likely to
reproduce with each other if they carry the same (resp. a different) trait at the first
locus. Initial resident individuals do not feature homogamy, and we are interested in the
probability and time of invasion of a mutant presenting this characteristic under a large
population assumption. To this aim, we study the trajectory of the birth-and-death process
during three phases: growth of the mutant, coexistence of the two types, and extinction of
the resident. We couple the birth-and-death process with simpler processes, like branching
processes or dynamical systems, and study the latter ones in order to control the trajectory
and duration of each phase.

Key words and phrases: Birth and death processes with interactions, multitype branching
processes, large population limits, mating preferences

MSC 2000 subject classifications: 60J80, 60J27, 37N25, 92D25.

1. Introduction and motivation

Assortative mating is a mating pattern in which individuals with similar phenotypes re-
produce more frequently than expected under uniform random mating. Such a reproductive
behaviour is widespread in natural populations and has an important role in the shape of
their evolution (see for instance [19, 16, 21] or the review [17] on assortative mating in ani-
mals). In particular assortative mating is expected to be a driving force for speciation, which
is the process by which several species arise from a single one [14]. Here we ask the ques-
tion of assortative mating emergence in a population: if at some point in time, one mutant
starts mating preferentially with individuals of the same type, while the other individuals
still choose their mate uniformly at random, can this mutant invade the population? A key
feature to answer this question is how the assortative mating mutation affects the total re-
production rate of individuals. The existence of a preference for a given phenotype is often
associated with a decay of reproductive success when mating with other phenotypes. As a
consequence, if the proportion of preferred individuals is low in the population, the assorta-
tive mating mutation may be detrimental because it decreases the total reproduction success.
Consequently, we expect that an assortative mating mutant will be able to invade only if its
choosiness is compensated by an increased number of potential mates or if the advantage
given by the preference is high enough.

In this work we aim at quantifying the conditions on the trade-off between advantage and
cost for assortative mating and on the phenotype composition of the existing population
needed for the mutation to invade the population. In order to reach this goal, we build
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a stochastic individual-based population model with varying size, which explores how the
relationship between increase in the number of mates and mating bias towards individuals of
the same type affects the long time number of individuals having mating preferences in the
population.

The class of stochastic individual-based models with competition and varying population
size we are extending have been introduced in the 90’s in [3, 9] and made rigorous in a
probabilistic setting in the seminal paper of Fournier and Méléard [11]. Initially restricted to
asexual populations, such models have evolved to incorporate the case of sexual reproduction,
in both haploid [22, 18] and diploid [6, 7, 20, 23] populations. Taking into account varying
population sizes and stochasticity is necessary if we aim at better understanding phenomena
involving small populations like invasion of a mutant population [4] or population extinction
time. Assuming that individuals initially have no preference and choose their mate uniformly
at random, we suppose that a mutation arises in the population: individuals carrying the
mutation (denoted P ) have a higher (resp. smaller) reproductive success when mating with
individuals of the same (resp. different) phenotype than individuals without the mutation.
We study under which conditions on the parameters (birth and death rates, competition,
mutational effects, initial population state, ...) the mutation P has a positive probability to
invade the population, and how to identify this probability. We also characterize the time
needed for the mutation to get fixed in the population when it happens. Finally, we provide
the invasion dynamics as well as the final population state, when the mutation gets fixed.

In order to obtain our results, we study the population process at two different scales.
When one sub-population is of small size the stochasticity of its size has a major effect on
the population long time behaviour, and we study its dynamics on N := {0, 1, 2, ...}. This
is for example the case of the mutant population when it arises. When on the contrary all
sub-populations sizes are large, we approximate the stochastic process by a mean field limit
which is a dynamical system.

2. Model and main results

We consider a population of individuals that reproduce sexually and compete with each
other for a common resource. Individuals are haploid and are characterized by their genotype
at two loci located on different chromosomes. Locus 1 presents two alleles, denoted by A and
a, and codes for phenotypes. Locus 2 presents two alleles denoted by P and p, and codes
for assortative mating, which is defined relatively to the first locus (similar models were
introduced in Biology, see for example [14]). More precisely, we assume that all individuals
try to reproduce at the same rate. To this aim, they choose a mate, uniformly at random
among the other individuals of the population. Next, individuals carrying allele p reproduce
indifferently with their chosen partner, while individuals carrying allele P reproduce with a
higher probability with individuals carrying the same allele at locus 1. Note that reproduction
is not completely symmetric: only the genotype of the individual initiating the reproduction
determines the presence or not of assortative mating.

The genotype of each individual belongs to the set G := {AP,Ap, aP, ap} and the state of
the population is characterized at each time t by a vector in N4 giving the respective numbers
of individuals carrying each of these four genotypes. The dynamics of this population is
modeled by a multi-type birth-and-death process

(N(t), t ≥ 0) := (NAP (t), NAp(t), NaP (t), Nap(t), t ≥ 0)

with values in N4, integrating competition, Mendelian reproduction and assortative mating.
More precisely, when the population is in state n = (nAP , nAp, naP , nap) ∈ N4 with size
n = nAP + nAp + naP + nap, then the rate at which the population looses an individual with
genotype i ∈ G, is equal to
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di(n) = ni

(
d+

c

K
n
)
. (2.1)

The parameters d ∈ R+, c > 0 and K > 0 respectively model the natural and the competition
death rates of individuals and a scaling parameter of the total population size. This parameter
quantifies the environment’s carrying capacity, which is a measure of the maximal population
size that the environment can sustain for a long time. In the sequel we will be interested in
the behaviour of the system for large but finite K.

When the population is in state n, the rate bi(n) at which an individual with genotype
i ∈ G is born, is defined by
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,

(2.2)
where

∆aP := naPnAp − nAPnap.
The parameter b(1 + β1) with b > 0 and β1 ≥ 0 is the rate at which any individual (called
first parent) reproduces, and each reproduction leads to the birth of a new individual with
probability 1/(1 + β1) when the first parent carries allele p, with probability 1 if the first
parent carries allele P and both parents carry the same allele at locus 1, and with probabil-
ity (1 − β2)/(1 + β1) if the first parent carries allele P and the two parents carry different
alleles at locus 1. The parameters β1 and β2 respectively quantify benefits and penalties for
homogamous individuals. Table 1 in Appendix B summarizes the different rates at which a
pair of parents with given genotypes gives birth to an offspring with a given genotype. This
explains how the birth rates (2.2) are obtained.

Throughout the paper, we will make the following assumptions on the parameters:
(1) b > d
(2) β1 ≥ 0
(3) 0 ≤ β2 ≤ 1

The first assumption ensures that a population of individuals mating uniformly at random
is not doomed to a rapid extinction because of a natural death rate larger than the birth
rate under uniform random mating. The second (resp. third) assumption means that choosy
individuals have a higher (resp. smaller) probability to give birth when mating with an indi-
vidual with the same (resp. different) trait (A or a).

We assume that at time 0, all individuals mate uniformly at random (no sexual preference,
all individuals carry allele p), and that the population size is close to its long time equilibrium,
(b − d)K/c (see on page 5 for details). A mutant (or a migrant) appears in the population,
with genotype αP , where α ∈ A := {A, a}. The goal of our main theorem (Theorem 1) is
to study a step in Darwinian evolution, that consists in the progressive invasion of the new
allele P and loss of initial allele p in the population. The proof of this theorem relies on the
study of three phases in the population dynamics trajectories (mutant survival or extinction,
mean-field phase, and resident allele extinction) that are respectively defined and studied in
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Subsections 3.1, 3.2, 3.3. The statement of Theorem 1 requires the introduction of several
quantities that we define now.

Our first goal is to determine conditions under which the mutant population has a positive
probability to survive and invade the resident population. In order to answer this question,
we will compare the mutant population with a branching process during the first times of
the invasion. This comparison follows from the following observation that will be proved
in Proposition 3.1: as long as the mutant population size is negligible with respect to the
carrying capacity K, the dynamics of the resident population will not be affected by the
presence of the mutants and will stay close to its initial state. In other words, the size and
proportions of the resident population will remain almost constant and the dynamics of the
mutant population will be close to the dynamics of the process N̄ = (N̄A, N̄a), which is a
bi-type branching process with the following transition rates:

(N̄A, N̄a)→ (N̄A + 1, N̄a) at rate β̄AAN̄A + β̄aAN̄a

(N̄A, N̄a)→ (N̄A, N̄a + 1) at rate β̄AaN̄A + β̄aaN̄a

(N̄A, N̄a)→ (N̄A − 1, N̄a) at rate bN̄A

(N̄A, N̄a)→ (N̄A, N̄a − 1) at rate bN̄a,

(2.3)

where for α ∈ A, ᾱ = A \ α,

β̄αα :=
b

2

(
1 + (β1 + 1)ρα −

β2

2
ρᾱ

)
, β̄αᾱ :=

b

2

(
1− β2

2

)
ρᾱ, (2.4)

and

ρA :=
NAp(0)

Np(0)
and ρa := 1− ρA =

Nap(0)

Np(0)
(2.5)

are the initial proportions in the resident population. The rates of this branching process
have been obtained by considering the dynamics of (NAP , NaP ) described by (2.1) and (2.2)
when (NAp, Nap) = (KρA

b−d
c ,K(1−ρA) b−dc ), N = K b−d

c and the second order terms in NAP

and NaP are neglected. We denote the extinction probabilities of the process N̄ by

qα := P(∃t <∞, N̄(t) = 0|N̄(0) = eα), (2.6)

α ∈ A, eA = (1, 0) and ea = (0, 1), meaning that the process starts with only one individual
of type A or a. Classical results of branching process theory (see [2]) ensure that these
extinction probabilities correspond to the smallest solution to the system of equations

uA(sA, sa) := b(1− sA) + β̄AA(s2
A − sA) + β̄Aa(sAsa − sA) = 0 (2.7)

ua(sA, sa) := b(1− sa) + β̄aa(s
2
a − sa) + β̄aA(sAsa − sa) = 0.

Moreover, the process N̄ is supercritical (and in this case qA and qa are not equal to one)
if and only if the following matrix, which corresponds to the infinitesimal generator of the
branching process, has a positive eigenvalue

J :=

(
β̄AA − b β̄Aa
β̄aA β̄aa − b

)
(2.8)

that is to say if and only if

β1 > β2 or ρA(1− ρA) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
(2.9)

(see the proof of Proposition 3.3). We denote by λ the maximal eigenvalue of (2.8), which
is thus positive when (2.9) holds and which will be of interest to quantify the time before
invasion. Notice that J can be written as b times a matrix only depending on (ρA, β1, β2).
As a consequence, λ can be written λ = bλ̃(ρA, β1, β2). We will use this notation in Theorem
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1 to make appear the dependence on the parameters, and use λ elsewhere for the sake of
readability.

If the mutant population invades and its size reaches order K with K large, the population
dynamics enters a second phase during which it is well approximated (see Proposition 2.1
for a rigorous statement) by a mean field process. More precisely, if we define the rescaled
process

(ZK(t), t ≥ 0) :=

(
NAP (t)

K
,
NAp(t)

K
,
NaP (t)

K
,
Nap(t)

K
, t ≥ 0

)
,

then it will be close to the solution of the dynamical system

żi = bi(z)− (d+ cz)zi, i ∈ G, (2.10)

where z = zAP + zAp + zaP + zap is the total size of the population and the functions bi have
been defined in Equation (2.2). This dynamical system has a unique solution, as the vector
field is locally Lipschitz and that the solutions do not explode in finite time [5]. If we denote
by

(z(z0)(t), t ≥ 0) = (zAP (t), zAp(t), zaP (t), zap(t), t ≥ 0)

this unique solution starting from z(0) = z0 ∈ R4
+, we have the following result, which derives

from Theorem 2.1 p 456 in [10].

Lemma 2.1. Let T ∈ R∗+. Assume that the sequence (ZK(0),K ≥ 1) converges in probability
to some deterministic vector z0 = (zAP (0), zAp(0), zaP (0), zap(0)) ∈ R4

+ when K goes to
infinity. Then

lim
K→∞

sup
s≤T
||ZK(s)− z(z0)(s)||∞ = 0 in probability,

where || · ||∞ denotes the L∞-Norm in R4.

Notice that when there are only individuals of type p in the population (no sexual prefer-
ences), the dynamical system (2.10) is{

żAp = zAp(b− d− c(zAp + zap))

żap = zap(b− d− c(zAp + zap))

This system admits an infinity of equilibria:
• (zAp, zap) = (0, 0), which is unstable
• (zAp, zap) = (ρ(b− d)/c, (1− ρ)(b− d)/c) for all ρ ∈ [0, 1], which are non hyperbolic.

However, if we consider the equation giving the dynamics of the total population size z =
zAp + zap, we get

ż = z(b− d− cz).
Its solution, with a positive initial condition, converges to its unique stable equilibrium,
(b − d)/c. That is why we will assume that the initial population size, before the arrival of
the mutant, is (b− d)K/c.

A fine study of the dynamics of the solutions to (2.10) with our particular initial conditions,
that is to say few individuals mating assortatively at the beginning and a majority of A (or
a) in both resident and mutant populations (see Section 3.2.2), will allow us to show that the
dynamical system converges to an equilibrium where some of the variables zi, i ∈ G are equal
to 0. When the population size of these i becomes too small (of order smaller than K before
rescaling), the mean fields approximation stops being a good approximation, and we will
again compare the dynamics of the small population sizes with these of branching processes
(now subcritical). The birth and death rates of these branching processes will provide the
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time to extinction of these small populations (see Section 3.3).

Combining all these steps, we are able to describe the invasion/extinction dynamics of the
mutant population, which is the subject of the main result of this paper, Theorem 1. Before
stating it, we need to introduce some last notations: a set of interest for the rescaled process
ZK , for any µ > 0

Sµ :=

[
b(1 + β1)− d

c
− µ, b(1 + β1)− d

c
+ µ

]
× {0} × {0} × {0}, (2.11)

a stopping time describing the time at which ZK reaches this set,

TSµ := inf{t ≥ 0,ZK(t) ∈ Sµ}. (2.12)

as well as a stopping time which gives the first time when the rescaled P -mutant population
size reaches any threshold (from below or above): for any ε ≥ 0,

TPε := inf {t > 0, NP (t) = bεKc} , (2.13)

where bxc is the integer part of x.

Theorem 1. Assume that λ 6= 0,(
ZKAp(0), ZKap(0)

)
→

K→∞

(
ρA
b− d
c

, (1− ρA)
b− d
c

)
in probability with ρA > 1/2 and that

(NαP (0), NᾱP (0)) = (1, 0), α ∈ A.

Then there exists a Bernoulli random variable with parameter 1 − qα, B, such that for any
0 < µ < (b(1 + β1)− d)/c:

lim
K→∞

(
TSµ ∧ TP0

lnK
,1{TSµ<TP0 }

)
= B ×

(
1

bλ̃(ρA, β1, β2)
+

2

bβ1
, 1

)
, (2.14)

where the convergence holds in probability.
Moreover,

1{TP0 <TSµ}

∣∣∣∣∣∣∣∣N(TP0 )

K
− (0, ρA, 0, 1− ρA)

b− d
c

∣∣∣∣∣∣∣∣
1

−→
K→∞

0 in probability, (2.15)

where ‖(a, b)‖1 = |a|+ |b|.

Notice that if condition (2.9) does not hold, qα = 1, and the convergence in (2.14) is
an almost sure convergence to (0, 0) meaning that the mutant population dies out in a time
smaller than ln(K). In this case, the allelic proportions in the resident population do not vary.
Condition (2.9) gives two possible sufficient conditions for the mutant population to invade
with positive probability. The first one imposes that the trade-off between the advantage
for homogamous reproduction (β1) and the loss for heterogamous reproduction (β2) has to
be favourable enough. The second condition requires a low level of initial allelic diversity at
locus 1 (alleles A and a). In particular, even if the advantage for homogamy is very low, very
asymmetrical initial conditions (ρA close to 0 or 1) will ensure the invasion of the mutation
with positive probability. As expected, these conditions are the same as the conditions for
the approximating branching process N̄ defined on page 4 to be supercritical. In fact, as we
will see later in the proof, the random variable B will be the indicator of survival of a version
of N̄ coupled with the mutant process.

Let us emphasize that our result ensures that when the mutant population invades, then
the final population is monomorphic, and all individuals carry the allele a or A which was
majority in the resident p−population. Only the mutant invasion probability depends on the
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allele carried by the first P individual.

We were not able to obtain an explicit formula in general for the extinction probability qα
of the assortative mating mutation, solutions of (2.7). However, in the particular case when
there are only A or a-individuals in the population before the arrival of the mutant, we can
derive the invasion probability (see the proof in Section A.2)

Proposition 2.1. Assume that there are only A individuals before the arrival of the mutant
(ρA = 1). In this case,

qA =
2

2 + β1

and

qa =
1

2− β2

6− β1β2 + 4β1 − β2

2 + β1
−

√(
6− β1β2 + 4β1 − β2

2 + β1

)2

− 4(2− β2)

 .

Results obtained with the help of the software Mathematica show a complex dependency
with respect to parameters. We performed numerical simulations of the extinction proba-
bilities (qA, qa) using Newton approximation scheme starting from (0, 0). We computed the
values of qA as a function of ρA for different values of β1 and β2. Using the symmetry of our
model, we have that qa(ρA) = qA(1 − ρA). We observe on Figure 1 that qA is a continuous
function of ρA but that it is not differentiable near criticality.
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Figure 1. Values of qA as a function of ρA for different values of β1 and β2.
On the left, β2 is fixed to 0.7 and β1 varies. On the right β1 is fixed to 0.2
and β1 varies. In both cases b = 1.

Remark 1. We assumed that the initial population state is close to the equilibrium state of
the population when all individuals mate uniformly at random, because any neighbourhood of
such an equilibrium is reached within a finite time as soon as the initial population size is of
order K. We thus could relax this assumption and only assume that the p-population size is
of order K and NAp(0) > Nap(0). This would however require more complex notations.

The rest of the paper is devoted to the proof of Theorem 1. Notice that for the sake of
readability, we will not indicate anymore the dependency of the rescaled process ZK on K
and will instead write Z.

3. Proof of Theorem 1

3.1. Probability and time of the mutant invasion. The first step of the proof of The-
orem 1 consists in studying the population dynamics when a mutant of type P appears in a
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well-established population of types ap and Ap. We would like to know under which condi-
tions on the parameters the mutant population may invade the resident population and what
is the probability that the invasion happens.

We will show in particular that when the mutant appears and as long as the mutant
population size is negligible with respect to the carrying capacity K, its dynamics is close
to the dynamics of the process N̄, which has been introduced in Section 1. Next, as long as
the P -population size is small compared with K, that is, as long as its dynamics is close to
the one of N̄, we prove that the p-population size and the proportion of A-individuals in the
p-population will not vary considerably from their initial values.

In order to state rigorously these results, let us recall definition (2.13) and introduce two
more stopping times. The first one gives the first time when the genetic proportions in the
p-population deviate considerably from their starting values: for any ε > 0,

Uε := inf

{
t ≥ 0,

∣∣∣∣NAp(t)

Np(t)
−
NAp(0)

Np(0)

∣∣∣∣ > ε

}
. (3.1)

The second one concerns the total p-population size: for any ε > 0,

Rε := inf

{
t ≥ 0,

∣∣∣∣Np(t)

K
− b− d

c

∣∣∣∣ > ε

}
. (3.2)

Note that these stopping times depend on the scaling parameter K. However, to avoid
cumbersome notations, we drop the K dependency.

We recall that qα is the extinction probability of this process and that λ is the principal
eigenvalue of the matrix J defined in (2.8), which can be rewritten

J =
b

2

ρAβ1 − (1− ρA)
(
β2
2 + 1

)
ρA

(
1− β2

2

)
(1− ρA)

(
1− β2

2

)
(1− ρA)β1 − a1

(
β2
2 + 1

) . (3.3)

The main result along the route of proving Theorem 1 can now be stated. It ensures that
the probability that a mutant P generates a P -population whose size reaches the order K is
close to 1−qα (which is the survival probability of the process N̄ starting from an α-individual
and has been defined in (2.6)), whereas its probability of extinction is close to qα. Moreover,
the invasion or extinction of the mutant population occurs before the resident population
size deviates substantially from its equilibrium, and the time of invasion is approximately
log(K)/λ.

Proposition 3.1. Let α be in A and assume that the initial condition satisfies

NP (0) = NαP (0) = 1, Np(0) =

⌊
b− d
c

K

⌋
and ρA =

NAp(0)

Np(0)
,

and moreover that
λ 6= 0, (3.4)

where λ is the principal eigenvalue of matrix (2.8). There exist a function η going to 0 at 0
and a positive constant A0 such that for any ξ ∈ {1/2, 1},

lim sup
K→∞

∣∣∣∣∣P
(
TPεξ < TP0 ∧RA0ε ∧ Uε1/6 ,

∣∣∣∣∣ TPεξlnK
− 1

λ

∣∣∣∣∣ ≤ η(ε)
∣∣∣NP (0) = eα

)
− (1− qα)

∣∣∣∣∣ = oε(1),

and
lim sup
K→∞

∣∣P (TP0 < TPεξ ∧RA0ε ∧ Uε1/6
∣∣NP (0) = eα

)
− qα

∣∣ = oε(1), (3.5)

where by convention, oε(1) goes to 0 when ε goes to 0.
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Remark 2. This proposition accounts for two opposite behaviours of the mutant process.
Indeed Assumption (3.4) ensures that either the process N̄ is supercritical (λ > 0 under
condition (2.9)) and qα ∈ (0, 1), or the process N̄ is subcritical and qα = 1.

The end of this section will be devoted to the proof of Proposition 3.1, which will be
divided into three steps.

3.1.1. Control of the proportions in the resident population. We will first prove that the
proportions in the resident population do not vary substantially before the mutant population
goes extinct or invades. More precisely, we have the following lemma.

Lemma 3.1. Suppose that the assumptions of Proposition 3.1 hold. For any A > 0, there
exist ε0 such that for any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim sup
K→∞

P
(
Uε1/6 < RAε ∧ TPεξ ∧ T

P
0

)
≤ C(A, ξ)ε1/12,

where C(A, ξ) is a positive constant.

Proof. The statement of Lemma 3.1 is a direct consequence of the following inequality:

lim sup
K→∞

P

 sup
t≤U

ε1/8
∧RAε∧TP

εξ
∧TP0

∣∣∣∣NAp(t)

Np(t)
−
NAp(0)

Np(0)

∣∣∣∣ > ε1/6

 ≤ Cε1/12. (3.6)

To prove (3.6), we decompose the process NAp/Np as the sum of a square integrable mar-
tingale Mp and of a finite variation process Vp (see (3.10) and (3.11) for their expressions).
Using such a decomposition and introducing for the sake of readability the notation

τε := Uε1/8 ∧RAε ∧ T
P
εξ ∧ T

P
0 , (3.7)

we find that for ε small enough,

P
(

sup
t≤τε

∣∣∣∣NAp(t)

Np(t)
−
NAp(0)

Np(0)

∣∣∣∣ > ε1/6

)
≤ P

(
sup
t≤τε
|Mp(t)| >

ε1/6

2

)
+ P

(
sup
t≤τε
|Vp(t)| >

ε1/6

2

)

≤ 2

ε1/6
E [|Mp(τε)|] +

√
2

ε1/12
E

[√
sup
t≤τε
|Vp(t)|

]

≤ 2

ε1/6

(√
E
[
M2
p (τε)

]
+

√
E
[

sup
t≤τε
|Vp(t)|

])
,

(3.8)

where we applied Doob maximal, Markov, Cauchy-Schwarz and Jensen inequalities.
Hence, it remains to bound the two last expectations of (3.8). In the vein of Fournier and

Méléard [11] we represent the population process in terms of Poisson measures.
Let (Q

(ρ)
αp (ds, dθ), α ∈ A, ρ ∈ {b, d}) be four independent Poisson random measures on

R2
+ with intensity dsdθ representing respectively the birth and death events of Ap and ap

individuals. That is, for any α ∈ A, the p-population size processes can be written

Nαp(t) = Nαp(0)+

∫ t

0

∫
R+

(
1{θ≤bαp(N(s−))}Q

(b)
αp(ds, dθ)− 1{θ≤dαp(N(s−))}Q

(d)
αp (ds, dθ)

)
(3.9)

where the quantities bαp and dαp have been defined in (2.1) and (2.2).
Let us also denote by Q̃

(%)
αp (ds, dθ) := Q

(%)
αp (ds, dθ) − dsdθ the associated compensated

measure, for any % ∈ {b, d}, α ∈ A. From (3.9), we find, for t ≥ 0,
NAp(t)

Np(t)
=
NAp(0)

Np(0)
+Mp(t) + Vp(t),
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with Mp and Vp such that:

Mp(t) =

∫ t

0

∫
R+

1{θ≤bAp(N(s−))}
Nap(s−)

Np(s−)(Np(s−) + 1)
Q̃

(b)
Ap(ds, dθ) (3.10)

−
∫ t

0

∫
R+

1{θ≤dAp(N(s−))}
Nap(s−)

Np(s−)(Np(s−)− 1)
Q̃

(d)
Ap(ds, dθ)

−
∫ t

0

∫
R+

1{θ≤bap(N(s−))}
NAp(s−)

Np(s−)(Np(s−) + 1)
Q̃(b)
ap (ds, dθ)

+

∫ t

0

∫
R+

1{θ≤dap(N(s−))}
NAp(s−)

Np(s−)(Np(s−)− 1)
Q̃(d)
ap (ds, dθ),

and

Vp(t) =

∫ t

0

{
bAp(N(s))

Nap(s)

Np(s)(Np(s) + 1)
− dAp(N(s))

Nap(s)

Np(s)(Np(s)− 1)

− bap(N(s))
NAp(s)

Np(s)(Np(s) + 1)
+ dap(N(s))

NAp(s)

Np(s)(Np(s)− 1)

}
ds

=

∫ t

0

{
bAp(N(s))Nap(s)− bap(N(s))NAp(s)

} ds

Np(s)(Np(s) + 1)
. (3.11)

Using Equation (2.2), we obtain the existence of a finite constant C such that

|bAp(N)Nap − bap(N)NAp| ≤ C
NPN

2
p

NP +Np
.

Hence,

sup
t≤τε
|Vp(t)| ≤ C

∫ τε

0

NP (s)

NP (s) +Np(s)
ds. (3.12)

This will help us bounding the last term of inequality (3.8). On the other hand, to deal with
the penultimate term in (3.8), we use the quadratic variation of the martingale Mp which
equals

〈Mp〉τε =

∫ τε

0
bAp(N(s))

N2
ap(s)

N2
p (s)(Np(s) + 1)2

ds+

∫ τε

0
dAp(N(s))

N2
ap(s)

N2
p (s)(Np(s)− 1)2

ds

(3.13)

+

∫ τε

0
bap(N(s))

N2
Ap(s)

N2
p (s)(Np(s) + 1)2

ds+

∫ τε

0
dap(N(s))

N2
Ap(s)

N2
p (s)(Np(s)− 1)2

ds.

=

∫ τε

0

(
bAp(N(s))N2

ap(s) + bap(N(s))N2
Ap(s)

N2
p (s)(Np(s) + 1)2

+
dAp(N(s))N2

ap(s) + dap(N(s))N2
Ap(s)

N2
p (s)(Np(s)− 1)2

)
ds

To handle the first term, let us remark that bAp(N) and bap(N) can be bounded from above
by C̃Np for a positive constant C̃. Therefore

bAp(N)N2
ap + bap(N)N2

Ap

N2
p (Np + 1)2

≤ C̃

Np
.

For the second term we have

dAp(N)N2
ap + dap(N)N2

Ap

N2
p (Np − 1)2

≤
(d+ cN/K)NapNAp

Np(Np − 1)2
.
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Since, for Np ≥ 2,
NapNAp

Np(Np − 1)2
≤ 4

Np
,

we obtain that, if C and K are sufficiently large,

〈Mp〉τε ≤
∫ τε

0

4

Np(s)

[
C̃ + d+

c

K
(NP (s) +Np(s))

]
ds

≤ C
∫ τε

0

1

Np(s)
ds ≤ C

∫ τε

0

NP (s)

Np(s)
ds.

(3.14)

From (3.12) and (3.14), we get that there exists a finite C such that√
E
[
M2
p (τε)

]
+

√
E
[

sup
t≤τε
|Vp(t)|

]
≤

√
C

K
E
[∫ τε

0
NP (s)ds

]
. (3.15)

In view of (3.8), the problem is thus reduced to show the following property:

ε−1/6

√
C

K
E
[∫ τε

0
NP (s)ds

]
≤ C ′ε1/12,

for a finite C ′, or equivalently,

E
[∫ τε

0
NP (s)ds

]
≤ C ′Kε1/2. (3.16)

To this aim, we will prove that there exist two real numbers γ1 and γ2 such that the function
f on N4 defined by

f(N) := γ1NAP + γ2NaP , (3.17)
satisfies that there exists ε sufficiently small such that for any t ≤ τε (recall equation (3.7)),

Lf(N(t)) ≥ NP (t). (3.18)

Here L is the infinitesimal generator of N. Indeed, if (3.18) holds, it will imply that

C

K
E
[∫ τε

0
NP (s)ds

]
≤ C

K
E
[∫ τε

0
Lf(N(s))ds

]
=
C

K
E [f(N(τε))− f(N(0))]

≤ C

K

(
max{γ1, γ2}εξK −min{γ1, γ2}

)
,

(3.19)

which is sufficient to obtain (3.16), whatever the signs of γ1 and γ2.

The last step of the proof consists in proving the existence of γ1 and γ2 satisfying (3.17)
and (3.18). Let us now apply the infinitesimal generator of N to the function f defined in
(3.17):

Lf(N(t)) = γ1 [bAP (N)− dAP (N)] + γ2 [baP (N)− daP (N)]

= NAP (t)
[
γ1

(
β

(P )
AA (t)− δ(t)

)
+ γ2β

(P )
Aa (t)

]
+NaP (t)

[
γ1β

(P )
aA (t) + γ2

(
β(P )
aa (t)− δ(t)

)]
,

(3.20)

where δ(t) = d+ cN(t)/K and for α ∈ A,

β(P )
αα (t) = b

(
1 +

β1

2

2NαP (t) +Nαp(t)

NP (t) +Np(t)
− β2

4

4NᾱP (t) +Nᾱp(t)

NP (t) +Np(t)
− 1

2

Nᾱp(t)

NP (t) +Np(t)

)
(3.21)
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and

β
(P )
αᾱ (t) =

b

2

(
1− β2

2

)
Nᾱp(t)

NP (t) +Np(t)
. (3.22)

Then we see that to obtain (3.18) it is enough to choose Γ = (γ1, γ2) such that ∀t ≤ τε

J (P )(t)ΓT :=

(
β

(P )
AA (t)− δ(t) β

(P )
Aa (t)

β
(P )
aA (t) β

(P )
aa (t)− δ(t)

)(
γ1

γ2

)
>

(
1
1

)
where the inequality is applied to each coordinate.

Note that J (P )(t) is not easy to study. We will thus approximate this matrix by a simpler
one as soon as t ≤ τε. More precisely, we will prove that there exists a constant C such that
for every t ≤ τε, (

|J (P )(t)− J |
)
ij
≤ Cε1/8, i, j ∈ {1, 2} (3.23)

where the matrix J given in (2.8) is the infinitesimal generator of the branching process N̄
(defined in (2.3)) which approximates (NAP , NaP ) near the equilibrium of the resident pop-
ulation.

First, as t ≤ τε ≤ TPεξK ∧RAε, we have∣∣∣∣b− d− cNP +Np

K

∣∣∣∣ ≤ c ∣∣∣∣b− dc − Np

K

∣∣∣∣+ c

∣∣∣∣NP

K

∣∣∣∣ ≤ cAε+ cεξ. (3.24)

Secondly, using also that t ≤ Uε1/8 and recalling that ρA = NAp(0)/Np(0), we find that for ε
small enough,∣∣∣∣2NAP +NAp

NP +Np
− ρA

∣∣∣∣ ≤ 2NAP

NP +Np
+ ρA

∣∣∣∣ Np

NP +Np
− 1

∣∣∣∣+
Np

NP +Np

∣∣∣∣NAp

Np
− ρA

∣∣∣∣
≤ (2 + ρA)

NP

NP +Np
+ ε1/8

≤ 3
εξc

b− d− cAε
+ ε1/8 ≤ C1ε

1/8,

(3.25)

where C1 is a finite constant and ξ ∈ {1/2, 1}. Similarly, we prove that, if C1 is sufficiently
large,∣∣∣∣4NaP +Nap

N
− (1− ρA)

∣∣∣∣ ≤ C1ε
1/8 and

∣∣∣∣ Nap

NP +Np
− (1− ρA)

∣∣∣∣ ≤ C1ε
1/8. (3.26)

Using (3.24), (3.25) and (3.26), we can find a positive constant C2 such that∣∣∣β(P )
AA − δ − (β̄AP − b)

∣∣∣ ≤ ∣∣∣∣b− d− cNP +Np

K

∣∣∣∣+
bβ1

2

∣∣∣∣2NAP +NAp

NP +Np
− ρA

∣∣∣∣
+
β2

4

∣∣∣∣4NaP +Nap

NP +Np
− (1− ρA)

∣∣∣∣+
1

2

∣∣∣∣ Nap

NP +Np
− (1− ρA)

∣∣∣∣ ≤ C2ε
1/8,

and ∣∣∣β(P )
Aa − β̄Aa

∣∣∣ ≤ b(2− β2)

4

∣∣∣∣ Nap

NP +Np
− (1− ρA)

∣∣∣∣ ≤ C2ε
1/8.

The last terms in (3.20) can be bounded using similar computations, which yields (3.23).

Let us finally choose (γ1, γ2). Recall the definition of J in (2.8). In particular, the matrix
J + bId has positive coefficients and we can apply Perron-Frobenius Theorem: J + bId pos-
sesses a positive right eigenvector Γ̃ = (γ̃1, γ̃2) associated to the positive principal eigenvalue
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λ+ b and thus (J + bId)Γ̃T = (λ+ b)Γ̃T , and

J Γ̃T = λΓ̃T .

Since both coordinates of Γ̃ are positive and λ 6= 0 , we can define Γ = 2Γ̃(λ(γ̃1 ∧ γ̃2))−1 =
(γ1, γ2). It is solution to

JΓT = λΓT where λγi ≥ 2, ∀i ∈ {1, 2}.
Combining with (3.23), we deduce∣∣∣γ1

(
β

(P )
AA (t)− δ

)
+ γ2β

(P )
Aa (t)− λγ1

∣∣∣= ∣∣∣γ1

[
β

(P )
AA (t)− δ − (β̄AA − b)

]
+ γ2

[
β

(P )
Aa (t)− β̄Aa

]∣∣∣
≤ (|γ1|+ |γ2|)C2ε

1/8.

Finally, as λγ1 ≥ 2, if ε is sufficiently small, for any t ≤ τε,

γ1

(
β

(P )
AA (t)− δ(t)

)
+ γ2β

(P )
Aa (t) ≥ 1,

which leads to (3.18) and ends the proof of Lemma 3.1 using similar computations for the
second term. �

3.1.2. Control of the resident population size. Lemma 3.1 ensures that the proportions of
types A and a in the p-population stay almost constant during the time interval under
consideration. We now prove that it is also the case for the total p-population size.

Lemma 3.2. Under the assumptions of Proposition 3.1 there exist two finite constants A0

and ε0 such that for any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim sup
K→∞

P
(
RA0ε < Uε1/6 ∧ T

P
εξ ∧ T

P
0

)
= 0.

Proof. Recall that Z = N/K. As long as t ≤ TP0 ∧ TPεξ , we couple the process Zp, which
describes the total p-population size dynamics, with two birth and death processes, Z1

p and
Z2
p such that

Z1
p(t) ≤ Zp(t) ≤ Z2

p(t), a.s. ∀t ≤ TP0 ∧ TPεξ .
To this aim, we use bounds on the birth and death rates of Zp. Once again, everything
depends on K, but for the sake of readability, we drop the K dependency. Since β2 ≤ 1,
processes Z1

p and Z2
p may be chosen with the following birth and death rates

Z1
p : i

K → i+1
K at rate K

(
b iK − bε

ξ
)

i
K → i−1

K at rate K i
K

(
d+ cεξ + c iK

)
and

Z2
p : i

K → i+1
K at rate K

(
b iK + bεξ (β1+1)

2

)
i
K → i−1

K at rate K i
K

(
d+ c iK

)
.

We will first prove that processes Z1
p and Z2

p stay close to the value ζ := (b − d)/c for at
least an exponential (in K) time with a probability close to one when K is large. To this
aim, we will study the following stopping times

Riη := inf
{
t ≥ 0, Zip 6∈ [ζ − η, ζ + η]

}
, (3.27)

for η > 0 and i ∈ {∅, 1, 2} (by convention Z∅p = Zp).
Let us first consider the process Z1

p . When K is large and according to [10, Chapter 11,
Theorem 2.1 p. 456], the dynamics of Z1

p is close to the dynamics of the unique solution to

d

dt
z = z(b− d− cεξ − cz)− bεξ. (3.28)
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The differential equation (3.28) admits two positive equilibria:

ζ1,±(ε) :=
b− d− cεξ ±

√
(b− d− cεξ)2 − 4bεξc

2c
.

A direct analysis of the sign of z(b− d− cεξ − cz)− bεξ shows that for any fixed ε > 0, any
solution with initial condition on ]ζ1,−(ε),+∞[, converges to the stable equilibrium ζ1,+(ε)
when t goes to infinity. Moreover, using

(
√
a+
√
b)(
√
a−
√
b) = a− b (3.29)

yields, if ε is sufficiently small (such that ζ1,+(ε) ≥ (b− d)/2c),

ζ1,−(ε) =
bεξ

cζ1,+(ε)
≤ 2b

b− d
εξ ≤ 2εξ0.

Then, we can find two constants A0 and ε0 such that, for any ε ≤ ε0,

|ζ1,+(ε)− ζ| ≤ (A0 − 1)εξ and 2εξ0 6∈ [ζ −A0ε
ξ, ζ +A0ε

ξ].

Moreover, using a reasoning similar to the one in the proof of Theorem 3(c) in [4] (see also
Proposition 4.1 in [8]), we construct a family (over K) of Markov jump processes Z̃1

p whose
transition rates are positive, bounded, Lipschitz and uniformly bounded away from 0, and
for which the following estimate holds (Chapter 5 of Freidlin and Wentzell [12]): there exists
V > 0 such that,

P(R1
A0ε > eKV ) = P(R̃1

A0ε > eKV ) →
K→+∞

1, (3.30)

where R̃1
η is defined similarly as R1

η but for the process Z̃1.
Using a similar reasoning for process Z2

p and if ε and V are small enough and A0 is large
enough, we have that

P(R2
A0ε > eKV ) →

K→+∞
1. (3.31)

Finally, note firstly that RA0ε ≥ R1
A0ε
∧ R2

A0ε
on the set {RA0ε ≤ TP0 ∧ TPεξ}. In addition

with (3.30) and (3.31), we deduce that

P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ) →
K→+∞

0.

Secondly, for ε small enough,

P(RA0ε ≤ TP0 ∧ TPεξ ∧ Uε1/6)

≤ P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ ∧ Uε1/6) + P(RA0ε ∧ TP0 ∧ TPεξ ∧ Uε1/6 ≥ e
KV )

≤ P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ) + e−KV E
[
RA0ε ∧ TPεξ ∧ T

P
0 ∧ Uε1/8

]
.

Thirdly, Equation (3.19) implies that for a finite C and ε small enough,

E
[
RA0ε ∧ TPεξ ∧ T

P
0 ∧ Uε1/8

]
≤ E

[∫ U
ε1/8
∧RA0ε

∧TP
εξ
∧TP0

0
NP (s)ds

]
≤ C(εξK + 1).

The three last equations imply the statement of Lemma 3.2, which ends its proof. �

3.1.3. Proof of Proposition 3.1. Lemmas 3.1 and 3.2 give us a control on the p-population size
and the proportions of A and a individuals in this population. It will allow us to approximate
the mutant population size by a bitype branching process at the beginning of the invasion
process. We will assume along the proof that NP (0) = NαP (0) = 1, with α ∈ A, but we
drop the conditioning notation for the sake of readability. Combining Lemmas 3.1 and 3.2,
we obtain that the p-population size and the genotypic proportions in the p-population stay
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almost constant as long as the P -mutant population size is small. More precisely, if (3.4) is
satisfied, there exist two constants A0 and ε0 such that for any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim inf
K→∞

P
(
TPεξ ∧ T

P
0 < RA0ε ∧ Uε1/6

)
≥ 1− C(A0, ξ)ε

1/12, (3.32)

where C(A0, ξ) is a positive constant. Hence, in what follows, we study the process on the
event

Σε =
{
TPεξ ∧ T

P
0 < RA0ε ∧ Uε1/6

}
,

which has a probability close to 1. On this event, the death or invasion of the mutant popula-
tion will occur before that the p-population deviates substantially from its initial composition.
Thus, we can study the mutant population dynamics by approximating the resident popula-
tion dynamics with a constant dynamics. More precisely, we couple the process (NAP , NaP )

on Σε with two multitype birth and death processes N (ε,−) and N (ε,+) with values in N2 such
that almost surely, for any t ≤ TP

εξ
∧ TP0 ∧RA0ε ∧ Uε1/6 and α ∈ A,

N (ε,−)
α (t) ≤ N̄α(t) ≤ N (ε,+)

α (t),

N (ε,−)
α (t) ≤ NαP (t) ≤ N (ε,+)

α (t).
(3.33)

For ∗ ∈ {+,−}, the process N (ε,∗) may be chosen with the rates:

N (ε,∗) → N (ε,∗) + eα at rate β
(ε,∗)
Aα N

(ε,∗)
A + β

(ε,∗)
aα N

(ε,∗)
a

N (ε,∗) → N (ε,∗) − eα at rate δ
(ε,∗)
α N

(ε,∗)
α

where

β(ε,+)
αα = b

(
1 +

β1

2

(
ρα + ε1/6 +

2εξ

ζ −A0ε

)
−
(
β2

4
+

1

2

)(
ρᾱ − ε1/6

) ζ −A0ε

ζ +A0ε+ εξ

)
β

(ε,+)
αᾱ =

b

2

(
1− β2

2

)
(ρᾱ + ε1/6),

δ(ε,+)
α = b− cA0ε,

β(ε,−)
αα = b

(
1 +

β1

2

(ρα − ε1/6)(ζ −A0ε)

ζ +A0ε+ εξ
−
(
β2

4
+

1

2

)
(ρᾱ + ε1/6)− β2ε

ξ

ζ −A0ε

)

β
(ε,−)
αᾱ =

b

2

(
1− β2

2

)
(ρᾱ − ε1/6)(ζ −A0ε)

ζ +A0ε+ εξ

δ(ε,−)
α = b+ c

(
A0ε+ εξ

)
and ζ = (b − d)/c. Note that for (α, α′) ∈ A2 and ∗ ∈ {−,+}, the applications ε 7→ β

(ε,∗)
αα′

and ε 7→ δ
(ε,∗)
α are continuous and converge respectively as ε → 0 to β̄α,α′ and b which are

the birth and death rates of the process N̄ introduced in (2.3). Moreover β(ε,+)
αα′ and δ(ε,−)

α

(resp. β(ε,−)
αα′ and δ(ε,+)

α ) are increasing (resp. decreasing) when ε increases.
Let us denote for ∗ ∈ {−,+} and α ∈ A by q(ε,∗)

α the extinction probability of the process
N (ε,∗) with initial state eα. As the extinction probability of a supercritical branching process
is continuous (see Appendix A.3) with respect to the birth and death rates of this process,
increases with the death rate and decreases with the birth rate, we find for α ∈ A that

0 ≤ q(ε,−)
α − q(ε,+)

α →
ε→0

0, (3.34)

and
q(ε,+)
α ≤ qα ≤ q(ε,−)

α ,
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where we recall that qα has been defined by (2.6) for the process N̄. In other words, for
∗ ∈ {−,+}, ∣∣∣q(ε,∗)

α − qα
∣∣∣ = oε(1). (3.35)

Since the coupling is only valid on Σε, we still need to prove that the probabilities of
extinction and invasion of the actual process N are also given by qα and 1− qα respectively.
To this aim, let us introduce the following stopping times, for ∗ ∈ {−,+},

∀x ∈ R+, T (ε,∗)
x := inf{t > 0, N (ε,∗)(t) = bKxc}. (3.36)

Recall that, on Σε, the coupling (3.33) is satisfied and thus

P
(
T

(ε,−)

εξ
< T

(ε,−)
0 , Σε

)
≤ P

(
TPεξ < TP0 , Σε

)
≤ P

(
T

(ε,+)

εξ
< T

(ε,+)
0 , Σε

)
. (3.37)

Indeed, if a process reaches the size εξK before extinction, it is also the case for a larger
process. However, Σε is independent from N(ε,−) and N(ε,+), thus with (3.32),

lim sup
K→∞

P
(
T

(ε,∗)
εξ

< T
(ε,∗)
0 , Σε

)
= lim sup

K→∞
P
(
T

(ε,∗)
εξ

< T
(ε,∗)
0

)
P (Σε)

≥ (1− q(ε,∗)
(α) )(1− C(A0, ξ)ε

1/12).

Then letting K go to infinity in (3.37), we find

(1− q(ε,−)
(α) )(1− C(A0, ξ)ε

1/12) ≤ lim sup
K→+∞

P
(
TPεξ < TP0 , Σε

)
≤ (1− q(ε,+)

(α) )(1− C(A0, ξ)ε
1/12).

Finally, adding (3.32) and (3.35) we get

lim sup
K→∞

∣∣P(TPεξ < TP0 ∧RA0ε ∧ Uε1/6)− (1− qα)
∣∣

≤ lim sup
K→∞

∣∣P(TPεξ < TP0 , Σε)− (1− qα)
∣∣+ lim sup

K→∞
|P(Σε

c)| = oε(1).
(3.38)

Equation (3.5) is derived similarly.

It remains to prove that in the case of invasion (which happens with probability 1 − qα),
the time before reaching size Kεξ is of order logK/λ, where we recall that λ is the maximal
eigenvalue of the matrix J defined in (2.8), and that in the case of invasion, λ is positive.

We denote by λ(ε,∗) the maximal eigenvalue of the mean matrix for the process N (ε,∗).
This eigenvalue is positive for ε small enough, and converges to λ when ε converges to 0.
In other words there exists a nonnegative function η going 0 at 0 such that, for any ε small
enough, ∣∣∣∣∣λ(ε,∗)

λ
− 1

∣∣∣∣∣ ≤ η(ε)

2
. (3.39)

Thus, let us fix ε small enough such that the previous inequality holds. Then from the
coupling (3.33), which is true on Σε,

P
(
T

(ε,−)

εξ
≤ T (ε,−)

0 ∧ lnK

λ
(1 + η(ε)), Σε

)
≤ P

(
TPεξ ≤ T

P
0 ∧

lnK

λ
(1 + η(ε)), Σε

)
. (3.40)

Once again, with independence between Σε and N (ε,∗), using classical results on bitype
branching processes (see [2]), and (3.39), yields that for ε small enough (at least such that
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η(ε) < 1),

lim sup
K→∞

P
(
T

(ε,−)

εξ
≤ T (ε,−)

0 ∧ lnK

λ
(1 + η(ε)), Σε

)
= lim sup

K→∞
P
(
T

(ε,−)

εξ
≤ lnK

λ
(1 + η(ε))

)
P (Σε)

≥ lim sup
K→∞

P
(
T

(ε,+)

εξ
≤ lnK

λ(ε,−)

(
1− η(ε)

2

)
(1 + η(ε))

)
P (Σε)

≥ lim sup
K→∞

P
(
T

(ε,+)

εξ
≤ lnK

λ(ε,−)

(
1 +

η(ε)− η2(ε)

2

))
P (Σε)

≥
(

1− q(ε,−)
(α)

)(
1− C(A0, ξ)ε

1/12
)
.

In addition with (3.40), we deduce that

lim sup
K→∞

P
(
TPεξ < TP0 ∧RA0ε ∧ Uε1/6 , T

P
εξ ≤

lnK

λ
(1 + η(ε))

)
≥ 1− qα − 3κ,

as soon as ε is small enough.
We can prove in a similar way, using the upper bound Z(ε,+) of the coupling, that

lim inf
K→∞

P
(
TPεξ < TP0 ∧RA0ε ∧ Uε1/6 , T

P
εξ ≤

lnK

λ
(1− η(ε))

)
≤ 1− qα + 3κ.

Putting all pieces together, we conclude the proof of Proposition 3.1.

3.2. Mean-field phase. Once the mutant population size has reached an orderK, the mean-
field approximation (2.10) becomes a good approximation for the population dynamics (cf
Lemma 2.1). An important question however is the initial condition of the dynamical system
used as an approximation. Indeed, depending on the initial state, the system (2.10) may
converge to various equilibria (see Appendix A.1 for a study of these equilibria). The initial
state to be considered for the dynamical system and the convergence to a stable equilibrium
are the subjects of Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Mutant A/a proportions. We have seen that when (2.9) is satisfied, then the mutant
population dynamics is close to that of the supercritical bitype branching process N̄ defined
in (2.3). For such a process we are able to control the long time proportion of the different
types of individuals. More precisely, Kesten-Stigum theorem (see [13] for instance) ensures
the following property, if λ is positive:

(N̄A(t), N̄a(t))

N̄A(t) + N̄a(t)
→
t→∞

(πA, πa) almost surely

on the event of survival of N̄, where π is the positive left eigenvalue of J associated to λ such
that πA + πa = 1.

The next proposition states that with a probability close to one for large K, if the mu-
tant population reaches the size εK, we may choose a time when the proportion of type A
individuals in the P -population belongs to [πA − δ, πA + δ], with δ > 0 small.

Proposition 3.2. Let C > 2 be such that

C

(
max{qA, qa}

C − 1

)1−1/C

< 1.
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Assume that ρA > 1/2 and that (2.9) holds. Let δ > 0 such that πA − δ > 1/2. Then under
the same assumptions as Proposition 3.1,

lim inf
K→∞

P
(
∃t ∈

[
TPε , T

P√
ε

]
,
εK

C
≤ NP (t) ≤

√
εK,

πA − δ <
NAP (t)

NP (t)
< πA + δ

∣∣∣ TP√ε < TP0 ∧RA0ε ∧ Uε1/6
)
≥ 1− oε(1).

Proof. If

πA − δ <
NAP (TPε )

NP (TPε )
< πA + δ

there is nothing to show. Thus we assume that
NAP (TPε )

NP (TPε )
≤ πA − δ.

The symmetric case, when NAP (TPε )/NP (TPε ) ≥ πA + δ can be treated with similar argu-
ments. Then, we introduce the event

Σ̃ε := {TP√ε < TP0 ∧RA0ε ∧ Uε1/6}

on which all calculus will be done.
Our first aim is to prove that the time interval [TPε , T

P√
ε
] is large when ε is small and that

the mutant population size is not too small on this interval. Precisely, we introduce, for any
ε > 0, the stopping time

T
(ε)
ε/C := inf{t ≥ TPε , NP (t) ≤ εK/C},

where C is the constant introduced in Proposition 3.2, and we want to prove that the stopping
time TP√

ε
is larger than TPε + ln ln(1/ε) and smaller than T (ε)

ε/C . On the one hand, we obtain
from coupling (3.33), satisfied on Σ̃ε, and Lemma A.1, that

lim
K→∞

P
(
T

(ε)
ε/C < TP√ε|Σ̃ε

)
= 0. (3.41)

On the other hand, we obtain from Lemma A.2 that

lim
K→∞

P
(
TP√ε ≤ T

P
ε + ln ln 1/ε|Σ̃ε

)
≤
√
ε (ln 1/ε)b(1+β1) , (3.42)

since the process of the total size of P -individuals is always stochastically bounded from
above by a Yule process with birth rate b(1 + β1). Notice that Lemmas A.1 and A.2 can be
applied here because, as we assumed (2.9), the mutant P invades with a positive probability
and the approximating process N̄ is supercritical.

With this in mind, we are now interested in the dynamics of the fraction of A-individuals
in the P -population. Our aim is to find a suitable lower bound to NAP (t)/NP (t) to prove
that this fraction cannot stay below πA− δ on the interval [TPε , T

P√
ε
] with a probability close

to 1. The fraction is a semi-martingale and can be decomposed as
NAP (t)

NP (t)
=
NAP (TPε )

NP (TPε )
+MP (t) + VP (t),

for any t ≥ TPε , with MP a martingale and VP a finite variation process.
Let us start with the martingale part, MP . Its predictable quadratic variation can be

obtained as in (3.13) with P replacing p and by integrating between TPε and t instead of 0
and TPε . It gives the bound

〈MP 〉t ≤ C0(t− TPε ) sup
TPε ≤s≤t

1

NP (s)− 1
,
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where C0 is a finite constant. Hence

〈MP 〉(TPε +ln ln 1/ε)∧T (ε)
ε/C

≤ C0 ln ln 1/ε

εK/C − 1
(3.43)

and

lim sup
K→∞

P

(
sup

TPε ≤t≤(TPε +ln ln 1/ε)

|MP (t)| ≥ ε
∣∣∣Σ̃ε)

≤ lim sup
K→∞

P
 sup
TPε ≤t≤(TPε +ln ln 1/ε)∧T (ε)

ε/C

|MP (t)| ≥ ε
∣∣∣Σ̃ε
+ P

(
T

(ε)
ε/C < TPε + ln ln 1/ε

∣∣∣Σ̃ε)


≤ lim sup
K→∞

1

ε2
E
[
〈MP 〉TPε +ln ln 1/ε∧T (ε)

ε/C

∣∣∣Σ̃ε]+
√
ε (ln 1/ε)b(1+β1) =

√
ε (ln 1/ε)b(1+β1) ,

(3.44)
using Doob’s martingale inequality to obtain the third line, and (3.41), (3.42) and (3.43) for
the last one. In particular, the martingale is larger than −ε with a probability close to one.

It remains to deal with the finite variation process VP . Itô’s formula with jumps gives the
following formulation of VP :

VP (t) =

∫ t

TPε

P (s)

[
NAP (s)

NP (s)

]
NP (s)

NP (s) + 1
ds,

with

P (s)[X] :=
(
β

(P )
AA (N(s))X+β

(P )
aA (N(s))(1−X)

)
(1−X)−

(
β(P )
aa (N(s))(1−X)+β

(P )
Aa (N(s))X

)
X,

and β
(P )
AA and β

(P )
Aa are defined by (3.21) and (3.22). Notice that, when ε is small, the

polynomial function P (s) is close, on the interval [0, 1], to the polynomial function

P [X] :=
(
β̄AAX + β̄aA(1−X)

)
(1−X)−

(
β̄aa(1−X) + β̄AaX

)
X

where the functions β̄i, i ∈ G are defined in (2.4). Since P [0] > 0, P [1] ≤ 0 the equation
ẋ = P [x] has a unique positive equilibrium in (0, 1]. Since (πA, 1 − πA) is a left eigenvector
of matrix (2.8), direct computation ensures that πA is a root of P and thus corresponds to
this equilibrium. Moreover, since ρA > 1/2 we obtain that P [1/2] > 0, and we deduce that
πA > 1/2 (therefore, δ is well defined) and that there exists a positive θ such that for any
x < πA − δ, P [x] > θ. Using the continuity of polynomial functions with respect to their
coefficients, we deduce the following property conditioning on Σ̃ε and for ε small enough:

∀s ∈
[
TPε , T

P√
ε

]
, ∀ x ∈ (0, πA − δ) , P (s) [x] ≥ θ

2
> 0. (3.45)

Let us introduce

τ
(ε)
A := inf

{
t ≥ TPε ,

NAP (t)

NP (t)
≥ πA − δ

}
.

From (3.44) and (3.45), we thus obtain that, conditioning on Σ̃ε, for any t ∈ [TPε , (T
P
ε +

ln ln 1/ε) ∧ τ (ε)
A ]

πA − δ ≥
NAP (t)

NP (t)
≥ θ

4

(
ln ln 1/ε ∧ (τ

(ε)
A − T

P
ε )
)
− ε, (3.46)

with a probability higher than 1−
√
ε (ln 1/ε)b(1+β1). Since θ

4 ln ln 1/ε− ε converges to +∞
with ε, τ (ε)

A is smaller than TPε + ln ln 1/ε and so it is smaller than TP√
ε
with a probability

close to one (conditioning on Σ̃ε), as soon as ε is sufficiently small, according to (3.42).
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Finally, notice that each step of the process NAP (t)/NP (t) is smaller than (εK/C + 1)−1,
hence it is smaller than δ as soon as K is sufficiently large. Thus, after time τ (ε)

A , the process
will belong to the interval [πA − δ, πA + δ], at least for some times, if K is sufficiently large.
This ends the proof of Proposition 3.2.

�

3.2.2. Convergence of the dynamical system. In this section, we will study the behaviour of
the dynamical system (2.10) after the ’stochastic’ phase.

The following proposition states that the equilibrium without mutant is unstable under
condition (2.9), and Proposition 3.4 states the convergence of the solution to (2.10) under
suitable conditions.

Proposition 3.3. Assume that (2.9) holds. Then for every ρA ∈ [0, 1],
• the equilibrium (0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c) is unstable
• the branching process N̄ whose transition rates are given in (2.4) is supercritical

On the opposite, if (2.9) does not hold, the largest eigenvalue of the Jacobian matrix for (2.10)
is 0. In any case, the equilibrium (0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c) is non-hyperbolic.

Proof. We compute the Jacobian matrix of system (2.10) at the equilibrium (0, ρA(b −
d)/c, 0, (1− ρA)(b− d)/c), and obtain when reordering lines and columns (zAP , zaP , zAp, zap)

J = b
2

ρAβ1 − (1− ρA)
(
β2
2 + 1

)
−ρA

(
β2
2 − 1

)
−(1− ρA)

(
β2
2 − 1

)
(1− ρA)β1 − ρA

(
β2
2 + 1

) ∗

0 J̃ = −(b− d)

(
ρA ρa
ρA ρa

)


Therefore the eigenvalues of this matrix are the eigenvalues of the two sub-matrices J and J̃ .
The eigenvalues of J̃ are 0 and −(b− d) < 0.
Let us notice that the matrix J admits a positive eigenvalue if and only if either Tr(J) > 0
or ∆(J) < 0 where Tr(J) = b

2

(
β1 −

(
β2
2 + 1

))
∆(J) = b2

4

(
ρA(1− ρA)(β1 + β2)(β1 + 2)− β1

2 (β2 + 2)
)

We thus obtain that the equilibrium under consideration is unstable if one of the following
conditions is satisfied:

β1 >

(
β2

2
+ 1

)
or ρA(1− ρA) <

β1(β2 + 2)

2(β1 + β2)(β1 + 2)
.

But from a functional study, we can prove that the function β1 7→ β1(β2 +2)/(2(β1 +β2)(β1 +
2)) is larger than 1/4 for any β1 ∈]β2, β2/2 + 1]. This concludes the proof for the stability of
the equilibrium point (0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c). Concerning the bitype branching
process N̄, recall that J is also the mean matrix associated to it. As a consequence, N̄ is
supercritical if and only if the maximal eigenvalue of J is positive, and the conditions are the
same. �

Proposition 3.4. Let us consider an initial condition z0 such that zAp(0) > zap(0) and
zAP (0) > zaP (0). Let us furthermore assume that one of the following conditions is satisfied:

β1 > β2 or
zA(0)za(0)

z(0)2
<

β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (3.47)

Then the solution z(z0) of the system (2.10) converges as t→∞ toward

(((1 + β1)b− d)/c, 0, 0, 0).
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Proof. To prove the convergence we will consider the diversity at locus A/a using the quantity

D :=
zAza
z2

and prove that this quantity converges to 0. The differential equation followed by D is:

Ḋ =
b

z2

(
(zAP za + zAzaP )

(
D(β1 + 2β2)− β2

2

)
−Dβ1(zAP zA + naP za)

)
=

b

z2

(
(zAP za + zAzaP )

β2

2
(4D − 1)−Dβ1(zAP − zaP )2 −Dβ1(zAP − zaP )(zAp − zap)

)
≤ −Dbβ1

z2
(zAP − zaP )(zAp − zap),

(3.48)
since D is always less than 1/4. Let us introduce the function

Π(t) := (zAP (t)− zaP (t))(zAp(t)− zap(t)).

Under the assumption of Proposition 3.4, Π(0) > 0. We want to prove that Π(t) > 0 for all
t > 0. We start by computing the derivative of this quantity :

dΠ

dt
=2(b− d− cz)Π

+
b(zAp − zap)

z

[
β1(zAP (zAP +

zAp
2

)− zaP (zaP +
zap
2

)) + (zaP zAp − zAP zap)
]

+
b(zAP − zaP )

z

[
β1(zAp

zAP
2
− zap

zaP
2

)− (zaP zAp − zAP zap)
]
.

(3.49)

By reorganizing the terms, we find

dΠ

dt
=

(
2b− 2d+ bβ1

3zAP + 2zaP + zap
2z

− bzaP + zap
z

− 2cz

)
Π

+
bβ1

2z
[zAP (zAp − zap)2 + zap(zAP − zaP )2] +

b

z
[zaP (zAp − zap)2 + zap(zAP − zaP )2]

≥ (b− 2d− 2cz) Π.
(3.50)

We thus need information on the dynamics of z to conclude. From (2.10), we obtain

dz(t)

dt
= z(b− d− cz) + b

β1

z
(zAP zA + zaP za)− b

β2

z
(zAP za + zaP zA)

≤ z(t) (b(1 + β1)− d− cz(t)) .

In other words, for any t ≥ 0,

z(t) ≤ z(0) ∨ b(1 + β1)− d
c

.

Combining with (3.50) we deduce that as long as Π(t) > 0,

dΠ(t)

dt
≥
(
b− 2d− 2c

(
z(0) ∨ b(1 + β1)− d

c

))
Π(t),

and thus
Π(t) ≥ Π(0)e−Ct > 0, ∀t ≥ 0.

Combining this result with (3.48), we deduce that D is a positive and decreasing quantity
and converges to a nonnegative value where its derivative Ḋ vanishes. We deduce from the
fact that all three terms of the second line of (3.48) are negative that D(zAP − zaP )2 = 0.



22 CAMILLE CORON, MANON COSTA, FABIEN LAROCHE, HÉLÈNE LEMAN, AND CHARLINE SMADI

From Proposition A.1, the possible limits are the points

(0, 0, 0, 0), χAP :=

(
(1 + β1)b− d

c
, 0, 0, 0

)
,(

b(1 + (β1 − β2)/2)− d
2c

, 0,
b(1 + (β1 − β2)/2)− d

2c
, 0

)
,

and the line (
0, π

b− d
c

, 0, (1− π)
b− d
c

)
with π ∈ [1/2, 1].

The proof of Proposition A.1 (i) ensures that no positive trajectory converges to the null
point. Moreover, we proved that D is decreasing. As it starts from D(0) = zA(0)(z(0) −
zA(0))/z(0)2 < 1/4, the set of possible limits is thus restricted to the point χAP or the line(

0, π
b− d
c

, 0, (1− π)
b− d
c

)
, π ∈ [zA(0)/z(0), 1]. (3.51)

As D is decreasing, the trajectory cannot oscillate close to the line of (3.51). Hence, if it
approaches the line in large time, it should converge to a point of this line. Assume that it
converges to (0, π(b− d)/c, 0, (1− π)(b− d)/c). Note that, from Assumption (3.47),

β1 > β2 or π(1− π) ≤ D(0) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)

meaning that the equilibrium (0, π(b− d)/c, 0, (1− π)(b− d)/c) is unstable. Hence, from
Perron-Frobenius Theorem and Proposition 3.3, there exists (γ1, γ2) left positive principal
eigenvector of the matrix J (see the proof of Proposition 3.3) which is positive and associated
to a positive eigenvalue λ. Using similar computations, we obtain that in the neighbourhood
of (0, π(b− d)/c, 0, (1− π)(b− d)/c)

γ1żAP + γ2żaP ≥
λ

2
(γ1zAP + γ2zaP ).

Thus, as soon as zAP and zaP are not equal to 0, the quantity γ1zAP +γ2zaP will grow expo-
nentially fast when the trajectory is close to (0, π(b− d)/c, 0, (1− π)(b− d)/c), and therefore
it cannot converge to this state. �

3.3. Extinction. After the deterministic phase, the process is close to the state ((b(β1 +1)−
d)/c, 0, 0, 0). In this subsection, we are interested in estimating the time before the extinction
of all but AP -individuals in the population. We also need to check that the AP -population
size stays close to its equilibrium during this extinction time. We recall here the definition
of the set Sε and the stopping time TSε in (2.11) and (2.12), respectively:

Sε :=

[
b(1 + β1)− d

c
− ε, b(1 + β1)− d

c
+ ε

]
× {0} × {0} × {0},

TSε := inf{t ≥ 0,ZK(t) ∈ Sε}.

Proposition 3.5. There exist two positive constants ε0 and C0 such that for any ε ≤ ε0, if
there exists η ∈]0, 1/2[ that satisfies∣∣∣∣ZAP (0)− b(1 + β1)− d

c

∣∣∣∣ ≤ ε and ηε/2 ≤ ZAp(0) + Zap(0) + ZaP (0) ≤ ε/2,

then
for all C > 2/(bβ1) + C0ε, P (TSε ≤ C log(K)) →

K→+∞
1,

for all 0 ≤ C < 2/(bβ1)− C0ε, P (TSε ≤ C log(K)) →
K→+∞

0.
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Proof. This proof is very similar to the proof of Proposition 4.1 in [8]. We thus only detail
parts of the proof that are significantly different.

Following these ideas, we prove that as long as the sum ZAp + Zap + ZaP is small (lower
than ε), the process ZAP stays close to (b(1 + β1)− d)/c.

Then, we can bound the death and birth rates of ZAp, Zap and ZaP under the previous
approximation and compare the dynamics of these three processes with the ones of(

NAp(t)
K

,
Nap(t)
K

,
NaP (t)

K
, t ≥ 0

)
,

where (NAp,Nap,NaP ) ∈ N3 is a three-types branching process with types Ap, ap and aP
and such that

• any Ap-individual gives birth to a Ap-individual at rate b(2 + β1)/2,
• any aP -individual gives birth to a aP -individual at rate b(1− β2),
• any individual gives birth to a ap-individual at rate b(2− β2)/4,
• any individual dies at rate b(1 + β1).

The goal is thus to estimate the extinction time of such a sub-critical three type branching
process. According to [2] p. 202 and Theorem 3.1 in [15],

P
(

(NAp(t),Nap(t),NaP (t)) = (0, 0, 0)
)

= (1−c1e
rt)ZAp(0)K(1−c2e

rt)Zap(0)K(1−c3e
rt)ZaP (0)K ,

(3.52)
where c1, c2 and c3 are three positive constants and r is the largest eigenvalue of

b

2

−β1 1− β2
2 0

0 −2β1 − 1− β2
2 0

0 1− β2
2 −2β1 − 2β2

 ,

which is r = −bβ1/2. From (3.52), we deduce that the extinction time is of order (2/bβ1) logK
when K tends to +∞ by arguing as in step 2 in the proof of Proposition 4.1 in [8]. This
concludes the proof. �

3.4. Proof of Theorem 1. The proof strongly relies on the coupling (3.33). More precisely,
we consider a trajectory of N̄ (defined in (2.3)) coupled with the mutant process. The random
variable B of Theorem 1 is then defined as

B := 1{T̄0=∞},

which equals 1 if the process N̄ survives and 0 otherwise. In particular, B is indeed a
Bernoulli random variable with parameter 1 − qα where α ∈ A is the genotype of the first
mutant individual.
Let the function η be defined as in Proposition 3.1. The convergence in probability claimed
in (2.14) is equivalent to

lim inf
K→∞

P

(∥∥∥∥∥
(
TSµ ∧ TP0

lnK
,1{TSµ<TP0 }

)
−
(

1

λ
+

2

bβ1
, 1

)
B

∥∥∥∥∥
1

≤ η(ε)

)
≥ 1 + oε(1). (3.53)

As ε is as small as we need, we can assume without loss of generality that η(ε) < 1. In
the sequel, we divide the probability into two terms according to the values of B using that
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{B = 1} = {T̄0 = +∞}, we obtain

P

(∥∥∥∥∥
(
TSµ ∧ TP0

lnK
,1{TSµ<TP0 }

)
−
(

1

λ
+

2

bβ1
, 1

)
B

∥∥∥∥∥
1

≤ η(ε)

)

= P
(∣∣∣∣ TSµlnK

−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ η(ε), TSµ < TP0 , T̄0 = +∞
)

+ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ η(ε), TP0 < TSµ , T̄0 < +∞
)

=: F(K, ε) + G(K, ε).

(3.54)

Let us first consider G(K, ε), which is simpler to deal with and which represents the case of
extinction of P -individuals. We introduce A0, C > 2, δ > 0 and z(0) as in Propositions 3.1,
3.2 and 3.4. First of all, notice that

G(K, ε) ≥ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ η(ε), TP0 < TSµ , T̄0 < +∞, TP0 < TPε ∧RA0ε ∧ Uε1/6
)
.

Then if ε is chosen small enough such that ε < ((b(1 + β1)− d)/c− µ) ∧ zp(0)/A0 and
considering our initial conditions, we have

TPε ∧RA0ε ∧ Uε1/6 < TSµ a.s.,

hence {
TP0 < TSµ , T

P
0 < TPε ∧RA0ε ∧ Uε1/6

}
=
{
TP0 < TPε ∧RA0ε ∧ Uε1/6

}
a.s.

and

G(K, ε) ≥ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ η(ε), T̄0 < +∞, TP0 < TPε ∧RA0ε ∧ Uε1/6
)
. (3.55)

Moreover from (3.32) to (3.35), and reasoning as in (3.35) to(3.38), we obtain

lim sup
K→∞

P
({
T̄0 <∞

}
4
{
TP0 < TPε ∧RA0ε ∧ Uε1/6

})
= oε(1) (3.56)

and

lim sup
K→∞

P
({
T̄0 <∞

}
4
{
T

(ε,+)
0 < T (ε,+)

∞

})
= oε(1).

In addition with (3.55), we thus deduce

lim inf
K→∞

G(K, ε) ≥ lim inf
K→∞

P
(∣∣∣∣λTP0lnK

∣∣∣∣ ≤ η(ε), T
(ε,+)
0 < T (ε,+)

∞

)
+ oε(1)

≥ lim inf
K→∞

P

(∣∣∣∣∣λT (ε,+)
0

lnK

∣∣∣∣∣ ≤ η(ε), T
(ε,+)
0 < T (ε,+)

∞

)
+ oε(1)

≥ lim inf
K→∞

P
(
T

(ε,+)
0 < T (ε,+)

∞

)
+ oε(1) = qα + oε(1),

(3.57)

where the second inequality comes from coupling (3.33). This allows the case of extinction
to be processed.
Let us now deal with F(K, ε), which represents the case of survival and invasion of P -
individuals. Firstly, reasoning as for (3.56) but with ξ = 1/2, we can get

lim sup
K→∞

P
({
T̄0 =∞

}
4
{
TP√ε < TP0 ∧RA0ε ∧ Uε1/6

})
= oε(1).
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Hence

lim inf
K→∞

F(K, ε) =

lim inf
K→∞

P
(∣∣∣∣ TSµlnK

−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ η(ε), TSµ < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6

)
+ oε(1).

(3.58)

We introduce two sets for any ε > 0, µ > 0,

K1
ε = [πA − δ, πA + δ]×

[ ε
C
,
√
ε
]
×
[
ρA − ε1/6, ρA + ε1/6

]
×
[
b− d
c
−A0ε,

b− d
c

+A0ε

]
,

K2
µ =

[
b(1 + β1)− d

c
− µ

2
,
b(1 + β1)− d

c
+
µ

2

]
×
[
0,
µ

2

]3
.

as well as the stopping times

T 1
ε = inf

{
t ≥ 0,

(
NAP (t)

NP (t)
,
NP (t)

K
,
NAp(t)

Np(t)
,
Np(t)

K

)
∈ K1

ε

}
,

T 2
µ = inf

{
t ≥ T 1

ε , Z
K(t) ∈ K2

µ

}
.

Our aim is essentially to prove that the only path to Sµ is through K1
ε and K2

µ, as presented
in the introduction of the paper. Then, using the Markov property and the previous propo-
sitions, we want to estimate TSµ , by dividing [0, TSµ ] into three parts: [0, T 1

ε ], [T 1
ε , T

2
µ ] and

[T 2
µ , TSµ ]. From (3.58),

lim inf
K→∞

F(K, ε)

≥ lim inf
K→∞

P
( ∣∣∣∣ TSµlnK

−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ η(ε),

TSµ < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6 , T

2
µ < TSµ

)
+ oε(1)

≥ lim inf
K→∞

P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ η(ε)

3
,

∣∣∣∣∣T 2
µ − T 1

ε

lnK

∣∣∣∣∣ ≤ η(ε)

3
,

∣∣∣∣∣TSµ − T 2
µ

lnK
− 2

bβ1

∣∣∣∣∣ ≤ η(ε)

3
,

TSµ < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6 , T

2
µ < TP0 ∧ TSµ

)
+ oε(1)

Then, since for ε sufficiently small, RA0ε∧Uε1/6 ≤ TSµ a.s. and using the Markov property
at times T 2

µ and T 1
ε we obtain

lim inf
K→∞

F(K, ε)

≥ lim inf
K→∞

[
P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ η(ε)

3
, T 1

ε < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6

)
× inf

z(0)∈K1
ε

P
( ∣∣∣∣∣ T 2

µ

lnK

∣∣∣∣∣ ≤ η(ε)

3
, T 2

µ < TP0

∣∣∣∣Z(0) = z(0)

)
× inf

z(0)∈K2
µ

P
( ∣∣∣∣ TSµlnK

− 2

bβ1

∣∣∣∣ ≤ η(ε)

3
, TSµ < TP0

∣∣∣∣Z(0) = z(0)

)]
+ oε(1).

(3.59)

To complete the proof it remains to show that r.h.s of (3.59) is close to 1− qα when K goes
to ∞ and ε is small. Let us start with the first term. Our aim is to prove that

lim inf
K→∞

P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ η(ε)

3
, T 1

ε < TP0 , T
P√
ε < TP0 ∧RA0ε ∧Uε1/6

)
= 1− qα + oε(1). (3.60)
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To this aim, let us notice that the following series of inequalities holds:

P
(∣∣∣∣ λT 1

ε

lnK
− 1

∣∣∣∣ ≤ η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6
)

≥ P

(∣∣∣∣∣ λT 1
ε

lnK
−
λTP√

ε

lnK

∣∣∣∣∣ ≤ η(ε)

2
,

∣∣∣∣∣λT
P√
ε

lnK
− 1

∣∣∣∣∣ ≤ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)

≥ P

(
λTP√

ε

lnK
− λTPε

lnK
≤ η(ε)

2
, TPε ≤ T 1

ε ≤ TP√ε,

∣∣∣∣∣λT
P√
ε

lnK
− 1

∣∣∣∣∣ ≤ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
Now, if A,B,C and D are events, we have

P(A ∩B ∩ C ∩D) = P(C ∩D)− P
(
(A ∩B)C ∩ C ∩D)

)
≥ P(C ∩D)− P

(
AC ∩D

)
− P

(
BC ∩D

)
.

Applying this to the previous series of inequalities yields

P
(∣∣∣∣ λT 1

ε

lnK
− 1

∣∣∣∣ ≤ η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6
)
≥

P
(∣∣∣∣λT√εlnK

− 1

∣∣∣∣ ≤ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
− P

(
λTP√

ε

lnK
− λTPε

lnK
≥ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
− P

(
T 1
ε /∈

[
TPε , T

P√
ε

]
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
(3.61)

Proposition 3.1 implies that the first term in the right hand side of (3.61) satisfies

lim inf
K→∞

P

(∣∣∣∣∣ T
P√
ε

lnK
− 1

λ

∣∣∣∣∣ ≤ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
≥ 1− qα − oε(1).

From Lemma A.2, we deduce that the second term of the right hand side of (3.61) satisfies

lim inf
K→∞

P

(
λTP√

ε

lnK
− λTPε

lnK
≥ η(ε)

2
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
= oε(1).

Finally Proposition 3.2 implies that the last term of the right hand side of (3.61) satisfies:

lim inf
K→∞

P
(
T 1
ε /∈

[
TPε , T

P√
ε

]
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
= oε(1).

This leads to (3.60).
Then we deal with the second term of (3.59) by using Proposition 3.4. Using the continuity of
flows of the dynamical system (2.10) with respect to the initial condition and the convergence
given by Proposition 3.4, we get that there exist ε0, δ0 > 0 such that for all ε ≤ ε0, δ ≤ δ0,
there exists a tµ,δ,ε > 0 such that for all t ≥ tµ,δ,ε∥∥∥∥z(z0)(t)−

(
b(1 + β1)− d

c
, 0, 0, 0

)∥∥∥∥
∞
≤ µ

4
,

for every initial condition z0 = (z0
AP , z

0
aP , z

0
Ap, z

0
ap) such that (zAP /zP , zP , zAp/zp, zp) belongs

to K1
ε .

Now using Lemma 2.1, we get that for any µ > 0, and ε < ε0,

lim
K→∞

P
(
T 2
µ − T 1

ε ≤ tν,δ,ε|Z(0) ∈ K1
ε

)
= 1.
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In other words, the second term of (3.59) is close to 1 when K converges to∞ and ε is small.

Finally, we deal with the third term of (3.59). Applying Proposition 3.5 we obtain that
there exists µ0 (defined by ε0 in Proposition 3.5) such that for µ < µ0 and ε small enough,

lim
K→∞

P

(∣∣∣∣ TSµlnK
− 2

bβ1

∣∣∣∣ ≤ η(ε)

3

∣∣∣∣∣Z(0) ∈ K2
µ

)
= 1. (3.62)

By combining (3.60), the convergence of the second term of (3.59) to 1 and (3.62), we get

lim inf
K→∞

F(K, ε) ≥ 1− qα + oε(1).

In addition with (3.57) and (3.54), we deduce (3.53). Finally (2.15) derives from (3.5) which
ends the proof of Theorem 1.

Appendix A. Technical results

A.1. Equilibria of dynamical system (2.10). In this section, we study the existence and
the stability of some equilibria of the dynamical system (2.10). For the sake of readability,
we explicitly rewrite the dynamical system below

żAP = bzAP + b
z

[
β1zAP

(
zAP +

zAp
2

)
− β2

(
zAP

(
zaP +

zap
4

)
+ zAp

zaP
4

)]
+ b

2z (zaP zAp − zAP zap)− (d+ cz)zAP
żAp = bzAp + b

z

[
β1zAp

zAP
2 − β2

(
zAp

zaP
4 + zAP

zap
4

)]
− b

2z (zaP zAp − zAP zap)− (d+ cz)zAp
żaP = bzaP + b

z

[
β1zaP

(
zaP +

zap
2

)
− β2

(
zaP

(
zAP +

zAp
4

)
+ zap

zAP
4

)]
+ b

2z (zAP zap − zaP zAp)− (d+ cz)zaP
żap = bzap + b

z

[
β1zap

zaP
2 − β2

(
zap

zAP
4 + zaP

zAp
4

)]
− b

2z (zAP zap − zaP zAp)− (d+ cz)zap

(A.1)

where z = zAP + zAp + zaP + zap is the total size of the population.

Proposition A.1. The dynamical system (A.1) admits the following equilibria, with at least
a null coordinate:

(i): The state (0, 0, 0, 0), which is unstable.
(ii): Any state where only allele p remains at locus 2,(

0, ρ
b− d
c

, 0, (1− ρ)
b− d
c

)
, ρ ∈ [0, 1].

The stability of these equilibria has been studied in Proposition 3.3.
(iii): The three following states for which only allele P remains at locus 2

χAP =

(
(1 + β1)b− d

c
, 0, 0, 0

)
, χaP =

(
0, 0,

(1 + β1)b− d
c

, 0

)
and (

b(1 + (β1 − β2)/2)− d
2c

, 0,
b(1 + (β1 − β2)/2)− d

2c
, 0

)
.

The first two equilibria are stable, whereas the last one is unstable.

Proof. (i): The state (0, 0, 0, 0) is an equilibrium, from Equation (A.1). To prove that
it is unstable, let us consider ε > 0 and assume that the initial condition z0 satisfies
z(0) = ||z0||1 ≤ ε. We denote by tε = inf{t ≥ 0, z(t) > ε} which would be infinite if
z lies in the basin of attraction of (0, 0, 0, 0). From (A.1), we find

żA − ża = (b− d− cz) (zA − za) +
bβ1

z
(zAP zA − zaP za).
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Thus, we obtain that ∀t ≤ tε,
żA − ża ≥ (zA − za)(b− d− cε)− bβ1ε.

Let φ be the unique solution to the linear differential equation

φ̇ = φ(b− d− cε)− bβ1ε.

Then

φ(t) = (φ(0)− ε(b− d− cε)−1)e(b−d−cε)t + bβ1ε(b− d− cε)−1.

Using classical results on differential inequalities we deduce that if (zA−za)(0) = φ(0)
then for all t ≤ tε, z(t) ≥ (zA − za)(t) ≥ φ(t). Since for ε small enough φ(t)→∞ as
t→∞, we deduce that tε is finite. In other words, (0, 0, 0, 0) is unstable.

(ii): Let us assume that zAP = zaP = 0. Then, (A.1) can be reduced to{
żAp = (b− d− cz)zAp
żap = (b− d− cz)zap.

Therefore, the set of points (0, zAp, 0, (b− d)/c− zAp) with zAp ∈ [0, (b− d)/c] corre-
sponds to the set of non null equilibria such that zAP = zaP = 0.

(iii): Let us assume that zAp = zap = 0. Then from (A.1),

żAP = 0 = zAP

(
(b− d− cz) +

bβ1

z
zAP −

bβ2

z
zaP

)
, (A.2)

and

żaP = 0 = zaP

(
(b− d− cz) +

bβ1

z
zaP −

bβ2

z
zAP

)
. (A.3)

If zAP = 0, then zaP = ((1 + β1)b− d)/c, and similarly when exchanging A and a.
For these equilibria, the eigenvalues of the Jacobian matrix are:(

−bβ1

2
,−b(β1 + β2),− b

4
(2 + 4β1 + β2),−b(1 + β1) + d

)
.

Since b > d, these eigenvalues are negative and these equilibria are therefore stable.
If zAP > 0 and zaP > 0 then by dividing (A.2) by zAP and (A.3) by zaP and

making the difference between both expressions, we get:
b

z
(β1 + β2) (zAP − zaP ) = 0.

Then

zAP = zaP =
b(1 + (β1 − β2)/2)− d

2c
from (A.2).

The eigenvalues of the Jacobian matrix in this equilibrium are:(
b

2
(β1 + β2),

b

4
(β2 − β1),− b

4
(2 + β1 − 2β2),− b

2
(2 + β1 − β2) + d

)
.

The first eigenvalue is positive, therefore this equilibrium is unstable.
We finally show that there is no other equilibrium with at least a null coordinate. To this

aim, we first consider the case where za = 0. Then

żA = (b− d− cz)zA +
bβ1

z
zAP zA = 0,

and zA = 0 (which is the trivial equilibrium (i)) or b− d− cz + bβ1zAP /z = 0. In the second
case, from the equation satisfied by zAP , we deduce that bβ1zAP zAp/(2z) = 0. Hence either
zAP = 0 or zaP = 0 (which corresponds to Equilibrium (ii)). Similar equilibria are retrieved
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by assuming zA = 0.

Finally consider the case where zap = 0. Then from the equation satisfied by zap given in
(A.1),

żap = 0 =
b

2z
zaP zAp(1−

β2

2
).

Therefore zaP = 0 (then za = 0 which corresponds to the case that has just been consid-
ered) or zAp = 0 (which corresponds to Equilibrium (iii)). Similar arguments can be made
assuming zAp = 0 or zaP = 0 or zAP = 0.

�

A.2. Proof of Proposition 2.1. In the particular case where ρA = 1, the transition rates
of the bitype branching process N̄ are equal to

β̄AA =
b

2
(2 + β1), β̄aa = β̄aA =

b

2

(
1− β2

2

)
and β̄Aa = 0,

and the system (2.7) giving the extinction probabilities of the branching process N̄ takes the
simpler form:

uA(sA, sa) = b(1− sA) +
b

2
(2 + β1)(s2

A − sA)

ua(sA, sa) = b(1− sa) +
b

2

(
1− β2

2

)
(s2
a − sa) +

b

2

(
1− β2

2

)
(sAsa − sa).

Recall that the extinction probabilities we are looking for are the smallest solution to uα(sA, sa) =
0, α ∈ A. We easily obtain from the first, linear, equation an expression of qA. Then replac-
ing it with its expression in the second equation gives that qa is the root of a second order
polynomial function. This gives the result.

A.3. Probabilistic technical results.

Lemma A.1. Let (N̄A, N̄a) be a two type supercritical birth and death process. We recall
that, for α ∈ A, qα is the extinction probability of the process when the initial individual is of
type α

qα = P
(
∃t > 0, N̄A(t) + N̄a(t) = 0

∣∣∣(N̄A(0), N̄a(0)) = eα

)
< 1,

where we denote by (eA, ea) the canonical basis of R2. Let C > 2 satisfying

C

(
max{qA, qa}

C − 1

)1−1/C

< 1. (A.4)

Then
lim
k→∞

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
= 0,

where the stopping time Sl is defined for any l ∈ N by

Sl := inf{t ≥ 0, N̄A(t) + N̄a(t) = l}.

Proof. Let us first remark that it is possible to choose such a constant C > 2 since the map
x 7→ x(max(qA, qa)/(x− 1))1−1/x is continuous and goes to max(qA, qa) < 1 as x→∞.
There are initially k individuals and we want to lower bound the probability that the pop-
ulation size reaches bk/Cc. If this happens at a finite time, then it means that, at least,
k − bk/Cc individuals alive at time 0 have a finite line of descent. But we know that each
individual has a finite line of descent with a probability smaller than q := max(qA, qa). Then
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using the branching property, the probability that exactly i initial individual out of k have a
finite line of descent is smaller than

(
k
i

)
qi(1− q)k−i. Hence

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
≤

k∑
i=k−bk/Cc

(
k

i

)
qi(1− q)k−i.

Since i 7→ qi and i 7→
(
k
i

)
are decreasing functions as soon as i ≥ k/2 , we deduce that for

C > 2 and k large

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
≤
(

k

k − bk/Cc

)
qk−bk/Cc

k∑
i=k−bk/Cc

(1− q)k−i

≤ 1

q

k!

(bk/Cc)!(k − bk/Cc)!
qk−bk/Cc.

Moreover, using Stirling’s formula we get
k!

(bk/Cc)!(k − bk/Cc)!
qk−bk/Cc

∼
k→∞

√
kkkqk−bk/Cc√

2πbk/Cc(k − bk/Cc)bk/Ccbk/Cc(k − bk/Cc)k−bk/Cc

∼
k→∞

√
C

2πk(1− 1/C)

(
kq

k − bk/Cc

)k ( k − bk/Cc
bk/Cc(1− λA ∧ λa)

)bk/Cc
→
k→∞

0,

under assumption (A.4). This ends the proof. �

Lemma A.2. Let us consider a one dimensional pure birth process X with birth rate b.
Denote for k > 0 by τk the hitting time of bkc by the process X. Then there exists a finite C
such that

lim sup
K→∞

P
(
τ√εK < τεK + ln ln 1/ε

)
≤ C
√
ε(ln 1/ε)b.

Proof. Using the Markov property of the process, we find

P
(
τ√εK < τεK + ln ln 1/ε

)
= P

(
τ√εK < ln ln 1/ε

∣∣∣X(0) = bεKc
)

= P
(
X(τ√εK)e−bτ

√
εK > b

√
εKc(ln 1/ε)−b

∣∣∣X(0) = bεKc
)
.

Now using Markov Inequality and the fact that conditioning on {X(0) = bεKc}, X(t)e−bt is
a martingale with expectation bεKc, we obtain

P
(
τ√εK < τεK + ln ln 1/ε

)
≤ bεKc
b
√
εKc(ln 1/ε)−b

∼
√
ε(ln 1/ε)b, for K →∞.

This concludes the proof. �

Lemma A.3. Let us consider a family of two-type branching processes (N̄ ε
A, N̄

ε
a , ε ∈ R) whose

transition rates are given by

(N̄ ε
A, N̄

ε
a)→ (N̄ ε

A + 1, N̄ ε
a) at rate bεAAN̄

ε
A + bεaAN̄

ε
a ,

(N̄ ε
A, N̄

ε
a)→ (N̄ ε

A, N̄
ε
a + 1) at rate bεAaN̄

ε
A + bεaaN̄

ε
a ,

(N̄ ε
A, N̄

ε
a)→ (N̄ ε

A − 1, N̄ ε
a) at rate dεN̄ ε

A,

(N̄ ε
A, N̄

ε
a)→ (N̄ ε

A, N̄
ε
a − 1) at rate dεN̄ ε

a ,

and let us denote by qε = (qεA, q
ε
a) the extinction probabilities of the process N̄ ε with initial

state an individual of type A or a.
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(i) Let us assume that the functions ε 7→ bεi > 0 for i ∈ A2 (resp ε 7→ dε > 0) are of class
Ck for k ≥ 0 in ε = 0 and that the process (N̄0

A, N̄
0
a ) is supercritical. Then the application

ε 7→ qε is of class Ck in ε = 0.
(ii) Let us assume furthermore that the functions ε 7→ bεi > 0 for i ∈ A2 (resp ε 7→ dε > 0) are
non decreasing (resp. non increasing), and consider ε1 ≤ ε2 then the extinction probabilities
qi = (qεiA , q

εi
a ) (i ∈ {1, 2}) of the two branching processes (N̄ εi

A , N̄
εi
a ) satisfy

q1 ≤ q2,

where the inequality applies to both coordinates.

Proof. (i) The proof relies on Theorem 6.2 of [1] that considers multi-type discrete time
branching processes. The process (N̄ ε

A, N̄
ε
a , ε ∈ R) is a continuous time multi-type linear

birth-and-death process in which for all α1, α2 ∈ A0, individuals with genotype α1 die at rate
dε and produce an offspring with genotype α2 at rate bεα1,α2

. For all α1, α2 ∈ A0, the random
variable Nα1,α2 giving the number of offsprings of type α2 of a given individual of type α1

satisfies

P(Nα1,α2 = k) =

(
bεα1α2

bεα1A
+ bεα1a + dε

)k
dε

bεα1A
+ bεα1a + dε

which is assumed to be Ck in ε at 0. Let us consider the discrete time stochastic process
with values in N2 giving the number of individuals of each type at each generation, whose
extinction probability is equal to qε. Then for any (sA, sa) ∈ [0, 1)2,

E(s
Nα,A
A s

Nα,a
a ) =

dε

bεαA + bεαa + dε − bεαAs1 − bεαas2
.

To apply Theorem 6.2 of [1], we therefore need to find s = (sA, sa) ∈ [0, 1)2 such that

E(s
Nα,A
A s

Nα,a
a ) < sα for all α ∈ A.

This condition is sufficient to check Assumption 6.1 of [1] (in which α is now denoted (s1, s2))
because we use here the particular framework of constant environment. Therefore, by taking

s̃α =
E(s

Nα,A
A s

Nα,a
a ) + sα
2

,

we get
E(s

Nα,A
A s

Nα,a
a ) < s̃α < sα for all α ∈ A2

which is exactly Assumption 6.1 of [1]. For any (s1, s2) ∈ [0, 1)2, let

φ(s1, s2) = (s1(b11 + b12 + d− s1b11 − s2b12)− d, s2(b21 + b22 + d− s1b21 − s2b22)− d).

We have φ(1, 1) = (0, 0) and we seek (s1, s2) ∈ [0, 1)2 such that φ(s1, s2) > (0, 0) where
the inequality applies to both coordinates. This is possible if the jabobian matrix of the
application φ in (1, 1) which is equal to(

d− b11 −b12

−b21 d− b22

)
has a negative eigenvalue and this condition is equivalent to the supercriticality of the process
(N̄0

A, N̄
0
a ).

(ii) The proof relies on a coupling argument. Let us construct the two processes using the
same Poisson point measures. Then we have that almost surely

N̄1
A ≥ N̄2

A and N̄1
a ≥ N̄2

a .

Therefore, for every t ≥ 0,
P(N̄1(t) = 0) ≤ P(N̄2(t) = 0),
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which gives the result, by letting t→∞.
�

Appendix B. Table for birth rates

In this table we present the birth rates and the possible offspring of every couples in the
population. When a P individual is involved, we differentiate whether it is the choosing
parent (1st parent) or the chosen one (2nd parent). Let us briefly recall how the table is
constructed.
For the possible offspring, we assume Mendelian reproduction meaning that for each gene
independently an allele is chosen at random among the two alleles of the parent. As an
example, in a mating AP × Ap the offspring will necessary receive allele A and then choose
with equal probability between p and P , and we note in the third column 1/2AP and 1/2Ap.
For the birth rate of the same couple, since the choosing parent carries allele P , mating occurs
with a preference at rate b(1 + β1) since both parent carry allele A.

1st parent 2nd parent Descendant Rate
Ap Ap Ap b

nApnAp

n

ap ap ap b
napnap

n

ap Ap 1
2ap b

napnAp

n
1
2Ap b

napnAp

n

Ap ap 1
2ap b

napnAp

n
1
2Ap b

napnAp

n

AP AP AP b(1 + β1)nAPnAP

n

aP aP aP b(1 + β1)naPnaP

n

aP AP 1
2aP b(1− β2)naPnAP

n
1
2AP b(1− β2)naPnAP

n

AP aP 1
2aP b(1− β2)naPnAP

n
1
2AP b(1− β2)naPnAP

n

AP Ap 1
2AP b(1 + β1)

nAPnAp

n
1
2Ap b(1 + β1)

nAPnAp

n

Ap AP 1
2AP b

nAPnAp

n
1
2Ap b

nAPnAp

n

aP ap 1
2aP b(1 + β1)

naPnap

n
1
2ap b(1 + β1)

naPnap

n

ap aP 1
2aP b

naPnap

n
1
2ap b

naPnap

n

AP ap 1
4AP b(1− β2)

nAPnap

n
1
4Ap b(1− β2)

nAPnap

n
1
4aP b(1− β2)

nAPnap

n
1
4ap b(1− β2)

nAPnap

n

ap AP 1
4AP b

nAPnap

n
1
4Ap b

nAPnap

n
1
4aP b

nAPnap

n
1
4ap b

nAPnap

n

aP Ap 1
4AP b(1− β2)

naPnAp

n
1
4Ap b(1− β2)

naPnAp

n
1
4aP b(1− β2)

naPnAp

n
1
4ap b(1− β2)

naPnAp

n

Ap aP 1
4AP b

naPnAp

n
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1st parent 2nd parent Descendant Rate
1
4Ap b

naPnAp

n
1
4aP b

naPnAp

n
1
4ap b

naPnAp

n

Table 1. This table gives the rates at which two parents with given genotypes
give birth to an offspring with given genotype, for all possible values of these
genotypes. By convention, the first parent is assumed to be responsible for
homogamy, when carrying allele P .
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