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Abstract—Uncertainty in the upcoming production of photo-
voltaic (PV) plants is a challenge for grid operations and also
a source of revenue loss for PV plant operators participating
in electricity markets, since they have to pay penalties for the
mismatch between contracted and actual productions. Improving
PV predictability is an area of intense research. In real-world
applications, forecasts are often needed for different time frames
(horizon, update frequency, etc.) and are derived by dedicated
models for each time frame (i.e. for day ahead and for intra-
day trading). This can result in both different forecasted values
corresponding to the same horizon and discontinuities among
time-frames. In this paper we address this problem by proposing
a novel seamless probabilistic forecasting approach able to cover
multiple time frames. It is based on the Analog Ensemble (AnEn)
model, however it is adapted to consider the most appropriate
input for each horizon from a pool of available input data. It is
designed to be able to start at any time of day, for any forecast
horizon, making it well-suited for applications like continuous
trading. It is easy to maintain as it adapts to the latest data
and does not need regular retraining. We enhance short-term
predictability by considering data from satellite images and in
situ measurements. The proposed model has low complexity
compared to benchmark models and is trivially parallelizable.
It achieves performance comparable to state-of-the-art models
developed specifically for the short term (i.e. up to 6 hours) and
the day ahead. The evaluation was carried out on a real-world
case comprising three PV plants in France, over a period of one
year.

Index Terms—Analog-Ensemble Model, Photovoltaics, Proba-
bilistic Forecasting, Satellite Imagery

I. INTRODUCTION

N recent years, continuous reduction of the cost of photo-

voltaic (PV) panels together with favorable policies have
been the main drivers behind increased PV installation in
electricity grids. However, weather-dependent PV production
brings several challenges for grid operators. Accurate forecasts
of the power output of PV plants are necessary to maintain
economic and secure operation of the power system. Equally,
PV producers and aggregators participating directly in elec-
tricity markets attempt to avoid financial penalties for any
imbalances due to a mismatch between what they propose to
the market and what they actually produce.
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In practice, decisions are often made over different cycles,
i.e. trading on the day-ahead market requires models able to
provide forecasts for the medium term (up to 48h ahead),
while improving positions on the intraday market or managing
coupled storage devices calls for short- or very short-term
forecasting models (i.e. up to 6h ahead or minutes ahead
respectively). For each time frame, dedicated models are
employed that use as input the data sources that best contribute
to performance during that particular frame. The operators
or decision-support tools are presented with (probabilistic)
forecasts from different models that are not always com-
patible, due to either discontinuities between time frames,
or differences in the forecast values that correspond to the
same horizon. In this paper we address this technical issue
by proposing a forecasting approach independent of the time
frame. This requires, however, that its performance must not
be lower than that of the state-of-the-art models specifically
developed for each time frame. The motivation goes beyond
the above- mentioned technical issue, since the proposed
approach simplifies the overall prediction model chain and
thus makes easier the deployment of predictive analytics in a
context of large-scale penetration of renewable energy sources.
It is much easier for RES producers to employ just one
model for all of their forecasting needs. Although the proposed
approach is applicable for the case of other weather-dependent
renewables, we focus here on PV prediction, since the state
of the art comprises much more distinct approaches developed
for short and medium time frames.

The state of the art in solar power forecasting has devel-
oped rapidly in recent years. Reference [1] provides a fairly
complete literature review of research in the field.

The features used as inputs are largely dependent on the
forecast horizon. Short-term forecasting (0-6 hours) mostly
employs endogenous data, although input from Numerical
Weather Predictions (NWP) and meteorological records can
be used [2]. Works considering satellite imagery appear [3]
and[4], while data from neighboring PV plants can be em-
ployed in spatio-temporal models [5]. Data from sky imagers
are also useful for the very short term (up to a few minutes)[6],
but harder to apply as they require significant preprocessing
work. For the medium-term (up to few days ahead), forecasts
mostly rely on NWPs. Regarding forecasting techniques, linear
auto-regressive models are popular, as they are light and
can issue forecasts at any time of the day using the same
model [7]. Numerous machine learning models are also used,
such as Artificial Neural Networks (ANN) [7] and Support
Vector Machines (SVM) [8]. Recently, several new methods
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have emerged. The Extreme Learning Machine (ELM) is
a fairly popular variant of ANN [9], [10], [11]. Gaussian
Process Regression (GPR) [12] and Markov Chain (MC) [13]
models are also becoming more frequent in the literature. The
global forecasting competition GEFCOM 2014 [14] showed
that the most efficient algorithms were often non-parametric,
such as Quantile Regression Forests (QRF) [15] and Gradient
Boosting (GB) [16]. However, [17] performed a comparison of
several non-parametric models and found that the performance
difference between the tested models was low.

To achieve the objectives we defined above for a unique
model over different time frames, we propose a model based
on the Analog Ensemble (AnEn) family. These models look
for historical situations with similar weather to the current
conditions to generate a set of likely values (analogs) for
the physical quantity to be forecast. A distribution can then
be computed from this set of likely values. The base AnEn
model that is extended in this paper was described in [18],
where past NWPs are used to forecast 10-m wind speed and
2-m temperature. In [19], the authors implemented a model in
which they also looked for analogs using NWPs, but applying
a different metric than that of [18].

In [20], the authors used the AnEn model to forecast
probabilistic PV power for three large power plants. They
emphasized the very low computational time needed to pro-
duce the forecasts compared to other models. Several papers
have also proposed corrections or adaptations of the AnEn
model to obtain better forecasts. Reference [21] proposed
a modification of the Euclidian distance frequently used as
a metric to evaluate analogs and used measures along with
NWP to search for analogs. This reduced the forecast horizon,
making it necessary to run the model multiple times to obtain
a complete forecast. In [22] a 20 % improvement over the
standard AnEn model with a brute-force optimization of the
parameters was demonstrated. Several algorithmic variations
of the AnEn ensemble, along with a dynamic way of selecting
the number of analogs to retain in the ensemble, and a wrapper
method to dynamically optimize the model parameters, were
proposed in [23]. Reference [24] extended the AnEn model
with an Artificial Neural Network (ANN) which significantly
improved the forecasts. Finally, [4] proposed an Analog
method to produce short-term forecasts of solar irradiance
using geostationary satellite images only. Overall, the AnEn
model still has some drawbacks. Since most of the time only
NWPs are used, the forecasts are always the same until a new
NWP run is available. Thus, it is not possible to use the model
settings as found in the state of the art in an intra-day setting.
Besides, although some papers have used data other than NWP
in an AnEn setting, no model has used both NWP and other
sources of data. Moreover, previous work do not present how
they generate probabilistic forecasts from analogs.

The key contributions of this paper are 1) a methodology
to extend the data that can be used in AnEn models, which
includes a pre-processing step for using satellite images with
a low computational cost; 2) a filter approach to compute the
model parameters based on historical data without the need
for a costly wrapper or offline optimization procedure. This
results in a model that is “’plant-free”, because the model can

be used as is on any new PV plant and will directly compute
its parameters without a learning process; 3) a formal way
to produce probabilistic forecasts from the Analog Ensemble
using a Kernel Density Estimation (KDE); 4) a model that is
dependent on the forecast horizon and the starting time of the
forecast, so that the number of parameters are not multiplied
when starting the model at different times. This translates to
a unique seamless model for short and medium time frames
that allows us to simplify the overall model chain in practical
applications without compromising accuracy. 5) a model that is
able to have state-of-the art performance in the 5-minute to 36-
hours horizon range, that can be used in all energy applications
such as control of a PV/Storage system combined plants, or
day-ahead bidding in an electricity market.

The paper is structured as follows: in Section II, the
modifications made to the AnEn model are presented. Then
Section III presents the case study on which we tested the
extended model, comparing it to a state-of-the-art forecasting
model and Section IV presents the results of the study. Finally,
Section V draws the conclusions of the paper.

II. ANALOG ENSEMBLE MODEL
A. The AnEn Metric

The aim of the AnEn model is to generate a set of past
observations considered similar to the situation we want to
forecast, and use this set to build the forecast density. Initially
we generate an N-member ensemble for a given lead-time by
computing a metric between the situation to forecast and all
of the past situations. Then we select the N most similar to
past situations and look for the PV power measured at the
time of these similar situations. These /N measures constitute
the analog ensemble, and each analog can be thought of as
a sample from the probability density function (PDF) of the
PV power. In the most general formulation of the metric taken
from [18], only NWPs were used as inputs. The metric used in
this paper is based on the one defined in [18] but it is adapted
to allow different sources of data to be taken into account. It
can be written as follows, for a forecast with lead-time ¢ and
horizon h (that is, started at time ¢ — h):

N, 0
D(X;,Hf) = szh Z (Xirj —Hipiy)? (D

i=1 j=—k

where N, is the number of features used as input, and &
is a parameter that indicates the length of the time window
over which the metric is computed. H” and X are two sets
containing the features and input of the model. The set H"
contains variables from NWP, along with the measures lagged
h times. This set is dependent on the horizon of the forecast.
When we make a forecast with horizon h, the last measures
were observed h time steps ago, and this should be reflected
in the historical data set. Following through, X contains the
NWP for time ¢ and the latest measures, observed at time
t—h. H" and X are scaled and centered, so that each variable
contributes to the metric with the same proportion. Thus, only
the weights w/ can control the importance of each feature.
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The weight calculation takes into account the forecast horizon
and is presented in the next sub-section.

To our knowledge, previous papers have not presented how
they generated the PDF from the analogs. In this paper, it
is built by a weighted Kernel Density Estimation (KDE),
using the metric value of each member as their weight in the
distribution. Given a set of N4,, AnEn members P;, and their
distance value D 4,,, the PDF f is estimated by:

() (522

+K(P+R;2Pn>
w

Nan

f(P): NAn wa

11711

b
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where Pn is the installed power of the given plant, the
s; terms are similarity measures inversely proportional to
the distances, K is the Epanechnikov kernel, and bw is the
bandwidth of the kernels. The first Epanechnikov evaluation
corresponds to the kernel centered around the i-th AnEn
member value, and the two others are there to ensure that the
integral of the distribution is 1 between 0 and Pn. Outside
this range, the PDF is set to 0.

The different sources of data that the paper aims to integrate
are: variables from NWP, in situ measurements, clear-sky
profile, and spatial data derived from satellite imagery. The
clear-sky profile is an estimation of the solar irradiance on
the ground under the assumption that there are no clouds.
Following these notations, the integration of a clear-sky profile
and local measurements is pretty straightforward. However,
satellite data is more complex because they have many more
features, which require reducing. The required additional pro-
cessing work will be detailed in Section II-B.

B. Dynamic Weights Computation

The calculation of the feature-weights is critical. In previous
works [22], [25], [23], these were obtained from an off-line
optimization for each power plant and remained the same
throughout the testing period. In these cases, a measure of
the probabilistic performance of the models was used as the
optimization objective. In this paper, we do not use the final
performance as a criterion, but we propose a dynamic way
to estimate weights based on the most recent data, since the
model operates in a sliding window scheme and the weight
of the latest measurements will not be the same for a forecast
started at noon as for one started at midnight. The criterion
used to quantify the weights is Mutual Information (MI),
which is often used in machine learning for feature selection
[26]. This is a measure of how much the fact of knowing
a variable reduces the uncertainty of another variable. The
MI between two random variables X and Y, knowing their
respective marginal density distributions px and py and their
joint density distribution px y, is:

I(X,Y) //pxyxylog(px(y)( :(y)))dxdy 3)

The main reason we chose this criterion rather than simpler
ones, e.g. Pearson’s correlation, is because it can identify
non-linear relationships between random variables. As we are
dealing with both features that are strongly and almost linearly
correlated to the production (clear-sky profile, last production
measure), and features that are not (temperature from NWP),
using a linear correlation criterion would overestimate the
weight of the former over the latter. On the other hand, the MI
calculation identifies the non linear information contained in
the variables and thus avoids giving significant weights only to
variables that are linearly correlated with the PV production.

The weight calculation is carried out in two steps. The first
step is to evaluate the relevance of each variable individually
by calculating its MI with the measured power according to
(3), using empirical estimates of the distributions. The second
step is to set a limit on the total cumulative weight of each
source of data. If such a limit were not set, the contributions
of two redundant features would accumulate even though they
carry almost the same information. Setting a total weight limit
attenuates the impact of redundant features in a given source
by limiting the total contribution of the source.

In a more formal way, the weights are computed as follows.
In the first step, intermediate weights w’ ? are obtained by
equation (4), where L™ is the lag operator and Epy are the
power measurements. Then, the weights are normalized. In
practice, the input variables are organized into N, subsets
Sy, v € [1, Ng| depending on their source (NWP, measures,
satellite data, clear-sky profile). A global weight Wy, j is
attributed to each source of data and horizon. For a given
variable 7, we note .S,,,7 as the set in which the variable ¢ is
included. We then obtain the final weights with equation (5).

h

w'{ = MI(L"(H;), Epy) )
/h
h wg
i == Wi o)
>kes, Wi

The computation of Wg,  should be done taking into
account redundancy between variables from the same source.
This is especially important for satellite data where the vari-

ables are strongly correlated. We propose to use:

h
Ws, n = mazics, w'; (©6)

This means that each source of data contributes to the metric
as much as the weight of its most informative feature does. As
a result, we may underestimate the information conveyed by
variables that are not strongly correlated to the PV production,
but we will not overestimate the global contribution of a source
of data that contains numerous intercorrelated variables, since
the individual weights of the redundant features will not add
up to more than the weight Wy, ; of their source.

Fig. 1 shows the average weights obtained for each type
of data and for different time horizons. All of the forecasts
started at 12 p.m., while no weights are computed for horizons
corresponding to nighttime. The details of the case study are
described in Section III. The values of the weights of the
different sources correspond well with results reported in the
literature concerning which source of data is informative for
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Fig. 1. Weights of the different sources of data depending on the forecast
horizon

which horizon. The most recent power measurement is very
informative for the first few time steps, but its weight decreases
quickly. NWPs are always relevant, but even more so for day-
ahead purposes. For horizons shorter than 4 h, they carry less
information than the latest measurements and the satellite data.
Satellite data are very useful up to 6 h, even though their value
decreases steadily. Equally of interest, the clear-sky profile is
useful almost only for the beginning and end of the day, when
it becomes the most important feature. It is not surprising to
see that for these instants with very low incoming irradiance
even in clear-sky conditions, the amount of solar power is not
dominated by the presence of clouds, but by the Sun’s path.

C. Integration of Satellite Data

In the proposed model, estimated GHI (Global Horizontal
Irradiance) time series are derived from the satellite images
for each pixel (see III-A). We propose to use these time series
as conditioning features for the AnEn model when it looks
for analogs. Since the model looks for analogs by matching
features on several time steps as described by the parameter &
from equation 1, and the pixels used to condition the forecasts
are in the neighborhood of the plant, we use both the spatial
and temporal information from the images. Still, this method is
simpler than standard ones, i.e. Cloud Motion Vector [27], as
it does not try to anticipate the future state of the cloud layer.
The choice of taking a purely data-driven approach rather than
including a preprocessing step for the images to derive cloud
motion information is one of the design requirements set here
in order to maintain simplicity in the proposed model chain.
The mechanism of the AnEn model, where a series of past
images is linked to future situations through the analogs, is a
process that is expected to reflect the mechanism according to
which the temporal variations in the images that reflect cloud
motion impact PV production. Section IV demonstrates that
the inclusion of satellite images as conditioning features is
beneficial to the model. This section describes the selection
process for the pixels we use to compute the model.

Two parameters must be estimated before including the
satellite-estimated GHI. The first one is the maximal distance
Do between the power plant and the points for which
we use the GHI estimation in the model. Theoretically, the
greater this distance, the longer the time horizons for which the
estimated GHI time series can be useful. However, increasing

D4, quadratically increases the number of pixels to be
considered. To avoid computational issues, we have to set
a limit on this distance D,,q,. The second parameter is the
number N, of pixels we select to derive the features, within
the area defined by D,,,,. The selection of a specific pixel
from the satellite image results in a GHI time-series from
consecutive images. We propose to keep the most informative
Npiz time-series according to their MI with PV production.

To define D,,,,., we first obtained features estimated from
pixels within a 150 km radius as an upper-bound. Then, for
different time horizons h, we computed the MI between the
GHI time series derived from each pixel lagged h time and
the PV production over one year. We could then visualize the
location of the most informative time series for each horizon,
as shown in Fig. 2. From visualizing the data, we found that for
time horizons below 90 min, the global level of the information
of the estimated GHI time series is significant compared to
other horizons. There is also a significant difference between
the most and the least informative time series, the most
informative ones being located within a 50 km radius from the
plant. On the contrary, for greater horizons, the information is
scant. Thus, it does not seem necessary to have a large D45
for longer time horizons, or to use satellite data at all. In the
end we kept a 50 km value for D,

We defined the number of features selected within a D,,, 4.
radius by fitting LASSO (Least Absolute Shrinkage and Selec-
tion Operator) models with a 10-fold cross validation, using
all the estimated GHI time series as features to predict the
production for horizons ranging from +30 minutes to +36 h
with a half-hourly time step, that is, for 72 different horizons.
For a given horizon h, we obtained the LASSO models with:

Epvasn =00+ Bl Xyi (7

B = argming ((EPV —Epv)’ + Z \@ho ®)

where X4, 1 is the estimated GHI for the i-th pixel for time
t, and B" are the parameters of the model.

LASSO models have a built-in tendency to produce a sparse
feature selection, and to randomly drop features when they
are strongly correlated. As our estimated GHI time series are
indeed correlated, we took the feature selection performed by
the LASSO models as a measure of the redundancy in the time
series, instead of actually selecting the most relevant features.
We then obtained V,;, by averaging the number of features
kept by the LASSO models over all horizons:

1 A #j:pi=0
nl

In the end, we obtain N;, = 37 features, which represent
around 12% of the total number of pixels considered. This
value is retained for the forecasts in Section III. Fig. 3 shows
the average selection probability for each feature within the
area defined by D, .., for all forecasts started at 12 p.m. For
the 30-minute horizon, the selected pixels are concentrated
in an area east of the plant. This suggests that the weather

i=1
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conditions propagate from east to west, which could be ex-
plained by the Sun’s path, but also by local weather conditions
(e.g. a systematic east wind). For the 90-minute forecast, a
slight concentration persists to the east of the plant. After this

horizon, no recognizable pattern can be found.
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III. CASE STUDY
A. Data

The proposed AnEn model was used to forecast the power
output of three PV plants located in southwest France. The
plants are denoted as P1, P2 and P3 respectively and have a
nominal power of 9504, 2694 and 6876 kWp. The available
measurements cover the period from January 2014 to Decem-
ber 2016. NWPs are obtained from the European Center for
Medium-range Weather Forecasts (ECMWF). The forecasts
are made on a 0.1°x 0.1°latitude/longitude grid every 12
hours. The NWP variables used as features are the Surface
Solar Radiation Downwards (SSRD), 10-m U- and V-wind
speed (10U and 10V), 2-m temperature (2T), Total Cloud
Cover (TCC) and Total Precipitations (TP). In situ measure-
ments come from the power plants’ monitoring systems. The
measurements taken into account are PV power, temperature,
and GTIL. The clear-sky profile is computed using the model
McClear [28]. Lastly, features obtained from the MSG satellite
imagery are computed using the HelioClim-3 database with the
HelioSat-2 method [29], [30]. The images are converted into a
time series of estimated GHI for each pixel. At the location of
the plants, each pixel corresponds to a 5 km x 5 km surface.

B. Simulation

Taking the French energy market EPEX SPOT as reference
for the case study, the forecast horizons required for trading
on both the day-ahead and the intra-day markets are from
+30 minutes to +36 hours. Since the measurements were

available from January 2014 to September 2018, all of the
data necessary to perform the simulation were obtained for
the same period. All of the data were then converted to 30-
minute time series to obtain the same time step as the market
time unit. The clear-sky profile and in situ measurements have
a native 5-minute resolution and the satellite images have a
15-minute resolution. These variables were summed over 30-
minute intervals to obtain the 30-minute time series. The NWP
have a native 1-hour resolution. All NWP fields were linearly
interpolated to obtain the 30-minute time series. However,
numerous applications, such as real-time control of a combined
PV and storage power plant, also require short-term forecasts
with horizons lower than 30 minutes. Using the exact same
model but feeding it with the native 5-minute data, and with 5-
minute interpolated NWPs and satellite data, we could provide
forecasts with a 5-minute resolution.

To assess the quality of our model, we consider a QRF
as a benchmark model for the 30-minute resolution forecasts,
because it is widely used and featured several times in the
leaderboard of the GEFCOM 2014 [14]. This model is an
extension of random forests that can provide quantile forecasts
[31]. Here, it is trained using the same variables as the
AnEn except for the satellite data that caused computational
time of the QRF to be too long, along with their one-time-
step lagged values. Note that what we call the QRF model
is actually a collection of 72 models, each one trained for
forecasting a specific horizon, because they have to treat the
relative importance of the last measure differently regarding
the horizon. This process is automated in the AnEn model,
so that there is a single model for all the horizons. This is in
argument supporting the fact that the AnEn model "unifies”
time frames, as a single model gives consistent forecasts from
+5-minutes to +36-hour horizons. For the 5-minute resolution
forecasts, we used an Auto-Regressive Integrated Moving
Average (ARIMA) model, which is best suited for short-term
forecasts, using only the production data as input. Another
reason why we used the ARIMA instead of the QRF for these
horizons is the very demanding computational time of the QRF
at this resolution, as can be seen from Table I.

The period from May 2016 to April 2017 was used to
estimate the structural parameters of the AnEn model and the
QRF model used as benchmark through trial and error. The
ARIMA order was also obtained by minimizing the Akaike
Information Criterion (AIC) on the testing set. Then, to assess
the performance of the models, PV power was forecast from
May 2017 to April 2018 with the AnEn and QRF models, from
30 minutes to 36 hours ahead with a 30-minute resolution.
The forecasts were updated every 30 minutes following a
sliding window scheme. For each new forecast, the set X
was updated using the latest in situ measurements, NWP, and
satellite-derived GHI estimations. In addition, the set H was
updated with the most recent data available at the time to
identify the analogs. We also performed the same evaluation
for the ARIMA and AnEn models with the 5-minute resolution
forecasts, forecasting from +5-minute to +60-minute horizons,
and updating the forecasts every 5 minutes.
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TABLE I
COMPUTATION TIME REQUIRED FOR PROVIDING THE FORECASTS FOR
ONE GIVEN HORIZON, DEPENDING ON THE FORECAST RESOLUTION

Forecast resolution | Required computational time (seconds)
AnEn QRF ARIMA
30 minutes 2 10 <1
5 minutes 6 120 <1

IV. EVALUATION RESULTS

Probabilistic forecasts are more complex to evaluate than
deterministic ones. Numerous properties are required for
predictive densities, while identifying some aspects of the
forecasts may fail when using only proper scoring rules. The
main required properties are reliability and sharpness. The
results are presented for plant P3 in the following parts,
as the behavior of the models was similar for the different
plants. Deterministic criteria are also presented for comparison
purposes with results from standard deterministic models in
the state of the art. The averaged results are summarized in
Table II. All the evaluation criteria from Table II are described
in detail in the following parts. All results are given in %,
relative to the installed power of the plant.

A. Reliability

The standard way to evaluate a forecasting system is first to
assess the reliability of the model. The forecasts are reliable
if the level of each quantile matches the frequency of the
observations. For a perfectly reliable model, the empirical
quantile level should be the same as the nominal one, and
thus the reliability diagram should be a diagonal line. Fig. 4
shows the reliability diagram of the two models. Consistency
bars are also added following [32] to indicate a range within
which even a perfectly reliable model could be situated due
to the finite size of the testing set. Both models seem reliable,
since they both fall within the acceptable range. In Table II,
Reliability (R) reports the mean absolute reliability deviations
from the diagonal over several forecast horizons.

o
8 _
’_\H
S
c ©
2
28-
]
o
o |
R
2
2o |
g D —— AnEn model
o - QRF model
T T T T T 1
0 20 40 60 80 100

Quantile nominal proportion (%)

Fig. 4. Reliability diagram of the two models including consistency bars

B. Sharpness

Sharpness measures the spread of the forecast distribution.
As an example, a Dirac distribution would have a perfect
sharpness, while a uniform distribution would have a very low

sharpness. The goal of any probabilistic forecasting system is
to be as sharp as possible, while maintaining its reliability. In
this paper, sharpness is assessed using the Prediction Interval
Normalized Averaged Width (PINAW) metric. Noting I; ., the
width of the PI with coverage rate «, it writes as follows:

N

i Iz o
PINAW (o, h) = Zl;#

Fig. 5 shows the PINAW for different forecast horizons and
nominal coverage rates o. The PINAW are very similar for
the two models. In Table II, Sharpness (S) reports the mean
PINAW over several horizons and all nominal coverage values.
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Fig. 5. PINAW for different forecast horizons

C. CRPS score

At this point, it is difficult to tell which model performs
better, since they show very similar results for both reliability
and sharpness. The overall performance of the models is
evaluated using the CRPS, which is a score system dedicated
to probabilistic forecasts. It takes into account both reliability
and sharpness. The CRPS is defined for a given distribution
f and its correspondent cumulative distribution function F,
along with an observation y, by:

+oo

CRPS(F,y) :/ (F(u) - 1y <w)2du (1)

Fig. 6 presents the CRPS of the two models depending on
the horizon, normalized by the nominal power of the plant.
The difference between the models is clearer when the score
is plotted conditionally to the forecast horizon. The QRF
model outperforms for forecast horizons longer than 3 hours.
For shorter horizons, the AnEn model performs much better.
However, as can be seen from Table II, the overall CRPS
differences between the models are very low, and they both
show state-of-the-art performance.

D. RMSE

The Root Mean Square Error (RMSE) is also computed,
taking the densities medians as a deterministic forecasts. This
allows us to compare the model with standard deterministic
ones. We compared the AnEn and QRF with two variants
of the classic persistence models. The first variant, noted
Persistence 1, gives the power measurement of the day before
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TABLE II
EVALUATION RESULTS

30-minute resolution forecasts S5-minute resolution forecasts
AnEn QRF Persistence 1 | Persistence 2 | AnEn | ARIMA | Persistence 2
Plant R S CRPS RMSE R S CRPS RMSE RMSE RMSE RMSE | RMSE RMSE
Forecast horizon 0-2 h Forecast horizon 0-30 min
Pl 143 124 424 9.54 090 134 444 9.94 20.9 16.5 - - -
P2 1.97 128 4.25 9.93 2.03 141 444 10.1 234 16.6 - - -
P3 190 123 4.14 9.52 1.74 133 438 9.98 20.7 15.9 10.1 10.2 11.6
Forecast horizon 2-36 h Forecast horizon 30 min-4 h
Pl 255 144 526 11.6 217 143 5.08 114 20.9 36.5 - - -
P2 184 160 552 125 210 15.1 5.36 12.3 234 37.6 - - -
P3  1.00 148 5.30 119 180 142 521 11.8 20.7 35.6 12.8 16.8 25.0
with the RMSE criterion, the AnEn provides uncertainty infor-
o mation since it gives a probabilistic estimate of the production.
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Fig. 6. CRPS performance of the AnEn and the QRF models
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Fig. 7. RMSE of the models depending on the horizon

at the same time of the day as the forecast. The second, noted
Persistence 2, gives the power observed at the starting time of
the model as the prediction for all horizons. The RMSE for a
set of K forecasts y and their associated observations ¥ is:

K

% > (i — )’

i=1

RMSE(y,y) = (12)

The RMSE of the models depending on the forecast horizon
is presented on Fig. 7. Both AnEn and QRF models consis-
tently outperform Persistence 1 and 2 for all horizons.

E. Intra-hourly forecasts

Figure 8 shows the average RMSE conditioned to the
forecast horizon for the AnEn, ARIMA and Persistence 2
models for the 5-minute resolution forecasts. The AnEn model
is consistently more accurate than the two other models for
intra-hourly forecasting. Besides, even though it is not shown

T T T 1
0.4 0.6 0.8
Horizon (hours)

1.0

Fig. 8. Comparison of AnEn, ARIMA and Persistence 2 models for intra-
hourly forecasts

F. Contribution of Each Source of Data

Fig. 9 shows how CRPS performance increases when adding
incrementally different sources of data. The addition of the last
measure significantly increases performance for time steps up
to 5 h. This is self-explanatory, as the last measure is very
informative about the current meteorological situation, but
carries little predictive information. The addition of satellite
data slightly increases performance up to the 3-hour forecast
horizon. This confirms that the added value from satellite data
extends up to a few hours, as expected from the literature.

This result is quite interesting, as it shows that the model
is able to process both temporal and spatial information from
very different sources of data. It could be extended by other
features, that are known to improve solar power forecasting,
such as measurements from neighboring PV plants or weather
stations. However, this would require further work when
assigning global weights to each source of data. In our case,
using the maximal feature weight as the global weight of the
whole source was efficient as the information between each
source of data was not redundant. When increasing the sources
of data, the chances are higher that two sources of data will
carry correlated information. This should be considered for the
global weight assignation.

V. CONCLUSIONS

In this paper, a probabilistic PV power forecasting model
is proposed that is well suited for use by a power plant
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Comparison of the performance of the AnEn model depending on the

operator trading in day-ahead and intra-day electricity markets.
The model was found to (1) have state-of-the-art performance
in the +5-minute to +36-hour forecast range; (2) be able to
dynamically adjust to the most recent data, so that any change
in the PV plant (surrounding environment, partial outage,
soiling, etc.) can be automatically dealt with; (3) be able to
start at any time of the day for any forecast horizon without
multiplying the number of models.

The good performance of the model for both intra-day
and day-ahead forecasts was achieved by including in situ
measurements and data from satellite imagery along with
NWPs. Specifically, efforts were made to deal with the high
dimensionality of satellite data. Further work could include
other sources of data in the model. The proposed model was
proven to be an efficient alternative, both in terms of com-
putational cost and accuracy, to the state-of-the-art approach
where different forecasting models are employed as a function
of the available data types and the application time frame.
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