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Abstract

In this paper we analyze from the game theory point of view Byzantine Fault Tolerant
blockchains when processes exhibit rational or Byzantine behavior. Our work is the first to
model the Byzantine-consensus based blockchains as a committee coordination game. Our first
contribution is to offer a game-theoretical methodology to analyse equilibrium interactions be-
tween Byzantine and rational committee members in Byzantine Fault Tolerant blockchains.
Byzantine processes seek to inflict maximum damage to the system, while rational processes
best-respond to maximise their expected net gains. Our second contribution is to derive condi-
tions under which consensus properties are satisfied or not in equilibrium. When the majority
threshold is lower than the proportion of Byzantine processes, invalid blocks are accepted in
equilibrium. When the majority threshold is large, equilibrium can involve coordination fail-
ures, in which no block is ever accepted. However, when the cost of accepting invalid blocks is
large, there exists an equilibrium in which blocks are accepted iff they are valid.

1 Introduction

Since the publication of Nakamoto’s white paper [21] proposing the Proof-of-Work protocol, Bitcoin,
thousands of blockchains have been created. At the operational level, a blockchain maintains an
evolving list of ordered blocks. Each block consists of one or more transactions that have been
verified by the system members. POW blockchains, however, consume excessive amounts of energy.
This motivated tremendous efforts to propose alternatives protocols.

Byzantine-consensus based blockchains offer an alternative which has the advantage of being
economical and offering strong consistency garanties [4]. In Byzantine-consensus based blockchains
such as HoneyBadger, HotStuff or Tendermint [1, 3, 11, 12, 17, 20, 25] a subset of deterministically
selected processes, executes an instance of PBFT-consensus to decide on the next block to append.
These protocols strive to satisfy the following properties: Termination: every non-Byzantine process
decides on a value (a block); Agreement: if there is a non-Byzantine process that decides a value B,
then all the non-byzantine processes decide B; Validity[9]: a decided value by any non-Byzantine
process is valid, it satisfies the predefined predicate.

While Byzantine consensus [18] is one of the best understood and formalized building blocks in
distributed computing, blockchains systems revive this line of research in several respects: First, tra-
ditional Byzantine consensus has been analyzed only in systems where processes were either correct
(verify their specification) or Byzantine (arbitrarily deviate from their specification). Blockchain
systems bring on the scene a third type of player: rational players who take actions only if these
actions increase their profits. Understanding the performance and limits of Byzantine-consensus
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based blockchains with rational players is the goal of the current work. Our focus on rational play-
ers is in line with analyses of blockchain systems conducted by economists. Economists, however,
have not considered Byzantine participants yet. Thus, our work endeavours to combine and unify
computer science and economics approaches. Second, traditional Byzantine consensus analyses
have not studied the choice and consequences of the way in which participants are rewarded. In
this work we address the case of rewarding only the participants to the consensus.

Our contribution. Our contribution is twofold. First, we offer a methodology to analyse Byzan-
tine consensus based blockchain protocols as a game between rational and Byzantine players. Two
key aspects of the game, for rational players, are the cost of blocks verification and the cost of net-
working. Block verification is crucial since appending non verified blocks may have long term costs
(e.g. double spending, collapse of the system etc.). Networking (participating to the agreement
protocol by voting in favor of correct blocks) also has tremendous impact on system welfare: If par-
ticipants don’t vote, this can block the system or lead to agreement on invalid blocks. Second, we
derive conditions (on the majority threshold necessary for block acceptance, ν, and the proportion
of Byzantine processes, f) under which rational players reach an equilibrium where the consensus
properties are guaranteed. Our findings are as follows. When f ≥ ν, invalid blocks are accepted,
so that validity is not satisfied. When f < ν, while there exists an equilibrium in which validity
and termination are satisfied, there also exists an equilibrium in which blocks are never accepted,
so that termination is not satisfied. This points to a tension between validity (which requires that
the ν threshold be large enough) and termination (which can be threatened when the ν threshold
is high.)

Related work. Blockchains can be roughly divided in consensus-less [21] and Byzantine
consensus-based blockchains [17, 11, 1, 12, 3]. Byzantine Consensus-based blockchains have the
advantage to guarantee strong consistency by running a Byzantine Fault Tolerant protocol [8]. In
order to use a BFT protocol in an open setting, recent research has been devoted to either find
secure mechanisms to select committees of fixed size over time (e.g. [16],[10]) and/or to propose in-
centives to promote participation [1]. Most of the proposals, however, assume participants as either
honest or Byzantine, lacking to thoroughly explore the effect of rational participants. In this line
of work, Solidus [1] is the first to consider rational processes by proposing an incentive-compatible
BFT protocol for blockchains. Solidus introduces interesting incentive mechanisms, however, the
paper lacks a game theoretic analysis of them.

While addressing a slightly different protocol, [19] is the closest work to ours. In this protocol
multiple committees run in parallel to validate a non-intersecting set of transactions (a shard).
A non-cooperative static game approach for the intra-committee protocol is taken leading to the
result that rational agents can free-ride when rewards are equally shared. The main aspect of
our analysis that is new and different from [19] is the following: we have a dynamic (not static)
multi-round analysis, of a problem in which some participants are Byzantine and some blocks can
be invalid (and costly for rational if accepted). In that context, there is a situation in which in
equilibrium rational agents are pivotal, because if they do not check the block validity this will
create the risk of having an invalid block accepted. It is because they are pivotal that they do not
free ride. Moreover, we discuss equilibria in relation to formal consensus properties – Termination
vs Validity –, which represents a novelty.

In the realm of consensus-less blockchains, as Bitcoin, many works used rational arguments to
prove thresholds on the fraction of honest nodes needed to guarantee security properties [13, 24].
These works establish very pessimistic thresholds while in practice Bitcoin works even if the honest
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majority assumption does not hold [5]. Following this observation, [5] proposes a rational analysis of
Bitcoin based on the rational design protocol framework [15]. The proposed game, with respect to
ours, is at an upper level of abstraction, proposing a two-player zero-sum game between the protocol
designer and the adversary. Our game models instead the behavior of protocol participants, that
can be rational, evolving in an environment with Byzantine processes. Moreover, our work targets
consensus-based blockchain unlike [5].

With only rational players, [6] models Bitcoin as a coordination game. Similar to the work in
[6], our analysis shows that the protocol in consensus-based blockchains is a coordination game.
Additionally, we consider Byzantine players, and show that Termination can be violated when
coordination failures occur. [23] uses a game theoretic approach to study consensus-less Proof-of-
Stake Blockchains, and shows that the Nothing at Stake problem is mitigated because players with
large stakes on the main chain prefer not to add blocks on forking branches, lest it should reduce
the strength of the main chain, and thus the value of their stakes. The environment considered in
[23] differs from ours, since the study in [23] does not consider consensus-based blockchains, nor
Byzantine players.

2 Blockchain Consensus with Rational Players

2.1 System Model

We consider a system composed of a finite and ordered set Π, called committee, of synchronous
sequential processes or players, namely Π = {p1, . . . , pn} where process pi is said to have index i.
In the following, we refer to process pi by it index, say process i. Hereafter, the words “player” and
“process” are taken to have the same meaning.

Communication. We assume that each process evolves in rounds. A round consists of one or
more phases, and each phase is divided into three sequential steps, in order: the send, the delivery
and the compute step. We assume that the send step is atomically executed at the beginning of the
phase and the compute step is atomically executed at the end of the phase. The phase has a fixed
duration that allows collecting all the messages sent by the processes at the beginning of the phase
during the delivery step. At the end of a phase a process exit from the current phase and starts
the next one. The processes communicate by sending and receiving messages through a broadcast
primitive. Messages are created with a digital signature, and we assume that digital signatures
cannot be forged. When a process i delivers a message, it knows the process j that created the
message. We assume that messages cannot be lost.

Processes Behavior. In this paper we consider a variant of the BAR model [2] where processes
are either rational or Byzantine. Rational processes are self-interested and seek to maximize their
expected utility. They will deviate from a prescribed (suggested) protocol if and only if doing so
increases their expected utility. Their objective function must account for their costs (e.g., sending
messages) and benefits (e.g., reward of a block) for participating in a system. In line with [2], the
objective of Byzantine processes is prevent the protocol from achieving its goal, and to reduce the
rational processes utility, no matter the cost. We denote by f the number of Byzantine processes
in the network. We assume symmetric Byzantines, their behaviour is perceived identically by all
non Byzantine processes. That is, a message sent by a Byzantine process and received by a non-
Byzantine process in a given phase is received by all non-Byzantine processes in the same phase.
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2.2 Byzantine Consensus based Blockchain

Consensus-based blockchains should satisfy the following consensus properties:

• Termination: every non-Byzantine process decides on a value (a block);

• Agreement: if there is a non-Byzantine process that decides a value B, then all the non-
byzantine processes decide B;

• Validity[9]: a decided value by any non-Byzantine process is valid, it satisfies the predefined
predicate.

Let us note that the above properties must hold also for systems prone to rational behavior.
To implement the above specification in Consensus-based blockchains, for each height h > 0 of

the blockchain, a Consensus instance is run inside a committee selected for the given height. In this
paper we analyze a very general protocol, inspired by [1, 3, 11, 12, 17, 20, 25], a variant of PBFT.
In this protocol, a proposer proposes a value, i.e. a block, and the other members of the committee
will check the validity of the value. If the value is valid, then they will vote for it and will announce
their vote through a message to the other members. Votes are collected and if a given threshold
is reached, then the value is decided, otherwise a new proposer will propose another block and the
procedure restarts.

In this work, we study a protocol (for rational players) which in some equilibria implements the
consensus. For the sake of clarity, we first present a prescribed protocol, and then the actions of
the rational processes. If a rational player does not deviate from a given prescribed protocol, we
can consider it as a correct process.

The prescribed protocol. The protocol proceeds in rounds. For sake of simplicity we consider
the height k of the blockchain passed as parameter to the protocol. Algorithm 1 presents the
pseudo-code of the protocol.

For each round t a committee member is designated as the proposer for the round in a round
robin fashion. The isProposer(t, k) function returns true only if the process is the proposer for
the current round (line 7). The function, by taking as parameter the current height, only returns
true if the proposer is part of the current committee, deterministically selected on the basis on the
information contained in the blockchain up to k (the actual selection mechanism is out of the scope
of the paper). Each round is further divided in two phases: the PROPOSE and the VOTE phase.

During the PROPOSE phase, the proposer of the round uses the function createValidValue(k)
to generate a block. Because a valid block must include the identifier of the kth block in the
blockchain, the height k is passed as parameter (line 8). Once the block is created, a message
broadcasting the proposal is sent (line 9). At line 10 the proposal is received through a delivery
function. Each process checks if the proposal is a valid value (line 13). If so, the process sets its
vote to the value (line 14).

During the VOTE phase, any process that set its vote to the current valid proposal sends a
message (of type vote) to the other members of the committee (line 18). During the delivery step,
sent messages are collected by any process. During the compute step each process verifies if a
quorum of ν votes for the current proposal has been reached. Let us note that ν, the majority
threshold is a parameter here, because it is the object of our study to establish the quorum ν in
presence of rational and Byzantine processes. If the quorum is reached, if the process voted for the
value and did not already decided for the current height, then it decides for the current proposal
(line 23) and the protocol ends. If the quorum is not reached, then a new round starts (line 26).
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Algorithm 1 Prescribed Protocol for a given height k at any process i

1: Initialization:

2: vote := nil

3: t := 1 /* Current round number */
4: decidedV alue := nil

5: Phase PROPOSE(t) :
6: Send step:

7: if i == isProposer(t, k) then

8: proposal← createValidValue(k) /* The proposer of the round generates a block, i.e. the value to be proposed */
9: broadcast 〈PROPOSE, k, t, proposal〉
10: Delivery step:

11: delivery 〈PROPOSE, k, t, v〉 from proposer(t) /* The process collects the proposal */
12: Compute step:

13: if isValid(v) then

14: vote ← v /* If the delivered proposal is valid, then the process sets a vote for it */

15: Phase VOTE(t) :
16: Send step:

17: if vote 6= nil then

18: broadcast 〈VOTEi, k, t, vote〉 /* If the proposal is valid, the process sends the vote for it to all the validators */
19: Delivery step:

20: delivery 〈VOTE, k, t, v〉 /* The process collects all the votes for the current height and round */
21: Compute step:

22: if |〈VOTE, k, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then

23: decidedV alue← v; exit /* The valid value is decided if the threshold is reached */
24: else

25: vote ← nil

26: t← t+ 1

Let us note that the protocol in an environment assuming only correct (altruistic) and symmetric
Byzantine processes trivially implements consensus if f , the number of Byzantine processes, is such
that f < ν. If f ≥ ν, on the other hand, the Termination property is not guaranteed. The scenario
for that is that Byzantine validators might vote for a different value with respect to the one voted
by correct processes or a nil value. In that case the correct process will not decide (line 22) and
will move in the next round. The scenario can repeat forever.

In the following we detail the pseudo-code for a rational processes shown in Algorithm 2. The
rational process will try to maximize its payoff by choosing to undertake or not the actions defined
in its action space. We consider the choice of : (i) proposing or not a valid block, (ii) checking or
not the validity of a block and (iii) sending or not the vote for a proposed block. The decision tree
for the process i is shown in Figure 1.

Let us consider now rational processes. The rational process will try to maximize its payoff
by choosing to undertake or not some actions, defined in Section 2.3. Intuitively, we consider the
choice of : (i) proposing or not a valid block, (ii) checking or not the validity of a block and (iii)
sending or not the vote for a proposed block. We consider that the actions of checking the validity
of the block and the action of sending the message (of type vote) have a cost.

Protocol of the rational processes. Rational processes choices are explicitly represented
in the pseudo-code (Algorithm 2) by dedicated variables, namely, actionpropose, actioncheck, and
actionsend, defined at lines 5−7. Each action, initialized to nil, can take values from the set {0, 1}.
Those values are set by calling the functions σproposei , σchecki , and σsendi , respectively, returning the
strategy for the process i.

Strategy σproposei determines if the proposer i chooses to produce a valid proposal or an invalid
one (lines 12-16). In both cases the proposal is sent in broadcast (line 17).

Strategy σchecki determines if the receiving process chooses to check the validity of the proposal
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Does not
check the
validity
(line 21)

No Validity
Information

(line 6) Not Send (line 24)

Send (lines 24 – 30)

Checks the
validity

(lines 21–23)

Not Valid
Not Send (line 24)

Send (lines 24 – 30)

Valid
Not Send (line 24)

Send (lines 24 – 30)

Figure 1: Decision tree of process i

or not, which is a costly action. If the process chooses to check the validity (line 22), it will also
update the knowledge it has about the validity of the proposal and it will pay a cost ccheck. If
otherwise, the process keeps not knowing if the proposal is valid or not (validV alue[t] remains set
to ⊥). Note that this value remains set to ⊥ even if the process is the proposer. This is because
we assumed, without loss of generality, that checking validity has a cost and that the only way of
checking validity is by executing the isValid(v) function.

Note that, as defined in Section 2.3, strategy σsendi depends on the knowledge the process has
about the validity of the proposal. The strategy determines if the process chooses to send its vote
for the proposal or not (line 24-30). If the processes chooses to send a message for the proposal it
will pay a cost csend.

Let us note that the rational player that did not check the validity of the block could decide an
invalid value if more than ν other processes have done the same and the proposed block is invalid.

We now define the game that represent the protocol.

2.3 Byzantine-Rational Game

Recall that out of the n players, f ≥ 1 are Byzantine, while n − f are rational. Each player i
privately observes its own type, θi, which can be Byzantine (θi = θb) or rational (θi = θr).1

Action space. As proposer, the player decides whether to propose a valid block or to propose
an invalid block.

Then, at each round t, each player first decides whether to check the block’s validity or not (at
cost ccheck), and second decides whether to send a message (at cost csend) or not.

Information sets. At the beginning of each round t > 1, the information set of the player, hti,
includes the observation of the round number t, the player’s own type θi, as well as the observation
of what happened in previous rounds, namely (i) when the player decided to check validity, the
knowledge of whether the block was valid or not, (ii) how many messages were sent, and (iii)
whether a block was accepted or not. At round 1, h1i only includes the player’s private information
about its own type, θi.

1If player’s type was observable (i.e., if Byzantine processes were detectable in advance) there would be a trivial
solution to preclude them from harming the system: forbidding their participation.
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Algorithm 2 Pseudo-code for a given height k modelling the rational process i’s behavior
1: Initialization:

2: vote := nil

3: t := 1 /* Current round number */
4: decidedV alue := nil

5: actionpropose := nil

6: actioncheck := nil

7: actionsend := nil

8: validV alue[] := {⊥,⊥, . . . ,⊥} /* validV alue[t] ∈ {⊥, 0, 1} */

9: Phase PROPOSE(t) :
10: Send step:

11: if i == isProposer(k, t) then

12: actionpropose ← σ
propose
i

() /* σ
propose
i

∈ {0, 1} sets the action of proposing a valid block or an invalid one */
13: if actionpropose == 1 then

14: proposal← createValidValue(k)
15: else if actionpropose == 0 then

16: proposal← createInvalidValue()
17: broadcast 〈PROPOSE, k, t, proposal〉
18: Delivery step:

19: delivery 〈PROPOSE, k, t, v〉 from proposer(k, t)
20: Compute step:

21: actioncheck ← σcheck
i

() /* σcheck
i

∈ {0, 1} sets the action of checking or not the validity of the proposal */

22: if actioncheck == 1 then

23: validValue[t]← isValid(v) /* The execution of isValid(v) has a cost ccheck */
24: actionsend ← σsend

i
(validValue) /* σsend

i
: {⊥, 0, 1} → {0, 1} sets the action of sending the vote or not */

25: if actionsend == 1 then

26: vote ← v /* The process decides to send the vote, the proposal might be invalid */

27: Phase VOTE(t) :
28: Send step:

29: if vote 6= nil then

30: broadcast 〈VOTEi, k, t, vote〉 /* The execution of the broadcast has a cost csend */
31: Delivery step:

32: delivery 〈VOTE, k, t, v〉 /* The process collects all the votes for the current height and round */
33: Compute step:

34: if |〈VOTE, k, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then

35: decidedV alue = v; exit
36: else

37: vote ← nil

38: t← t+ 1

Then, in each round t > 1, the player decides whether to check the validity of the current block.
At this point, denoting by bt the block proposed at round t, when the player does not decide to check
validity isValid(bt) is the null information set, while if the player decides to check, isValid(bt)
is equal to 1 if the block is valid and 0 otherwise. So, at this stage the player’s information set
becomes

Ht
i = hti ∪ isValid(bt),

which is hti augmented with the validity information player i has about bt, the proposed block.

Strategies. At each round t ≥ 1, the strategy of player i is a mapping from its information set
into its actions. If the agent is selected to propose the block, its choice is given by σproposei (hti).
Then, at the point at which the agent can decide to check block’s validity, its strategy is given by
σchecki (hti). Finally, after making that decision, the player must decide whether to send a message
or not, and that decision is given by σsendi (Ht

i ).

Reward and cost from adding blocks. In this paper we study the case in which, when a block
is accepted, only the processes which sent a message are rewarded (and receive R). In addition, we
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assume that when an invalid block is accepted, all rational players incur cost κ.
In this work we make the following assumption. The reward, R, to the players when a block

is accepted is larger than the cost of checking validity, ccheck, which in turn is larger than cost of
sending, csend, a message. But the reward obtained when a block is accepted is smaller than the
cost of accepting an invalid block, κ. That is, κ > R > ccheck > csend.

Objective of rational players. Let T be the endogenous round at which the game stops. If a
block is accepted at round t ≤ n, then T = t. Otherwise, if no block is accepted, T = n. In the
latter case, the termination property is not satisfied.

At the beginning of the first round, the expected gain of rational player i is:

Ui = E

[

(R ∗ 1(σsend
i

(HT

i
)=1) ∗ 1(block accepted at T ) − κ1(invalid block accepted))

−
∑T

t=1

(

ccheck1σcheck
i

(ht

i
)=1) + csend1(σsend

i
(Ht

i
)=1)

) |h1i

]

,

where 1(.) denotes the indicator function, taking the value 1 if its argument is true, and 0 if it is
false.

Then, at the beginning of round t > 1, if T ≥ t, the continuation payoff of the rational player
with information set hti is

Wi,t(h
t
i) = E

[

(R ∗ 1(σsend
i

(HT

i
)=1) ∗ 1(block accepted at T ) − κ1(invalid block accepted))

−
∑T

s=t

(

ccheck1(σcheck
i

(hs

i
)=1) + csend1(σsend

i
(Hs

i
)=1)

) |hti

]

,

Objective of Byzantine players. In the current paper we assume the following: Byzantine
processes 1) as proposers, propose invalid blocks, and 2) when receiving a proposed block, check the
blocks’ validity and send a message if and only if the block is invalid.

We conjecture, the above strategies will turn out to be the optimal strategies of the Byzantine
players, minimizing Wi,t in equilibrium.

Equilibrium concept. Since we consider a dynamic game, with asymmetric information, the
relevant equilibrium concept is Perfect Bayesian Equilibrium [14], intuitively defined as follows:

A Perfect Bayesian equilibrium is such that all players 1) choose actions maximizing their ob-
jective function, 2) rationally anticipate the strategies of the others, and 3) draw rational inferences
from what they observe, using their expectations about the strategies of the others and Bayes law,
whenever it applies.

A Perfect Bayesian Equilibrium (PBE) is a Nash equilibrium [22], so players best-respond to one
another. It imposes additional restrictions, to take into account the fact that the game is dynamic
and that players can have private information, and therefore must draw rational inferences, from
their observation of actions and outcomes. Rationality of inferences in PBE implies that (i) each
player has rational expectations about the strategies of the others, and (ii) each player’s beliefs are
consistent with Bayes law, when computing probabilities conditional on events that have strictly
positive probability on the equilibrium path. Perfection in PBE implies that, at each node starting
a subgame the players’ strategies form a Nash equilibrium of that subgame. In this context, to
show that a strategy is optimal it is sufficient to show that it dominates any one-shot deviation [7].

Problem Definition In this work, we explore the behavior of rational players that could not
validate the block – because checking validity has a cost – and conditions (the majority threshold
ν and proportion of Byzantine processes) under which rational players reach an equilibrium where
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consensus properties (defined in Section 2.2) are guaranteed. To do so, in Section 3, we study the
equilibria that arise under different conditions.

3 Equilibria for Rational Players

3.1 Equilibrium when f ≥ ν

When the number of Byzantine players is larger than the majority rule, i.e., f ≥ ν, the validity
property is not satisfied, since, when the first proposer is Byzantine, it proposes an invalid block,
and that block is accepted, as all Byzantine players send messages in its favor. Against that
backdrop, we characterize the strategies of the rational players and state the equilibrium outcome
when f ≥ ν.

Proposition 1. If n− f ≥ ν + 1 and f ≥ ν, there exists a Perfect Bayesian equilibrium in which
the strategy of a rational player at any round is the following:

• As proposer, a rational player proposes a valid block.

• When receiving a proposed block, the rational players do not check the block validity but send
a message.

The first condition (n−f ≥ ν+1) implies that, when all rational players but one send a message,
they meet the majority threshold ν, so the block is accepted. The second condition (f ≥ ν) implies
that, when all Byzantine processes send a message, the block is accepted. Under these conditions,
each rational player understands it is not pivotal: If the block is invalid, Byzantine players will
send messages, so that the block will be accepted irrespective of the rational player’s own action.
Moreover, if the block is valid, Byzantine players will not send messages, but all the other rational
players will, so that the block will be accepted irrespective of the rational player’s action.

Thus rational players understand that they are not pivotal, and that whatever they do, given
the equilibrium behavior of the other rational agents and of the Byzantine processes; all blocks will
be accepted. Consequently, they have no interest in checking the validity of the block. The only
relevant comparison for them is between their expected gain when they send a message

R− csend −
f

n
κ

and their expected gain when they do not send a message − f
n
κ. Since, by assumption, R >

csend, rational players find it optimal to send a message. Finally note that, in the equilibrium of
Proposition 1, a block is decided at round 1, so the termination property is satisfied, but, when
the proposer is Byzantine, an invalid block is accepted, so the validity property is not satisfied.
Proof If a rational player is selected to be the proposer, he prefers to propose a valid block than to
propose an invalid block. Indeed, if he proposes an invalid block, that block will be accepted (since
the f ≥ ν Byzantine players, on checking it and discovering it is invalid, will send a message). In
that case the gain of the proposer is R− ccheck − csend − κ. If instead the rational player proposes
a valid block, this block will be accepted and his gain will be R− ccheck − csend. Now, turn to the
actions of rational players who are not proposers. The equilibrium gain of these players is

−csend +R−
f

n
κ.
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If instead of playing the equilibrium strategy, a rational player does not send a message, its
expected gain is − f

n
κ, which by assumption (R > csend) is lower than the equilibrium expected

gain.
Another deviation is to check the block’s validity and send a message only if the block is valid,

which brings expected gain equal to

−ccheck + (1−
f

n
)(R − csend)−

f

n
κ.

This is lower than the equilibrium expected gain if

−csend +R−
f

n
κ > −ccheck + (1−

f

n
)(R− csend)−

f

n
κ,

which holds since it is equivalent to

0 > −ccheck −
f

n
(R − csend).

The other possible deviations are trivially dominated: Checking the block’s validity and sending
a message only when the block is invalid, yields expected gain

−ccheck +
f

n
(R − csend − κ),

which is lower than the equilibrium expected gain. Checking the block’s validity and sending a
message only when the block is valid yields expected gain

−ccheck +

(

1−
f

n

)

(R− csend)−
f

n
κ,

again lower than the equilibrium expected gain. Checks the validity of the block and always sending
a message yields

R− csend −
f

n
κ− ccheck,

which is again dominated, as is also checking and not sending, which yields −ccheck −
f
n
κ.

�Proposition 1

3.2 Equilibria when f < ν

Proposition 2. When f < ν and n − f ≥ ν, there exists a Nash equilibrium in which rational
players never check blocks’ validity nor send messages, so that no block is ever accepted.

Condition f < ν, in Proposition 2 implies that Byzantine players cannot reach the majority
threshold on their own. This precludes accepting invalid blocks. So the validity property is satisfied.
Unfortunately, the condition also implies there exists an equilibrium in which the termination
property also fails to hold. The intuition is the following:

In Proposition 2, each rational player anticipates that no other player will send a message when
the block is valid.2 In this context, each rational player knows that, if it were to send a message in
favor of a valid block, it would be the only one to do so. Because the majority threshold ν is strictly
larger than 1, the block would not be accepted. Therefore sending a message is a dominated action

2Byzantine players send messages but only when the block is invalid.
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for the rational player. Thus, the equilibrium in Proposition 2 reflects that rational players’ actions
are strategic complements and they must coordinate on sending messages in order to have valid
blocks accepted. Proposition 2 shows that, in equilibrium, there can be a coordination failure, such
that no block is ever accepted.3

Proof Consider a rational player who anticipates that other rational players will not send any
message at any round. If it follow the equilibrium strategy and does not send an message, its gain
is 0. This must be compared to the gain of the player if he deviates:

• If it sends a message without checking its expected gain is

−csend + Pr(invalid)1(f=ν−1)(R − κ).

• If it checks the block’s validity and sends a message only when the block is valid, its expected
gain is

−ccheck − Pr(valid)csend.

• If it checks the block’s validity and sends a message only when the block is invalid, its expected
gain is

−ccheck + Pr(invalid)(1(f=ν−1)(R− κ)− csend).

• If it checks the validity of the block and always sends a message, its expected gain is

−csend − ccheck +Pr(invalid)1(f=ν−1)(R− κ).

• If it checks and does not send a message, its gain is −ccheck.

Clearly, the player is better off following the equilibrium strategy.
�Proposition 2

Note that the conditions of Proposition 2 imply that f < n
2 , i.e, there is a strict majority

of rational players. Yet, the proposition shows that such majority is not enough to ensure both
termination and validity.

While there exists an equilibrium in which termination does not obtain, this does not necessarily
imply there is no equilibrium with termination and validity. To have termination and validity, it
must be that, in equilibrium, sufficiently many rational players find it in their own interest to check
the validity of the block and to send messages in support of valid blocks. The problem is that some
players might be tempted to free-ride, and let the others bear the cost of checking. To avoid this
situation, it must be that (at least some) rational players anticipate they are pivotal, i.e., if they
fail to check block validity and send messages in support of valid blocks, this may derail the process
at their own expense.

To make this point, we look for an equilibrium in which some rational players check the validity
of the block and send a message if and only the block is valid, and this results in valid blocks being
immediately accepted and invalid blocks being rejected. Before proving that such an equilibrium
exists, we characterise the expected continuation payoff to which it would give rise.

3If f = 0, then, with ν = 1, there exists a unique equilibrium, in which all processes check validity and send a
message iff the block is valid. In that equilibrium validity and termination are satisfied. But this obtains only if there
are no Byzantine processes. As soon as f ≥ 1, if ν = 1, Proposition 1 applies and validity is not satisfied.

11



Lemma 1. Consider a candidate equilibrium in which some rational players check the validity of
the block and send a message if and only the block is valid, while the other rational players send
messages without checking validity, and this results in valid blocks being immediately accepted and
invalid blocks being rejected. In such an equilibrium, if it exists, the expected continuation payoff,
at round t, of the rational players who are to check block validity is

πcheck(t) = R− csend − φ(t)ccheck,

while the expected continuation payoff, at round t, of the rational players who are not to check block
validity is

πsend(t) = R− ψ(t)csend,

where φ(f) = 1, ψ(f + 1) = 1 and both φ and ψ satisfy property P defined below.

Definition 1. A function g satisfies property P , if g(t) = 1 + f−t+1
n−t+1g(t+ 1),∀t < f .

In the candidate equilibrium, participants will reach a point at which the block is valid and all
rational players send a message so that the block accepted. This gives rise to a payoff R−csend, the
first part of πcheck(t). The second part of πcheck(t), φ(t)ccheck, is the expected cost of checking block
validity, where φ(t) is the expected number of times the player expects to check validity before a
block is accepted. Similarly, in πsend(t), ψ(t)ccheck, is the expected cost of sending messages, where
ψ(t) is the expected number of times the player expects to send messages before a block is accepted.
Proof We prove this Lemma in 2 parts:

1. Proof of the first part of the proposition, concerning the rational players who are expected to
check validity:

At round t = f , players know that all f −1 previous proposers were Byzantine and that there
are now n− f + 1 potential proposers, out of which only one is Byzantine and n− f > ν are
rational. The expected gains of the rational players who are supposed to check are

−ccheck +
n− f

n− f + 1
(R− csend) +

1

n− f + 1
(R− csend),

where the first term is the cost of checking validity, the second term corresponds to the case
in which the current proposer is rational and proposes a valid block that is immediately
accepted, and the third term corresponds to the case in which the proposer is Byzantine, the
block is rejected, and we move to the next round, at which a valid block is finally accepted
(without needing any further validity check). This equilibrium payoff simplifies to

R− csend − ccheck,

reflecting that eventually a valid block will be accepted, and that from round f on the player
will need to check validity only once. This equilibrium payoff implies that

φ(f) = 1.

Now turn to round t < f . If round t ≤ f is reached, the previous t − 1 proposers were
Byzantine. There remains n− (t− 1) potential proposers. Out of them a fraction

f − (t− 1)

n− t+ 1

12



is Byzantine, while the complementary fraction

n− f

n− t+ 1

is rational. This fraction being the probability that the next proposer is rational.

To prove the property stated in the Proposition by backward induction, we now prove that
if this property is satisfied at round t+ 1, that is if

πcheck(t+ 1) = R− csend − φ(t+ 1)ccheck,

then it is satisfied at round t.

Suppose the rational player follows the equilibrium strategy of checking and sending iff the
block is valid. Its expected gain from round t on is

−ccheck +
n− f

n− t+ 1
(R− csend) +

f − (t− 1)

n− t+ 1
π(t+ 1),

where the first term is the cost of checking the block at round t, the second term is the
probability that the block is valid and accepted multiplied by the payoff in that case, and the
third term is the probability that the block is invalid and rejected multiplied by the payoff in
that case. Substituting the value of πcheck(t+1), using that the property is verified at round
t+ 1, the expected gain writes as

−ccheck +
n− f

n− t+ 1
(R− csend) +

f − (t− 1)

n− t+ 1
(R− csend − φ(t+ 1)ccheck).

That is

R− csend −

(

1 +
f − (t− 1)

n− t+ 1
φ(t+ 1)

)

ccheck,

which, using the definition of φ(t), is R− csend − φ(t)ccheck.

2. Proof of the second part of the proposition, concerning the rational players who are just
expected to send messages:

Again, we prove that if the property is satisfied at round t+ 1, i.e., πsend(t+ 1) = R− ψ(t+
1)csend, then it is satisfied at round t. Suppose the rational player follows the equilibrium
strategy of not checking blocks’ validity and always sending a message. Its expected gain
from round t on is

csend +
n− f

n− t+ 1
R+

f − t+ 1

n− t+ 1
πsend(t+ 1),

where the first term is the cost of sending a message at round t, the second term is the
probability that the block is valid and accepted multiplied by the payoff in that case, and the
third term is the probability that the block is invalid and rejected multiplied by the payoff in
that case. Substituting the value of πsend(t+ 1), the expected gain writes as

−csend +
n− f

n− t+ 1
R+

f − t+ 1

n− t+ 1
(R − ψ(t+ 1)csend).

That is

R−

(

1 +
f − t+ 1

n− t+ 1
ψ(t+ 1)

)

csend,

which, using the definition of ψ(t), is R− ψ(t)csend.

13



�Lemma 1

Relying on Lemma 1, we now establish that our candidate equilibrium is indeed an equilibrium.
To do so denote the highest index of all Byzantine players by iB .

Proposition 3. When f < ν and n − f > ν, if the cost κ of accepting an invalid block is large
enough, in the sense that

κ > α(t)ccheck − β(t)csend,∀t < f,

where

α(t) =
(n − t+ 1)φ(t) − (f − t+ 1)Pr(iB ≥ n− ν + f + 2|T ≥ t)φ(t+ 1)

(f − t+ 1)Pr(iB < n− ν + f + 2|T ≥ t)

and

β(t) =
Pr(iB ≥ n− ν + f + 2|T ≥ t)

Pr(iB < n− ν + f + 2|T ≥ t)
,

and if the reward is large enough relative to the costs in the sense that

R ≥ max

[

n

n− f
csend, csend +

n

n− f
ccheck

]

,

there exists a Perfect Bayesian Nash equilibrium in which the strategy of rational players is the
following:

• As proposer, a rational player proposes a valid block.

• At any round t ≤ f , when receiving a proposed block, (i) the rational players with index
i ∈ {t, . . . , n−ν+f+1} check the block validity and send a message only if the block is valid,
while (ii) the rational players with index i ∈ {n− ν + f + 2, . . . , n} do not check the validity
of the block but send a message.

• If round t = f +1 is reached, rational players send a message without checking if the block is
valid. At this point the block is valid and accepted.

Hence, in equilibrium, termination occurs no later than at round f + 1.

On the equilibrium path, invalid blocks (proposed by Byzantine players) are rejected, while
valid blocks (proposed by rational players) are accepted. This implies that, if round t = f + 1 is
reached, the players know that during all the previous (f) rounds the proposers were Byzantine (to
draw this inference, the rational players use their anticipation that all participants play equilibrium
strategies; hence the Perfect Bayesian nature of the equilibrium). Consequently, at round f+1, the
proposer must be rational, and all players anticipate the proposed block is valid. So, no rational
player needs to check the validity of the block but all send a message, which brings them expected
gain equal to R−csend. This is larger than their gain from deviating (e.g., by not sending a message
or by checking the block.)

At previous rounds t ≤ f , players know that all t − 1 previous proposers were Byzantine and
that there remains f − t + 1 Byzantine players with index strictly larger than t − 1 (as above,
this rational inference is a feature of the Perfect Bayesian equilibrium we characterize). Do the
equilibrium strategies of the rational players preclude acceptance of an invalid block by Byzantine
processes? To examine this point, consider the maximum possible number of messages that can
be sent if the proposer is Byzantine. In equilibrium the ν − f − 1 players with indexes strictly
larger than n − ν + f + 1 are to send a message without checking it. The worse case scenario
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(maximizing the number of messages sent when the block is invalid) is that none of these players
are Byzantine. In that case, in equilibrium, the number of messages sent when the block is invalid
is f + (ν − f − 1) = ν − 1, so that we narrowly escape validation of the invalid block. In contrast,
if one of the rational players deviated from equilibrium and sent a message without checking the
block, in the worse case scenario, this would lead to accepting an invalid block. Thus, in that sense,
the rational players with index strictly lower than n−ν+f +1 are pivotal. Hence they check block
validity, because, under the condition stated in the proposition, the cost of accepting an invalid
block is so large that rational players do not want to run that risk.
Proof For clarity, we decompose the proof in 5 steps.

1. The first step is to note that rational proposers strictly prefer to propose a valid block than
an invalid one. This is because, when they follow their equilibrium strategy of proposing a
valid block, it is accepted and the proposer gets R − ccheck − csend, while if they propose an
invalid block, it is rejected, and we move to the next round, a which, in equilibrium, the
player gets at most R− ccheck − csend (and possibly less). Indeed, this player incurs the cost
of checking validity at the next round, because the rational players who are not expected to
check validity have indexes above n− ν + f + 1, which are above f + 1, so that they do not
get to propose blocks.

2. The next step concerns the actions of the rational players when round t = f + 1 is reached.
At that round, all players know the proposer must be rational and the proposed block valid.
In equilibrium no rational checks validity but all send a message. Any other action would be
dominated.

3. The third step concerns the most relevant deviation, in which a rational player expected to
check block validity fails to do so. If at round t a rational player supposed to check, deviates
and sends a message without checking block validity, its expected continuation payoff is

(

1−
f − (t− 1)

n− t+ 1

)

(R− csend) +
f − (t− 1)

n− t+ 1
Pr(iB < n− ν + f + 1) (R− csend − κ)

+
f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 1) (π(t+ 1)− csend) .

The first term is the payoff obtained by the deviating rational player if the current block
is valid, and therefore immediately accepted. The second term is the payoff obtained by
the deviating player when he was pivotal and triggered acceptance of an invalid block. To
see this, consider the number of messages when the block is invalid, the rational player is
deviating and the indexes of all the Byzantine players are strictly lower than n− ν + f + 2:
f messages are sent by the Byzantine processes, 1 message is sent by the deviating rational
agent, ν − f − 1 messages are sent by the rational players with index above than or equal to
n − ν + f + 2. The resulting total number of messages is ν and the block is accepted. The
last term corresponds to the case in which the deviating rational player is not pivotal, and
the invalid block is not accepted, so that we move to the next round.

Substituting the value of πcheck(t+1) = R−csend−φ(t+1)ccheck from Lemma 1, the expected
continuation value of the deviating player is

(

1−
f − (t− 1)

n− t+ 1

)

(R− csend) +
f − (t− 1)

n− t+ 1
Pr(iB < n− ν + f + 2|T ≥ t) (R− csend − κ)

+
f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 2|T ≥ t) (R− csend − φ(t+ 1)ccheck − csend) .
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Or

(R− csend)−
f − (t− 1)

n− t+ 1
Pr(iB < n− ν + f + 2|T ≥ t)κ

−
f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 2|T ≥ t) (φ(t+ 1)ccheck + csend) .

The equilibrium condition is that this deviation payoff must be lower than the equilibrium
continuation payoff of the player

R− csend − φ(t)ccheck.

That is

f − (t− 1)

n− t+ 1
Pr(iB < n− ν + f + 2|T ≥ t)κ > φ(t)ccheck

−
f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 2|T ≥ t) (φ(t+ 1)ccheck + csend) .

Note that

φ(t) ≥
f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 2|T ≥ t)φ(t+ 1),

since by the definition of φ(t) this inequality is equivalent to

1 +
f − (t− 1)

n− t+ 1
φ(t+ 1) ≥

f − (t− 1)

n− t+ 1
Pr(iB ≥ n− ν + f + 2|T ≥ t)φ(t+ 1),

which indeed holds. Thus we can write the equilibrium condition as

κ > α(t)ccheck − β(t)csend,∀t < f,

as stated in the proposition.

4. Other possible deviations for rational player supposed to check block’s validity are easier to
rule out:

First, the player could do nothing (neither check nor send). Relative to the equilibrium payoff,
this deviation economises the cost of checking (ccheck). If the current proposer is Byzantine,
the player then obtains the same payoff after a one shot deviation as on the equilibrium path
(πcheck(t + 1)). If the current proposer is rational, the block gets accepted, but the player
does not earn any reward. So the deviation is dominated if

n− f

n− t+ 1
(R− csend) ≥ ccheck,

which holds under the condition, stated in the proposition, that R ≥ max
[

n
n−f csend, csend +

n
n−f ccheck

]

.

Second, the player could check the block validity, and then send a message irrespective of
whether the block is valid or not. This would generate a lower payoff than the main deviation,
shown above (in 3.) to be dominated.

Third, the player could check validity but then send no message. When the current proposer
is Byzantine, this one-shot deviation yields the same payoff as the equilibrium strategy. When
the current proposer is rational, this deviation yields a payoff of −ccheck, which is lower than
the equilibrium payoff R− csend − ccheck.

Fourth, the player could check the block’s validity and send a message only if the block is
invalid, which is trivially dominated.
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5. Finally turn to deviations of rational players supposed to send messages without checking
blocks’ validity.

First, consider the possibility to abstain from sending a message. This economises the costs
csend, but, in case the block is valid and accepted, this implies the agent loses the reward R.
So, the deviation is dominated if

n− f

n− t+ 1
R ≥ csend,

which holds under the condition, stated in the proposition, that R ≥ max
[

n
n−f csend, csend +

n
n−f ccheck

]

.

Second, consider the possibility of checking validity and sending a message only for valid
blocks. This deviation would imply the agent would have to incur the cost of checking
(ccheck), but it would economise the cost of sending a message when the block is invalid. So
the deviation is dominated if

ccheck ≥
f − t+ 1

n− t+ 1
csend,

which holds because of our assumption that ccheck ≥ csend.

Other deviations, such as checking validity but never sending messages, or checking validity
and always sending messages, or checking validity and sending only if the block is invalid, are
trivially dominated.

�Proposition 3

4 Conclusion and Future Work

In this paper we model PBFT-consensus based blockchains as a coordination game between rational
and Byzantine processes. We derive the conditions (on the majority threshold and the proportion
of Byzantine processes) under which consensus properties are guaranteed in equilibrium or not. In
future work, we will extend the analysis to more general Byzantine strategies and rational agents
preferences, costs and rewards.
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