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Abstract

The GAI (Generalized Additive Independence) model proposed by Fishburn is
a generalization of the additive value function model, which need not satisfy prefer-
ential independence. Its great generality makes however its application and study
difficult. We consider a significant subclass of GAI models, namely the discrete
2-additive GAI models, and provide for this class a decomposition into nonneg-
ative monotone terms. This decomposition allows a reduction from exponential
to quadratic complexity in any optimization problem involving discrete 2-additive
models, making them usable in practice.

Keywords: conjoint measurement, multicriteria decision making, capacity, generalized
additive independence, multichoice game

1 Introduction

Conjoint measurement provides an adequate and widely studied framework for the repre-
sentation of preferences in decision making with multiple objectives or criteria (see, e.g.,
the monograph of Krantz et al. (1971), as well as the survey paper by Bouyssou and
Pirlot (2016), containing many references). The most representative model in conjoint
measurement is the additive value function model U(x) =

∑

i ui(xi), whose character-
istic property is (preferential) independence, stipulating that the preference among two
alternatives should not depend on the attributes where the two alternatives agree.

However, it is well known that in real situations, preferential independence could be
easily violated, because of the possible interaction between objective/criteria. Referring
to the example of evaluation of students in Grabisch (1996) where students are eval-
uated on three subjects like mathematics, physics and language skills, the preference
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between two students may be inverted depending on their level in mathematics, assum-
ing that the evaluation policy pays attention to scientific subjects. For instance, the
following preference reversal is not unlikely (marks are given on a 0-100 scale, in the
following order: mathematics, physics and language skills): (40, 90, 60) ≻ (40, 60, 90) and
(80, 90, 60) ≺ (80, 60, 90), because if a student is weak in one of the scientific subject (e.g.,
40 in mathematics), more attention is paid to the other scientific subject (here, physics),
otherwise more attention is paid to language skills.

To escape preferential independence, Krantz et al. (1971) have proposed the so-called
decomposable model, of the form U(x) = F (u1(x1), . . . , un(xn)), where F is strictly mono-
tone. This model, which is a generalization of the additive value model, is characterized
by a much weaker property than preferential independence, namely weak independence or
weak separability (Wakker (1989)). This property amounts to requiring preferential inde-
pendence only for one attribute versus the others, and is satisfied in most of applications.
For instance, in the design of complex systems, systems are assessed against performance
attributes (e.g., detection rate) and costs (e.g., capital expenditure). Weak separability is
satisfied as improving the performance or diminishing expenditure necessarily improves
the evaluation of the system. It permits to define a complete preorder on each attribute
Xi, allowing the construction of marginal value functions u1, . . . , un, and implies that
U should be monotone. Taking F as the Choquet integral w.r.t. a capacity (Choquet
(1953)) permits to have a versatile model, which has been well studied and applied in
practice (see a survey in Grabisch and Labreuche (2010)). The drawback of these models
is that in general they require commensurate value functions, i.e., one should be able to
compare ui(xi) with uj(xj) for every distinct i, j.

Another generalization of the additive value model escaping preferential independence
has been proposed by Fishburn (1967), under the name of generalized additive indepen-
dence (GAI) model. It has the general form U(x) =

∑

S∈S uS(xS), where S is any
collection of subsets of attributes, and xS is the vector of components of x belonging to
S. This model is very general (it even need not satisfy weak independence, see below for
an example) and does not need commensurate attributes.

Its great generality is also the Achille’s heel of this model, making it difficult to use in
practice, and so far it has not been so much considered in the community of multicriteria
decision making. Some developments, essentially focused on the identification of the
parameters of the model, have been done in the field of artificial intelligence (see, e.g.,
Bacchus and Grove (1995); Boutilier et al. (2001); Bigot et al. (2012); Braziunas and
Boutilier (2005)). There are two major difficulties related to this model.

Firstly, its expression is far from being unique. In two equivalent decompositions
U(x) =

∑

S∈S uS(xS) =
∑

S∈S u
′
S(xS), the value functions uS and u′

S may behave com-
pletely differently and in particular be governed by different monotonicity conditions.
This implies that there is no intrinsic semantics attached to these value functions, which
makes the model difficult to interpret for the decision maker.

The second difficulty is related to its elicitation, because the number of monotonicity
constraints on the parameters of the model grows exponentially fast in the number of
attributes. As these constraints must be enforced, the practical identification of the
model appears to be rapidly computationally intractable as the number of attributes and
the cardinality of the attributes grow.
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The aim of this paper is to provide a first step in making GAI models usable in
practice, by proving a fundamental result on decomposition, in a subclass of GAI models
which is significant for applications. Specifically, we are interested in GAI models where,
first, the collection S is made only of singletons and pairs, thus limiting the model to a
sum of univariate or bivariate terms, and second, the attributes take discrete values. We
call this particular class 2-additive discrete GAI models. In addition, we assume that
weak independence holds.

The main result of this paper shows that for a given 2-additive GAI model that fulfills
weak independence, it is always possible to obtain a decomposition into nonnegative
monotone nondecreasing terms. The result is proved by using an equivalence between
2-additive discrete GAI models and 2-additive k-ary capacities, and amounts to finding
the set of extreme points of the polytope of 2-additive k-ary capacities. Going back to
the first difficulty mentioned earlier, using this decomposition provides a semantics to the
value functions uS as they have the same monotonicity as the overall value function U .
Secondly, thanks to this result, it is possible to replace the monotonicity conditions on U

by monotonicity conditions on each term uS, which reduces the number of monotonicity
constraints from exponential to quadratic complexity. This is of extreme importance in
practice.

As a final remark on the aim and scope of the paper, we would like to emphasize that,
despite all the apparatus on conjoint measurement and decision theory which is used, our
aim is by no means an axiomatization of the 2-additive GAI model, based on properties
of the preference relation <. Rather, we place ourselves in a more practical point of view,
where we suppose to have some partial knowledge of <, and try to find a value function
U of the 2-additive GAI type, which best represents the available pieces of preference,
by solving an optimization problem. This is referred to as the learning approach. Our
main result ensures that the optimization problem will have a polynomial size and that
the resulting function U will be easily interpretable.

The paper is organized as follows. Section 2 introduces the necessary concepts and
notation in conjoint measurement and GAI models, as well as the decomposition prob-
lem. Section 3 introduces discrete p-additive GAI models, and shows the equivalence
with p-additive k-ary capacities. Section 4 explains the complexity problem behind the
identification of 2-additive discrete GAI models, and proves that a decomposition into
nonnegative monotone nondecreasing terms is always possible, which constitutes the main
result of the paper.

2 Background

2.1 Multicriteria decision making and conjoint measurement

(we refer the reader to, e.g., Bouyssou and Pirlot (2016) for a detailed introduction
to the topic) We consider objects or alternatives described by several attributes, and
represent them as vectors x = (x1, . . . , xn), where xi is the value of the ith attribute
for x, i = 1, . . . , n. We denote by Xi the set of all possible values taken by attribute i,
i = 1, . . . , n. The set of all potential alternatives is X = X1 × · · · × Xn, considering all
possible combinations of the values of the attributes. We set N = {1, . . . , n} the index set
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of attributes, and suppose throughout the paper that n ≥ 2. We denote by (xA, y−A) ∈ X

the compound alternative taking value xi if i ∈ A and value yi otherwise. Accordingly,
we introduce XA = ×i∈AXi and X−A = ×i 6∈AXi.

We assume that the decision maker has a preference on the alternatives, represented
by a complete preorder (reflexive and transitive binary relation) < on X . Ordinal mea-
surement amounts to finding a numerical function U : X → R representing the preference
in the following sense:

x < y ⇔ U(x) ≥ U(y).

U is called a value function. A classical situation in multicriteria decision making is when
the value function can be put into an additive form:

U(x) =
n∑

i=1

ui(xi) (1)

where ui : Xi → R are the marginal value functions on each attribute. It is well known
that a necessary condition for the additive model to hold is that < satisfies an indepen-
dence property, defined as follows. For any ∅ 6= I ⊂ N , we say that < is (preferentially)
independent for I if for every x, y, z, t ∈ X ,

(xI , z−I) < (yI , z−I) ⇔ (xI , t−I) < (yI , t−I).

If < is independent for any ∅ 6= I ⊂ N , then we say that < is (preferentially) indepen-
dent. Under this condition plus some other simple technical conditions, the preference
relation < can be represented by an additive value function, unique up to a positive affine
transformation.

As we explained in the introduction, preferential independence is quite a strong condi-
tion which is not always met in practice. A much weaker condition is weak independence
where for all i ∈ N , all xi, yi ∈ Xi and all z−i, t−i ∈ X−i

(xi, z−i) < (yi, z−i) ⇐⇒ (xi, t−i) < (yi, t−i)

(xi is at least as good as yi ceteris paribus).
Let us define for any ∅ 6= I ⊆ N the following binary relation on XI :

xI <I yI iff (xI , z−I) < (yI , z−I) ∀z−I ∈ X−I .

Denoting <{i} simply by <i, it is well known and easy to check that if < satisfies weak
independence, then <i is a complete preorder on Xi, and moreover, monotonicity holds
in the following sense: for all x, y ∈ X ,

xi <i yi ∀i ∈ N ⇒ x < y. (2)

2.2 Generalized Additive Independence (GAI) model

Weak independence is too weak to ensure that the additive value function model holds.
Therefore, more general models have to be sought. A natural generalization of the addi-
tive model is to allow the marginal value functions to depend on several attributes:

U(x) =
∑

S∈S

uS(xS) (x ∈ X), (3)
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where S ⊆ 2N \ {∅}. This is called the Generalized Additive Independence (GAI) model.
Note that S, S ′ ∈ S are not necessarily disjoint, so that some overlaps may exist between
the terms of the sum. The additive value function model is a particular case of the GAI
model when S is composed of singletons only.

It seems that the first occurrence of this model is due to Fishburn (Fishburn, 1967),
who introduced it in the context of expected utility. Fishburn characterized it by a
condition stating that if two probability distributions P and Q over the alternatives X

have the same marginals over every S ∈ S, then the expected utility of P and Q are
equal. Another pioneering work is Bacchus and Grove (1995).

Unlike the additive value function model, the GAI model does not necessarily satisfy
weak independence. In the Artificial Intelligence community, researchers are interested
in the representation of preferences that may violate weak independence. A well-known
example of such a preference is the following: consider two attributes X1, X2 where X1

pertains on the type of wine and X2 to the type of main course in a restaurant. Then
usually, one prefers ‘red wine’ to ‘white wine’ if the main course is ‘meat’, but ‘white
wine’ is preferred to ‘red wine’ if the main course is ‘fish’ (the preference over attribute
‘wine’ is conditional on the value on attribute ‘main course’) (Boutilier et al., 2001).

In multicriteria decision theory, it is often argued that such occurrences of preference
relations which do not satisfy weak indepedence are in fact due to a poor modelling of
the attributes. In the above example, weak independence can be restored by introducing
a new attribute called “accordance of the main course with the wine”. For this rea-
son, following the traditional view of decision theory, we assume in this work that weak
independence holds.

An important consequence of weak independence is that monotonicity holds for <

(see (2)), and consequently for U too:

xi <i yi ∀i ∈ N ⇒ U(x) ≥ U(y) (4)

2.3 The decomposition issue

It is well known that in decision making, numerical models representing a preference
relation are not unique. Often, like for the additive model, they are unique up to a positive
affine transformation. This being taken for granted, GAI models have an additional
difficulty: supposing the numerical representation U to be fixed, there is in general no
unique way to express it mathematically.

Let us consider for example the following (fixed) GAI model in two variables:

U(x1, x2) = 2x1 + x2 − min(x1, x2). (5)

U is formed of three terms, the first two being increasing while the third one is decreasing.
By using the relation max(x1, x2) + min(x1, x2) = x1 + x2, an equivalent expression is

U(x1, x2) = x1 + max(x1, x2). (6)

Observe that now the expression has only two terms, both of them being nondecreasing.
Clearly, the latter expression is better because it has fewer terms and the contribution for
U of each of them is better understood as both terms are nonnegative and nondecreasing.
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This rises the question of the decomposition of a GAI model U(x). Is it possible to
relate all decompositions? Is there any “canonical” decomposition in some sense? Is it
possible to always find a decomposition into nondecreasing terms? The two first questions
have already found an answer in the literature. As for the third question, we will show in
Section 4.1 that in practical situations where the model has to be determined from data,
this question is crucial.

As for the first question, Fishburn (1967) has shown that any two equivalent decom-
positions U(x) =

∑

S∈S uS(xS) =
∑

S∈S u
′
S(xS) are related as follows:

u′
S(xS) = uS(xS) +

∑

S′∈S\{S}, S∩S′ 6=∅

fS,S′(xS∩S′) + cS

where fS,S′ : XS∩S′ → R, and
∑

S∈S

[
∑

S′∈S\{S}, S∩S′ 6=∅ fS,S′(xS∩S′) + cS

]

= 0. Due to

the presence of functions fS,S′, we do not have uS(xS) ≥ uS(yS) iff u′
S(xS) ≥ u′

S(yS),
for any two xS, yS ∈ XS (Braziunas, 2012, page 87). Moreover, even if U satisfies weak
independence, it might be the case that uS does not fulfill this condition, or satisfies it but
does not have the same monotonicity as U . Hence there is no well-defined semantics of
the value functions uS, contrarily to what is claimed in (Braziunas, 2012, section 3.2.1.4).

As for the question of a canonical decomposition, Braziunas has proposed a decompo-
sition based on the Fishburn representation. Fixing an order on S, say, S = {S1, . . . , Sp},
the overall value function reads U(x) =

∑

S∈S u
C
S (xS) with, for every j ∈ {1, . . . , p}

uC
Sj

(xSj
) = U(x[Sj ]) +

∑

K⊆{1,...,j−1} , K 6=∅

(−1)|K|U (x [∩k∈KSk ∩ Sj]) (7)

where ·C stands for “canonical”, O ∈ X is any element in X seen as an anchor, and
x[S] ∈ X defined by (x[S])i = xi if i ∈ S and (x[S])i = Oi otherwise (Braziunas, 2012,
page 94)). Note that the expression depends on the chosen ordering of the elements of
S. The two equivalent decompositions (5) and (6) were obtained with a particularly
simple example. The previous remark provides a more systematic way to derive several
equivalent decompositions of GAI models, as illustrated in the next example.

Example 1. Consider the following function U(x1, x2, x3) = x2+x1x3+max(x1, x2). We
have S = {S1, S2, S3} with S1 = {2}, S2 = {1, 3} and S3 = {1, 2}. Then the canonical
decomposition gives, with O = (0, 0, 0):

uC
S1

(x2) = U(x[S1]) = U(O1, x2,O3) = 2 x2

uC
S2

(x1, x3) = U(x[S2]) − U(x[S1 ∩ S2]) = U(x1,O2, x3) − U(O) = x1 (x3 + 1)

uC
S3

(x1, x2) = U(x[S3]) − U(x[S1 ∩ S3]) − U(x[S2 ∩ S3]) + U(x[S1 ∩ S2 ∩ S3])

= U(x1, x2,O3) − U(O1, x2,O3) − U(x1,O2,O3) + U(O)

= max(x1, x2) − x1 − x2 = −min(x1, x2)

We note that U is nondecreasing in all variables, even though, for the canonical decom-
position, uC

S3
is nonincreasing in its two coordinates.

Let us take now the order S ′
1 = {1, 2}, S ′

2 = {1, 3} and S ′
3 = {2}. We obtain

uC
S′

1

(x1, x2) = x2 + max(x1, x2), u
C
S′

2

(x1, x3) = x1 x3 and uC
S′

3

(x2) = 0. All terms are now

nonnegative and monotone.
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The previous example shows that the canonical decomposition does not guarantee to
have only nondecreasing terms in the decomposition, and therefore does not solve the
third question. Hence the question of finding a decomposition into nondecreasing terms
(which we call hereafter a monotone decomposition) is yet unsolved and as far as we
know, its existence has not been studied. As announced in the introduction, we will solve
this question for discrete 2-additive GAI models.

3 Discrete p-additive GAI models

We consider from now on discrete GAI models, i.e., where attributes can take only a
finite number of values, as it is most often the case in applications. We put

Xi = {a0i , . . . , a
mi

i } (i ∈ N),

with a0i 4i · · · 4i a
mi

i . Recall that weak independence holds, so that the binary relations
4i, i = 1, . . . , n are complete preorders, and monotonicity (4) holds. For the sake of
convenience, we normalize U (thus fixing a unique representation of �) by putting

U(a01, . . . , a
0
n) = 0, U(am1

1 , . . . , amn

n ) = 1. (8)

Observing that an additive model (1) is a particular GAI model where each term
depends on a single variable, one may introduce the following definition.

Definition 1. A GAI model is said to be p-additive if each term uS, S ∈ S, depends on
at most p variables, i.e., |S| ≤ p, and there exists at least one term uS with exactly p

variables.

Hence, the p-additivity property acts as a kind of limitator of the complexity of the
model.

3.1 Relation with k-ary capacities

There is a direct connection between discrete GAI models and k-ary capacities. This
observation will be the key point for the proof of our main result.

Consider X1, . . . , Xn as defined above. Any alternative x ∈ X is mapped to {0, . . . , m1}×
· · · × {0, . . . , mn} by the mapping ϕ which simply keeps track of the rank of the value of
the attribute:

(aj11 , . . . , a
jn
n ) 7→ ϕ(aj11 , . . . , a

jn
n ) = (j1, . . . , jn).

We consider now the smallest (discrete) hypercube {0, . . . , k}N containing {0, . . . , m1}×
· · · × {0, . . . , mn}, with k := maxi mi. Let L = {0, 1, . . . , k}. Given a GAI model U on
X , we define the mapping v : LN → R by

U(x) =: v(ϕ(x)) (x ∈ X)

and let v(z) := v(m1, . . . , mn) when z ∈ KN \ϕ(X). In words, v encodes the values of U
for every alternative, and fills in the missing values in the hypercube by the maximum of
U . By the monotonicity of U and (8), we have that v is nondecreasing in each argument
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and satisfies v(0, . . . , 0) = 0 and v(k, . . . , k) = 1. Such a function on LN is called a k-ary
capacity (Grabisch and Labreuche, 2003)1.

k-ary capacities are a generalization of the notion of capacity introduced by Choquet
(1953). Capacities correspond to 1-ary capacities, and through the identification of sets
with their characteristic functions, they are usually defined as set functions v : 2N → R+

such that v(∅) = 0, v(N) = 1, and satisfying monotonicity: for any S, T ∈ 2N such that
S ⊆ T , v(S) ≤ v(T ) holds.

So far, we have identified the set of discrete GAI models with the set of k-ary capaci-
ties, where k + 1 is the maximum number of elements in an attribute. We push now the
comparison a step further by identifying discrete p-additive GAI models with p-additive
k-ary capacities.

We first introduce the notion of p-additivity for k-ary capacities and k-choice games,
and to this end we introduce the Möbius transform. Following Rota (1964) and extending
what is done for classical capacities (see, e.g., Chateauneuf and Jaffray (1989)), the
Möbius transform of a k-choice game v is a function mv : LN → R which is the unique
solution of the linear system

v(z) =
∑

y≤z

mv(y) (z ∈ {0, 1, . . . , k}N). (9)

It is shown in the appendix that its solution is given by

mv(z) =
∑

y≤z : zi−yi≤1∀i∈N

(−1)
∑

i∈N (zi−yi)v(y) (z ∈ {0, 1, . . . , k}N). (10)

It follows that any k-choice game v can be written as:

v =
∑

x∈LN

mv(x)ux,

with ux a k-ary capacity defined by

ux(z) =

{

1, if z ≥ x

0, otherwise.

By analogy with classical games, ux is called the unanimity game centered on x. Note
that this decomposition is unique as the unanimity games are linearly independent, and
form a basis of the vector space of k-choice games.

We say that a k-choice game v is (at most) p-additive for some p ∈ {1, . . . , n} if its
Möbius transform satisfies mv(z) = 0 whenever |supp(z)| > p, where

supp(z) = {i ∈ N | zi > 0}.

The following lemma is fundamental in establishing the link between p-additive GAI
models and p-additive k-ary capacities.

1When nondecreasingness is not required, they coincide with multichoice or k-choice games (Hsiao
and Raghavan, 1990).

8



Lemma 1. Let k ∈ N and p ∈ {1, . . . , n}. A k-choice game v is p-additive if and only if
it has the form

v(z) =
∑

x∈LN ,0<|supp(x)|≤p

vx(x ∧ z) (z ∈ LN ) (11)

where vx : LN → R with vx(0) = 0.

Proof. Suppose that v is p-additive. By the decomposition of v in the basis of unanimity
games, it follows that

v =
∑

x∈LN ,0<|supp(x)|≤p

mv(x)ux,

hence we have the required form with vx = mv(x)ux. Conversely, again by decomposition
in the basis of unanimity games and since vx is a k-choice game, (11) can be rewritten
as:

∑

y∈LN

mv(y)uy(z) =
∑

x∈LN ,0<|supp(x)|≤p

∑

y∈LN

mvx(y)uy(x ∧ z)

=
∑

y∈LN ,0<|supp(y)|≤p

∑

x∈LN ,0<|supp(x)|≤p

mvx(y)uy(x ∧ z)

=
∑

y∈LN ,0<|supp(y)|≤p

( ∑

x≥y,0<|supp(x)|≤p

mvx(y)
)

uy(z).

By uniqueness of the decomposition, it follows that v is p-additive.

Note that even if v is a capacity, the vx are not necessarily capacities.
It follows from the above result that the set of p-additive discrete GAI models on X

coincides with the set of (at most) p-additive k-ary capacities.

4 Monotone decomposition of a 2-additive GAI model

In this section, we show that it is always possible to obtain a decomposition of a 2-additive
discrete GAI model into nondecreasing terms (monotone decomposition). The case of
2-additive models is of particular importance in practice, since it constitutes a good
compromise between versatility and complexity. Experimental studies in multicriteria
evaluation have shown that 2-additive capacities have almost the same approximation
ability than general capacities (see, e.g., Grabisch et al. (2002)). A two-additive GAI
model is considered in Bigot et al. (2012), and a very similar model is defined in Greco
et al. (2014).

Before giving this result, we show that the existence of monotone decomposition is a
crucial issue when a GAI model has to be determined from data by a learning procedure,
because of algorithmic complexity.

4.1 A complexity problem in the learning procedure

Generally speaking, a learning procedure consists in collecting information on the pref-
erence relation <, which is then used in an optimization problem, whose aim is to find a
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value function U of a given type representing at best the given preference. The variables
of the optimization problem are then the parameters of the model U .

In most cases, the available data used for the identification of a model (GAI or any
other decision model) consist in pairs (x, y) ∈ X2 such that x < y (see, e.g., (Bigot
et al., 2012; Greco et al., 2014; Labreuche and Grabisch, 2013)). Additionnally, some
more complex information can be used, as comparison of difference between alternatives,
assessment or comparison on the importance of attributes or their interaction, as in
Greco et al. (2014), etc. In the above cited works, these data are converted into linear
constraints, where the underlying variables are the parameters of the GAI model with
possibly some additional “technical” variables, and the model is identified as a result of
one or several linear programs. The following example is typical:

Minimize
∑

(x,y)∈D

ε(x,y)

subject to û ∈ C (12)

ε(x,y) ∈ {0, 1}, (x, y) ∈ D

U(x) − U(y) + Mε(x,y) ≥ 0, (x, y) ∈ D

where D is the learning data set (consisting here simply of pairs of alternatives (x, y)
such that x < y), M is a large positive constant, û is the vector of parameters of the GAI
model denoted by U , and C is the set of feasible parameter vectors (we will specify û and
C below). Roughly speaking, the program tries to find the best feasible vector û which
maximizes the number of pairs (x, y) for which U faithfully represents the preference.
Indeed, given the parameters û fixed, if U(x) ≥ U(y), then ε(x,y) can be equal to 0,
otherwise, it must be equal to 1.

In other works (e.g., Fallah Tehrani et al. (2012, 2014)) which follow more a regression-
type approach, the data are incorporated into the objective function, which is nonlinear.
Anyway, the variables contain the vector û as above and we have the constraint û ∈ C.
Moreover, û is obtained from a convex optimization problem.

In the two previous formulations, the complexity of the resolution of the optimization
problem highly depends on the structure of polytope C and in particular the number of
constraints.

As the vector of parameters û and the constraint û ∈ C are present in any of the
approaches, we try in the sequel to determine the number of parameters as well as the
number of constraints describing C. In a discrete GAI model as described in Section 3,
the parameters û are the values uS(xS) for all xS ∈ XS and all S ∈ S. If in addition
we restrict to a 2-additive model and if no special information is available on S, we
consider that S is the set of all singletons and all pairs of attributes. Supposing that the
maximal number of elements in an attribute is k + 1, i.e., the GAI model is equivalent to
a 2-additive k-ary capacity, we have |L| = k + 1 and the number of parameters is

η(k, n) = (k + 1)

(
n

1

)

+ (k + 1)2
(
n

2

)

=
n(k + 1)

2

(

2 + (k + 1)(n− 1)
)

.

Denoting by U the GAI model to be identified, C contains the monotonicity constraints
saying that U is monotone nondecreasing. It is thus crucial from a computational stand-
point to find efficient representation of monotonicity conditions. Such conditions on U
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basically take the form

U(aj11 , . . . , a
ji−1

i−1 , a
ji+1
i , a

ji+1

i+1 , . . . , a
jn
n ) ≥ U(aj11 , . . . , a

ji−1

i−1 , a
ji
i , a

ji+1

i+1 , . . . , a
jn
n ) (13)

for every i ∈ N , j1 ∈ {0, . . . , m1}, . . . , ji−1 ∈ {0, . . . , mi−1}, ji ∈ {0, . . . , mi − 1}, ji+1 ∈
{0, . . . , mi+1},. . . ,jn ∈ {0, . . . , mn}. The number of elementary conditions contained in
(13) (and thus of constraints in C) is equal to

∑

i∈N

(

mi ×
∏

j∈N\{i}

(mj + 1)
)

.

In the case where mi = k for every i, this number becomes

κ(k, n) = n× k × (k + 1)n−1.

Observe that although the number of parameters η(k, n) is quadratic in n and k, the
number of constraints κ(k, n) is exponential in n. It follows that any practical identifica-
tion of a GAI model based on some optimization procedure as described above, where the
variables are the unknowns of the GAI model and the constraints are the monotonicity
constraints (13) plus possibly some learning data, has to cope with an exponential num-
ber of constraints. The following tables, obtained with k = 4, shows that the underlying
optimization problem becomes rapidly intractable.

n 4 6 8 10
η(4, n) 170 405 740 1175
κ(4, n) 2000 75 000 2 500 000 78 125 000

n 12 14 20
η(4, n) 1710 2345 4850
κ(4, n) 2 343 750 000 68 359 375 000 1.526E + 15

However, if a decomposition into nonnegative nondecreasing terms is possible, one has
only to check monotonicity of each term. Then the number of monotonicity conditions
drops to

∑

i∈N

mi +
∑

{i,j}⊆N

(
mi(mj + 1) + mj(mi + 1)

)
.

In the case where mi = k for every i, this number becomes

κ′(k, n) = n× k ×
[

(n− 1)(k + 1) + 1
]

,

which is quadratic in n. The following table (k = 4) shows that the optimization problem
becomes tractable even for a large number of attributes.

n 4 6 8 10 12 14 20
κ′(4, n) 256 624 1152 1840 2688 3696 7680

11



4.2 The main result

The following theorem states that a decomposition of a 2-additive GAI model into mono-
tone nondecreasing terms is always possible.

Theorem 1. Let us consider a 2-additive discrete GAI model U satisfying monotonicity
(4) and (8). Then there exist nonnegative and nondecreasing functions ui : Xi → [0, 1],
i ∈ N , uij : Xi ×Xj → [0, 1], {i, j} ⊆ N , such that

U(x) =
∑

i∈N

ui(xi) +
∑

{i,j}⊆N

uij(xi, xj) (x ∈ X) (14)

Proof (sketch of). Recalling that the set of 2-additive monotone discrete GAI models
coincides with the set of 2-additive k-ary capacities, where k is the maximal number of
elements in an attribute minus one, the problem is equivalent to the decomposition of a
2-additive k-ary capacity v into a sum of 2-additive k-ary capacities whose support has
size at most 2, where the support of v is defined by

supp(v) =
⋃

x∈LN :mv(x)6=0

supp(x).

Here are the main steps:

(i) We consider Pk,2 the polytope of all 2-additive k-ary capacities.

(ii) We find the set of all vertices of Pk,2, which will be proved to be the set of all
0-1-valued 2-additive k-ary capacities.

(iii) We prove that any vertex of Pk,2 has support of size at most 2.

(iv) Since any v ∈ Pk,2 is a convex combination of vertices of Pk,2, which are 2-additive
k-ary capacities with support of size at most 2, this convex combination yields the
desired decomposition.

The detailed proof is given in Section 4.3.

We make some comments on the significance of the theorem.

• First, the theorem solves an unanswered question on the possible decompositions
of a GAI model and can be stated in a rather abstract way, without refering to a
preference relation and the decision theoretical machinery: Suppose U : LN → R

is given with L = {0, 1, . . . , k}, has the form (3) with S containing only singletons
and pairs, and is nondecreasing in each variable and normalized. Then it is possible
to write U as a sum of nonnegative and nondecreasing terms depending on one or
two variables. So far, no such decomposition was known, and the canonical decom-
position of Braziunas does not possess this property. An immediate consequence of
this is that such a decomposition yields a model which is easy to interpret, as each
term brings a positive contribution to the total score U(x) of an alternative x, and
each term is easily analyzable in terms of importance and interaction.

12



• Second, as explained in Section 4.1, the result reduces drastically the complexity
of any learning procedure, from exponential to quadratic complexity. Let us sum-
marize this issue briefly, putting it into a practical framework. Suppose that the
preference relation (preorder) under consideration satisfies weak independence and
is defined over finite attributes. Assuming some interaction/dependence among
pairs of attributes, one seeks a 2-additive GAI model. Based on the (usually in-
complete) preference relation obtained from the decision maker, there exist several
approaches finding by optimization a possible GAI model, e.g., by linear program-
ming coding the preference relation into the constraints, or by a regression approach,
using nonlinear programming, where the preference relation is coded into the objec-
tive function. In both cases, the variables are the parameters of the model, whose
number depends polynomially on k and n, but since U is a nondecreasing function
in n variables, there are exponentially many monotonicity constraints. If it is pos-
sible to decompose U into a sum of monotone terms of at most 2 variables, then
the number of constraints become quadratic. In short, we transform an intractable
problem into a tractable one.

• Along the line of the identification methods where the preference relation is coded
in constraints, we mention also robust methods, considering all parameters values
fulfilling the constraints, rather than arbitrarily selecting one of these values. Min-
Max Regret criterion is a conservative way to handle the uncertainty on the decision
model (Boutilier et al., 2006). The idea is to set bounds on the worst possible loss
one could have by choosing an alternative, looking at the set of possible parameters
values. It is interesting to note that the scientific community that developped these
approaches does not enforce monotonicity conditions. This makes the elicitation
quite complex, as one needs to provide a lot of preference information to obtain
the correct monotonicity conditions. Most applications in this area consider a very
small size of S compared to the number of criteria, which is not always possible in
practice. One would then expect a great benefit of enforcing monotonicity condi-
tions in the MinMax Regret method. Here again, Theorem 1 is very helpful as it
reduces the number of monotonicity conditions to a tractable number.

4.3 Proof of Theorem 1

In order to find the vertices of Pk,2, we first consider the vertices of Pk,·, the polytope of
k-ary capacities. A first easy fact is that the extreme points of Pk,· are the 0-1-valued
k-ary capacities.

Lemma 2. v̂ is an extreme point of Pk,· iff v̂ is 0-1-valued.

Proof. Take v̂ in Pk,· which is 0-1-valued, and consider v, v′ ∈ Pk,· such that v+v′

2
= v̂.

Then, since v̂ is 0-1-valued,

v(x) + v′(x) =

{

2, if v̂(x) = 1

0, otherwise.

Since v, v′ are normalized and monotone, the only possibility to get v(x) + v′(x) = 2 is to
have v(x) = v′(x) = 1, and similarly, v(x) + v′(x) = 0 forces v(x) = v′(x) = 0. It follows
that v = v′ = v̂, i.e., v̂ is an extreme point of Pk,·.

13



Conversely, consider a vertex v̂ which is not 0-1-valued, and let

ǫ = min(1 − max
x:v̂(x)<1

v̂(x), min
x:v̂(x)>0

v̂(x)).

Define

v′(x) = v̂(x) + ǫ, for all x s.t. v̂(x) 6= 0, 1

v′′(x) = v̂(x) − ǫ, for all x s.t. v̂(x) 6= 0, 1,

and v′ = v′′ = v̂ otherwise. Then v′, v′′ ∈ Pk,· and v̂ = v′+v′′

2
, a contradiction.

Lemma 3. Let k ∈ N and v ∈ Pk,2. Then v is 0-1-valued iff mv is {−1, 0, 1} valued.

Proof. ⇐) By the assumption
∑

y≤x m
v(y) ∈ Z for every x ∈ {0, 1, . . . , k}N . Since

v ∈ Pk,2 it follows that v is 0-1-valued.
⇒) Assume v is 0-1-valued and use (10) to compute the Möbius transform. For z = ℓi

with ℓ ∈ {1, . . . , k}, we have mv(z) = v(ℓi)− v((ℓ− 1)i), so that the desired result holds.
Otherwise z = ℓiℓ

′
j with ℓ, ℓ′ ∈ {1, . . . , k} and distinct i, j ∈ N . Then

mv(z) = v(z) − v((ℓ− 1)iℓ
′
j) − v(ℓi(ℓ

′ − 1)j) + v((ℓ− 1)i(ℓ
′ − 1)j). (15)

By the assumption and monotonicity of v, it follows that mv(z) ∈ {−1, 0, 1}.

We recall that a m × n matrix is totally unimodular if the determinant of every
square submatrix is equal to −1, 0 or 1. A polyhedron is integer if all its extreme points
have integer coordinates. Then a matrix A is totally unimodular iff the polyhedron
{x | Ax ≤ b} is integer for every integer vector b. In particular it is known that the
vertex-arc matrix M of a directed graph, i.e., whose entries are Mx,a = 1 if the arc a

leaves vertex x, −1 if a enters x, and 0 otherwise, is totally unimodular (in other words,
each column of M has exactly one +1 and one −1, the rest being 0).

We are now in position to characterize the extreme points of Pk,2.

Proposition 1. Let k ∈ N. The set of extreme points of Pk,2, the polytope of 2-additive
k-ary capacities, is the set of 0-1-valued 2-additive k-ary capacities.

Proof. By Lemma 2, we need only to prove that any extreme point of Pk,2 is 0-1-valued.
1. We prove that Ak,·, the matrix defining the polytope of k-ary capacities, is totally

unimodular. The argument follows the one given for classical capacities by Miranda et
al. (Miranda et al., 2006, Th. 2). We prove that A⊤

k,· is totally unimodular, which is
equivalent to the desired result. Since the monotonicity constraints are either of the form
v(1i) ≥ 0 or v(x) − v(x′) ≥ 0 where x′ is a lower neighbor of x (i.e. x′ = x − 1i for
some i), the matrix A⊤

k.· has the form (I, B), where I is a submatrix of the (kn − 1)-dim
identity matrix Ikn−1, and B is a matrix where each column has exactly one +1 and one
−1. Hence B is totally unimodular, and so is (Ikn−1, B) as it easy to check. Since A⊤

k,· is
a submatrix of it, it is also totally unimodular.

2. It follows from Step 1 that the polytope Pk,·(b) given by Ak,·v ≤ b is integer for
every integer vector b. Next, consider the (kn−1)×(kn−1)-matrix Z expressing the Zeta
transform, i.e., Zmv = v, as given by (9). This matrix has only 0 and 1 as entries, and
its inverse Z−1 exists and its entries are 0,−1,+1 only (see (10)). Consider the polytope
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Pm
k,·(b) given by Am

k,·m ≤ b with Am
k,· = Ak,·Z, the image by the linear transform Z of the

polytope Pk,·(b). It is easy to check that v̂ is an extreme point of Pk,·(b) iff Z−1v̂ is an
extreme point of Pm

k,·(b). Evidently, the coordinates of Z−1v̂ are integer, therefore Pm
k,·(b)

is integer for every integer vector b. We conclude that Am
k,· is totally unimodular.

3. Inasmuch as a submatrix of a totally unimodular matrix is itself totally unimodular,
it follows from Step 2 that Am

k,2, the matrix defining the set of 2-additive k-ary capacities
in Möbius coordinates, is also totally unimodular. As a conclusion, the extreme points
of Pm

k,2 are integer-valued.
4. We show that the extreme points of Pm

k,2 are {−1, 0, 1}-valued. Then Lemma 3
permits to conclude. It suffices to show that |mv(z)| ≥ 2 cannot happen. If z = ℓi with
ℓ ∈ {1, . . . , k}, we find by (10) that mv(z) = v(ℓi) − v((ℓ− 1)i), so that the claim holds
since v ∈ Pk,2. Otherwise, z = ℓiℓ

′
j with ℓ, ℓ′ ∈ {1, . . . , k} and distinct i, j, and mv(z) is

given by (15). Since v is monotone and normalized, the claim easily follows.

The last step is to prove that a 0-1-valued 2-additive k-ary capacity has a support of
size at most 2.

Proposition 2. Consider a 2-additive k-ary capacity u on N which is 0-1-valued. Then
the support of u is restricted to at most two attributes.

Proof. Preliminary Step. u being 2-additive, its expression is

u(x) =
∑

{i,j}⊆N

ui,j(xi, xj) (x ∈ X). (16)

If we set u′
i,j(xi, xj) = ui,j(xi, xj) − ui,j(0, 0), we obtain u(x) =

∑

{i,j}⊆N u′
i,j(xi, xj) + C,

where C = −
∑

{i,j}⊆N ui,j(0, 0). By (8) and u′
i,j(0, 0) = 0, one gets C = 0. This proves

that in decomposition (16), one can always assume that

∀{i, j} ⊆ N ui,j(0, 0) = 0. (17)

We wish to prove that u depends only on one term ui,j in (16). In order to avoid cases
where such a term ui,j depends only on one variable (in which case u might also depend
on another term uk,l), we are interested in terms ui,j depending on its two variables xi

and xj . We say that ui,j depends on its two variables if

∃yi ∈ Xi ∃yj ∈ Xj ui,j(yi, yj) 6= ui,j(yi, 0) (18)

∃y′i ∈ Xi ∃y
′
j ∈ Xj ui,j(y

′
i, y

′
j) 6= ui,j(0, y

′
j) (19)

Clearly, if (18) (resp. (19)) is not fulfilled, then ui,j does not depend on attribute xj

(resp. xi).
The proof is organized as follows. We show in Step 1 that if there is no term ui,j that

depends on its two variables, then u depends only on one variable. We then assume that
at least one term ui,j depends on its two variables – denoted u1,2 w.l.o.g. Step 2 shows
that it is not possible to have a non-zero term ui,j, with {i, j} ⊆ N \{1, 2}. Step 3 proves
that it is not possible to have a non-zero term ui,j, with i ∈ {1, 2} and j ∈ N \ {1, 2}.
We conclude that u1,2 is the only non-zero term in the decomposition. This proves that
u depends only on two variables.
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Step 1: case of the additive value function model. We first start with the case
where there is no term ui,j that depends on its two variables.

Claim 1. Assume that there is no term ui,j that depends on its two variables. Then the
support of u is restricted to one attribute.

Proof of the Claim. If there is no term ui,j that depends on its two variables, u takes the
form of an additive value function:

u(x) =
∑

i∈N

ui(xi)

where ui : Xi → R is not necessarily nonnegative or monotone. By (17), we have ui(0) = 0
for every i ∈ N .

Let i ∈ N , we write u(xi, 0−i) = ui(xi). Hence ui is 0-1-valued and monotone.
As u is not constant by (8), at least one term ui is not constant. W.l.o.g. let us

assume it is u1. Then there exists x1 ∈ X1 such that u1(x1) = 1.
Now for every i ∈ N\{1} and xi ∈ Xi, u(x1, xi, 0−1,i) = 1+ui(xi). As ui is nonnegative

and u is 0-1-valued, we conclude that ui(xi) = 0. Hence u depends only on x1. �

Step 2: Case where u has two non-zero terms with non-overlapping sup-
port, e.g., u1,2 and u3,4. We now focus on the situation where at least one term ui,j

depends on its two variables. W.l.o.g., we assume it is u1,2.
We consider the general case where there are at least 4 attributes. The restriction

with only 3 attributes will be handled in Step 3. For every j ∈ N \ {1, 2}, we choose
k(j) ∈ N \{1, 2, j} (where k(j) 6= k(j′) for j 6= j′). For every i ∈ {1, 2} and j ∈ N \{1, 2},
we set

u′
i,j(xi, xj) = ui,j(xi, xj) − ui,j(xi, 0) − ui,j(0, xj)

u′
1,2(x1, x2) = u1,2(x1, x2) +

∑

j∈N\{1,2}

(u1,j(x1, 0) + u2,j(x2, 0))

u′
j,k(j)(xj, xk(j)) = uj,k(j)(xj , xk(j)) + u1,j(0, xj) + u2,j(0, xj)

Then u(x) =
∑

{i,j}⊆N u′
i,j(xi, xj). Moreover u′

i,j(xi, 0) = 0 and u′
i,j(0, xj) = 0 for i ∈

{1, 2}, j ∈ N \ {1, 2}, xi ∈ Xi and xj ∈ Xj. Hence in decomposition (16), we can assume
that

∀i ∈ {1, 2} ∀j ∈ N \{1, 2} ∀xi ∈ Xi ∀xj ∈ Xj ui,j(xi, 0) = 0 and ui,j(0, xj) = 0. (20)

Thanks to (17) and (20), we have

u(x1, x2, 0−1,2) = u1,2(x1, x2) (21)

Hence
u1,2 is 0-1-valued and monotone. (22)

By (22), conditions (18) and (19) with i = 1, j = 2 give

u1,2(y1, y2) = 1 , u1,2(y1, 0) = 0
u1,2(y

′
1, y

′
2) = 1 , u1,2(0, y

′
2) = 0

(23)
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Assume by contradiction that there exists a non-zero ui,j for some {i, j} ⊆ N \
{1, 2}. W.l.o.g., we assume it is u3,4. Then there exists z3 ∈ X3 and z4 ∈ X4 such that
u3,4(z3, z4) 6= 0. As for (20), we can transfer, for i ∈ {3, 4} and j ∈ N \ {1, 2, 3, 4}, the
term ui,j(xi, 0) in u3,4. Hence we can assume that

∀i ∈ {3, 4} ∀j ∈ N \ {1, 2, 3, 4} ∀xi ∈ Xi ui,j(xi, 0) = 0. (24)

Thanks to (17), (20) and (24), we have

u(x3, x4, 0−3,4) = u3,4(x3, x4) (25)

Hence
u3,4 is 0-1-valued, monotone, and u3,4(z3, z4) = 1. (26)

Claim 2. If u1,2 depends on its two variables, then u3,4 is identically zero.

Proof of the Claim. We set v(x1, x2, x3, x4) = u(x1, x2, x3, x4, 0−1,2,3,4). We write

v(x1, x2, x3, x4) =
∑

1≤i<j≤4

ui,j(xi, xj).

Analysis with y and z:

• v(y1, y2, z3, z4) = u1,2(y1, y2)
︸ ︷︷ ︸

=1

+ u3,4(z3, z4)
︸ ︷︷ ︸

=1

+
∑

i∈{1,2},j∈{3,4} ui,j(yi, zj). We have v(y1, y2, z3, z4) =

1 as v(y1, y2, z3, z4) ≥ v(y1, y2, 0, 0) = u1,2(y1, y2) = 1. Hence

∑

i∈{1,2},j∈{3,4}

ui,j(yi, zj) = −1. (27)

• v(y1, y2, z3, 0)
︸ ︷︷ ︸

=1 by monotonicity

= 1 + u3,4(z3, 0) + u1,3(y1, z3) + u2,3(y2, z3). Hence

u3,4(z3, 0) + u1,3(y1, z3) + u2,3(y2, z3) = 0. (28)

• v(y1, y2, 0, z4)
︸ ︷︷ ︸

=1 by monotonicity

= 1 + u3,4(0, z4) + u1,4(y1, z4) + u2,4(y2, z4). Hence

u3,4(0, z4) + u1,4(y1, z4) + u2,4(y2, z4) = 0. (29)

• v(y1, 0, z3, z4)
︸ ︷︷ ︸

=1 by monotonicity

= u1,2(y1, 0)+1+u1,3(y1, z3)+u1,4(y1, z4). Moreover, u1,2(y1, 0) = 0

by (23). Hence
u1,3(y1, z3) + u1,4(y1, z4) = 0. (30)

• v(0, y2, z3, z4)
︸ ︷︷ ︸

=1 by monotonicity

= u1,2(0, y2) + 1 + u2,3(y2, z3) + u2,4(y2, z4). Hence

u1,2(0, y2) + u2,3(y2, z3) + u2,4(y2, z4) = 0. (31)
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• From (30), (31) and (27),
u1,2(0, y2) = 1. (32)

• v(0, y2, z3, 0) = u1,2(0, y2)
︸ ︷︷ ︸

=1 by (32)

+u3,4(z3, 0)+u2,3(y2, z3). Moreover, v(0, y2, z3, 0) ≥ v(0, y2, 0, 0) =

u1,2(0, y2) = 1. Hence

u3,4(z3, 0) + u2,3(y2, z3) = 0 and u2,3(y2, z3) ∈ {−1, 0}. (33)

• v(0, y2, 0, z4) = 1+u3,4(0, z4)+u2,4(y2, z4). Moreover, v(0, y2, 0, z4) ≥ v(0, y2, 0, 0) =
u1,2(0, y2) = 1. Hence

u3,4(0, z4) + u2,4(y2, z4) = 0 and u2,4(y2, z4) ∈ {−1, 0}. (34)

From (27) and (30), we get u2,3(y2, z3)+u2,4(y2, z4) = −1. As u2,3(y2, z3), u2,4(y2, z4) ∈
{−1, 0} (by (33) and (34)), we have two cases:

• Case 1: u2,3(y2, z3) = −1 and u2,4(y2, z4) = 0. Then

u3,4(z3, 0) = 1 by (33)

u1,3(y1, z3) = 0 by (28)

u1,4(y1, z4) = 0 by (30)

u1,2(y1, 0) = 0 by (23)

u1,2(0, y2) = 1 by (32)

u3,4(0, z4) = 0 by (34)

All values are determined.

• Case 2: u2,3(y2, z3) = 0 and u2,4(y2, z4) = −1. Then

u3,4(0, z4) = 1 by (34)

u3,4(z3, 0) = 0 by (33)

u1,3(y1, z3) = 0 by (28)

u1,4(y1, z4) = 0 by (29)

u1,2(y1, 0) = 0 by (23)

u1,2(0, y2) = 1 by (32)

All values are determined.

Analysis with y′ and z: The analyses with y and z, and with y′ and z are similar. By
(23), we just need to invert the two attributes 1 and 2. Hence a similar reasoning to the
previous analysis can be done. We obtain thus the two cases 1′ and 2′ which are deduced
from cases 1 and 2 just by switching attributes 1 and 2:
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• Case 1’:

u1,3(y
′
1, z3) = −1

u1,4(y
′
1, z4) = 0

u3,4(z3, 0) = 1

u2,3(y
′
2, z3) = 0

u2,4(y
′
2, z4) = 0

u1,2(y
′
1, 0) = 1

u1,2(0, y
′
2) = 0

u3,4(0, z4) = 0

• Case 2’:

u1,3(y
′
1, z3) = 0

u1,4(y
′
1, z4) = −1

u3,4(0, z4) = 1

u3,4(z3, 0) = 0

u2,3(y
′
2, z3) = 0

u2,4(y
′
2, z4) = 0

u1,2(y
′
1, 0) = 1

u1,2(0, y
′
2) = 0

Synthesis: Cases 1 and 2’ are incompatible, and so are cases 2 and 1’. We have thus the
alternative:

• Case 1 and 1’. Gathering the values of partial value functions, we get

u1,2(0, y2) = 1 u1,4(y
′
1, z4) = 0 u1,3(y

′
1, z3) = −1

u2,3(y2, z3) = −1 u2,4(y2, z4) = 0

As u1,2(y
′
1, y2) ≥ u1,2(0, y2) = 1, we have u1,2(y

′
1, y2) = 1. Hence

u(y′1, y2, z3, z4) = u1,2(y
′
1, y2)

︸ ︷︷ ︸

=1

+ u3,4(z3, z4)
︸ ︷︷ ︸

=1

+ u1,3(y
′
1, z3)

︸ ︷︷ ︸

=−1

+ u1,4(y
′
1, z4)

︸ ︷︷ ︸

=0

+ u2,3(y2, z3)
︸ ︷︷ ︸

=−1

+ u2,4(y2, z4)
︸ ︷︷ ︸

=0

= 0

We obtain a contradiction as u(y′1, y2, z3, z4) ≥ u(0, 0, z3, z4) = 1.

• Case 2 and 2’. Gathering the values of partial value functions, we get

u1,2(0, y2) = 1 u1,4(y
′
1, z4) = −1 u1,3(y

′
1, z3) = 0

u2,3(y2, z3) = 0 u2,4(y2, z4) = −1
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As u1,2(y
′
1, y2) ≥ u1,2(0, y2) = 1, we have u1,2(y

′
1, y2) = 1. Hence

u(y′1, y2, z3, z4) = u1,2(y
′
1, y2)

︸ ︷︷ ︸

=1

+ u3,4(z3, z4)
︸ ︷︷ ︸

=1

+ u1,3(y
′
1, z3)

︸ ︷︷ ︸

=0

+ u1,4(y
′
1, z4)

︸ ︷︷ ︸

=−1

+ u2,3(y2, z3)
︸ ︷︷ ︸

=0

+ u2,4(y2, z4)
︸ ︷︷ ︸

=−1

= 0

We obtain a contradiction as u(y′1, y2, z3, z4) ≥ u(0, 0, z3, z4) = 1.

A contradiction is raised in all situations. Hence it is not possible to have u3,4 non-zero,
knowing that u1,2 depends on its two variables. �

Step 3: Case where u has two non-zero terms with overlapping support,
e.g., u1,2 and u1,3. In the last case, term u1,2 depends on its two variables, and there is
no non-zero term ui,j, with i, j 6= 1, 2, that depends on its two variables.

We proceed as in the beginning of Step 2, assuming that

∀i ∈ {1, 2} ∀j ∈ N \ {1, 2} ∀xi ∈ Xi ui,j(xi, 0) = 0. (35)

Then relations (21) through (23) also hold in this case.
Assume by contradiction that there exists a non-zero ui,j for some i ∈ {1, 2} and

j ∈ N \ {1, 2}. W.l.o.g., we assume it is u1,3. There exists thus z1 ∈ X1 and z3 ∈ X3 such
that

u1,3(z1, z3) 6= 0. (36)

One can transfer term ui,3(0, x3), for i 6= 1, 3, to u1,3 (proceeding as in the beginning of
Step 2). Hence we can assume that

∀i ∈ N \ {1, 3} ∀x3 ∈ X3 ui,3(0, x3) = 0. (37)

Claim 3. If u1,2 depends on its two variables, then u1,3 is identically zero.

Proof of the Claim. We set v(x1, x2, x3) = u(x1, x2, x3, 0−1,2,3). Then

v(x1, x2, x3) = u1,2(x1, x2) + u1,3(x1, x3) + u2,3(x2, x3).

Analysis with y and z: We write thanks to (21) and to the monotonicity of v

v(z1, 0, z3) = u1,2(z1, 0) + u1,3(z1, z3)

≥ v(z1, 0, 0) = u1,2(z1, 0)

Hence u1,3(z1, z3) ≥ 0, which gives by (36)

u1,3(z1, z3) = 1 (38)

u1,2(z1, 0) = 0 (39)

We have the following basic relations:

v(y1, 0, z3) = u1,2(y1, 0)
︸ ︷︷ ︸

=0

+u1,3(y1, z3) (40)

v(y1, y2, z3) = 1 + u1,3(y1, z3) + u2,3(y2, z3) (41)

v(z1, y2, z3) = u1,2(z1, y2) + u1,3(z1, z3) + u2,3(y2, z3) (42)

Analysis with compound alternatives: We distinguish between two cases:
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• Assume first that z1 ≥ y1. By (22) and (23), we have

u1,2(z1, y2) = 1. (43)

By monotonicity, v(z1, y2, z3) = 1 (as v(z1, 0, z3) = u1,2(z1, 0)+1 and thus v(z1, 0, z3) =
1). Hence (38) and (42) give

u2,3(y2, z3) = −1. (44)

By monotonicity, v(y1, y2, z3) = 1 (as v(y1, y2, 0) = u1,2(y1, y2) = 1). From (41) and
previous relation, we have

u1,3(y1, z3) = 1. (45)

• Assume then that z1 < y1. We have v(y1, 0, z3) = 1 by monotonicity of v (as
v(z1, 0, z3) = 1). Then (40) proves that (45) holds. This implies that (44) also
holds, thanks to (41).

By monotonicity, v(z1, y2, z3) = 1 (as v(z1, 0, z3) = 1). Hence (42) and (44) show
that (43) is satisfied.

In the two cases, we have proved that relations (43), (44) and (45) are true.

We make the following reasoning.

• We write

v(0, y2, z3) = u1,2(0, y2) + u1,3(0, z3) − 1

≥ v(0, y2, 0) = u1,2(0, y2)

Therefore u1,3(0, z3) ≥ 1. We also see that u1,3(0, z3) ∈ {0, 1} as v(0, 0, z3) =
u1,3(0, z3). Hence

u1,3(0, z3) = 1 (46)

v(0, 0, z3) = 1 (47)

• We write

v(0, y2, z3) = u1,2(0, y2) + u1,3(0, z3) + u2,3(y2, z3) = u1,2(0, y2)

≥ v(0, 0, z3) = 1

Hence
u1,2(0, y2) = 1. (48)

• We have

v(0, y′2, z3)
︸ ︷︷ ︸

=1 by monotonicity and (47)

= u1,3(0, z3)
︸ ︷︷ ︸

=1

+u2,3(y
′
2, z3)

Hence
u2,3(y

′
2, z3) = 0. (49)
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• We have

v(y′1, y
′
2, z3)

︸ ︷︷ ︸

=1 by monotonicity

= 1 + u1,3(y
′
1, z3) + u2,3(y

′
2, z3)

︸ ︷︷ ︸

=0 by (49)

Hence
u1,3(y

′
1, z3) = 0. (50)

• Finally

v(y′1, y2, z3) = u1,2(y
′
1, y2)

︸ ︷︷ ︸

=1 by (22) and (48)

+ u1,3(y
′
1, z3)

︸ ︷︷ ︸

=0 by (50)

+ u2,3(y2, z3)
︸ ︷︷ ︸

=−1 by (44)

= 0

We obtain a contradiction as v(y′1, y2, z3) = 1 (thanks to monotonicity of v, and to
(47)).

A contradiction is raised in all situations. Hence it is not possible to have u1,3 non-zero,
knowing that u1,2 depends on its two variables. �

Finally, we have proved that if u1,2 depends on its two variables, no other term can
be non-zero. This proves that u depends only on two variables.

In summary, we have proved that the extreme points of Pk,2 are the 2-additive 0-1-
valued k-ary capacities, and that these capacities have a support of size at most 2. It
follows that any v ∈ Pk,2 can be written as a convex combination of 2-additive k-ary
capacities with support of size at most 2, which proves Theorem 1.

A Möbius transform of a k-ary capacity

The result can be easily obtained by using standard results of the theory of Möbius
functions (see, e.g., Aigner (1979)). Given a finite poset (partially ordered set) (P,≤),
its Möbius function µ : P × P → R is defined inductively by:

µ(x, y) =







1, if x = y

−
∑

x≤t<y µ(x, t), if x < y

0, otherwise

.

Then the solution of the system f(x) =
∑

y≤x g(y), x ∈ P , is given by

g(x) =
∑

y≤x

µ(y, x)f(y) (x ∈ P ),

and g is called the Möbius transform (or inverse) of f . Note that in the case of capacities,
(P,≤) is taken as (2N ,⊆).

Considering two posets (P,≤), (P ′,≤′), and the product poset (P × P ′,≤) where ≤
is the product order, i.e., (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤′ y′, it is easy to show that the
Möbius function on P × P ′ is the product of the Möbius functions on P and P ′:

µ((x, t), (y, z)) = µP (x, y)µP ′(t, z) (x, y ∈ P, t, z ∈ P ′).

22



Let us apply this result to k-ary capacities. It is easy to see that the Möbius function on
the chain {0, 1, . . . , k} is given by

µ{0,1,...,k}(x, y) =

{

(−1)y−x, if 0 ≤ y − x ≤ 1

0, otherwise.
(51)

It follows that the Möbius transform mv of a k-ary capacity v is given by

mv(x) =
∑

y≤x:xi−yi≤1∀i∈N

(−1)
∑

i∈N (xi−yi)v(y).
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