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.  
 

The spread of smartphone applications, the negative social impacts of the private 

car or the potentially revolutionary effect of future autonomous vehicles, are 

contributing to the emergence of other hybrid mobility systems. Notably, 

companies like Uber or Lyft have successfully applied the classical dial-a-ride 

method, in which users are assigned to vehicles in such a way as to minimise the 

cost function under a set of constraints. In this paper, we construct an agent-

based model based on vehicles where demand is assigned through aggregation 

by origin-destination pair. Two operating strategies are described: in the first, 

the pick-up strategy is applied at vehicle level, in the second it is applied at 

global service level, with vehicles being shared dynamically and making extra 

stops to collect travellers with different destinations. At each iteration time, the 

set of possible options depending on itinerary and demand, are tested first for 

already assigned vehicles then for free vehicles. The option associated with the 

maximum utility is selected to set the vehicle or service strategy. A case study 

illustrates a comparison between both strategies and evaluates the efficiency of 

several service choices. A service where vehicles are managed by a dispatcher is 

more efficient for both users and operator. 

Keywords: dispatching, ridesharing, agent-based models, user assignment, dial-a-

ride, dynamic pickup 

1. Introduction 

1.1.Background 

Demand responsive transportation systems are characterised by their flexibility 

on spatial and temporal levels. The oldest and most popular form is the taxi, where 

customer service is based on a simple first-come, first-served rule-based algorithm 

because of past technological constraints. This strategy, however, is highly inefficient in 

an overloaded system: when all taxis are busy, whenever a taxi becomes idle, it is 

immediately dispatched to the longest waiting open request. This approach is based on 

the pickup and delivery problem. Berbeglia et al. (2010) present a good review of main 

pickup and delivery problems. In particular, Agatz et al. (2012) present a review for 

algorithms of dial-a-ride problems and Cordeau et al. (2007) analyze their 



computational performance. Furuhata et al. (2013) identify ridesharing development 

barriers and then recommend future research directions. Finally, these works suggest 

improvement in the optimization problem with new constraints or faster optimization or 

heuristic solutions (Hosni, et al., 2014). 

Because of the development of ratio taxi dispatching systems, longest taxi 

waiting time was included in the dispatching algorithm (Alshamsi, et al., 2009). Today, 

with the emergence of new mobility supply schemes like Uber, carsharing and 

ridesharing, taxi dispatching decisions are more often based on real-time geolocalisation 

systems, so that the vehicle closest to the customer is sent (Lee, et al., 2013; 

Maciejewski, 2016; Seow, et al., 2010). Maciejewski and Nagel (2013) presented three 

different strategies for the taxi-dispatching problem with immediate requests. The first 

adopts a FCFS algorithm to assign the nearest idle taxis to users; the second and third 

strategies consider idle and en-route drop-off taxis. The third strategy re-assigns 

demand requests in the taxi queues to other taxis as new information enters the system. 

Maciejewski et al. (2014) explore collaboration schemes in taxi dispatching between 

customers, taxi drivers and the dispatcher. They demonstrate that cooperation between 

the dispatcher and taxi drivers is indispensable, while communication between 

customers and the dispatcher may be replaced by more sophisticated strategies. 

Maciejewski et al. (2016) use the assignment framework to dispatch taxis to immediate 

requests in a large-scale network,, but in a system without ridesharing.  Lee et al. (2013) 

and Salanova et al. (2015) compared the strategies of both booking (i.e. call a 

dispatcher) and non-booking services (i.e. hailing, taxi ranks). Hörl et al. (2017) 

assessed the performance of four different dispatching and rebalancing algorithms for 

the control of an automated mobility-on-demand system. The dispatcher determines an 



optimal bipartite matching between all open requests and available vehicles using the 

shortest Euclidian distance (Hörl, et al., 2017; Agarwal, 2004).  

With the advent of automation technologies, there is now the prospect of 

services based on autonomous cars (AV). However, the fleet dispatchers in most 

existing research on autonomous vehicle services use simplistic rules to assign vehicles 

to passengers. Burns et al. (2013) and Zhang et al. (2015a; 2015b) assigned travellers to 

the nearest idle and en-route drop-off AV on a FCFS basis. Fagnant and Kockelman 

(2014), Boesch et al. (2016), Chen et al. (2016) and Zhu et al. (2017) propose similar 

simplistic rule-based strategies while segmenting the service region into sub-regions 

and assigning available AVs in the closest sub-region.  

AVs will open the doors to new kinds of dispatching strategies, with 

communication between vehicles about their intentions in the next few seconds 

resulting in an optimal cooperative system. Another promising form of AV dispatching 

assumes that vehicles will behave like a taxi driver, i.e. will look for passengers with the 

sole aim of maximising profit. Few studies have computed the performances of these 

two forms of dispatching. Lioris (2010) undertakes a discrete-event simulation for 

ridesharing services with both centralised and decentralised management systems. 

Nourinejad et al. (2014) suggest an agent-based model for for-hire services applying 

both centralised and decentralised optimisation algorithms. The results indicate greater 

savings on user costs and on vehicle kilometres travelled (VKT) when multi-passenger 

rides are allowed. Hyland et al. (2018) assess the operational performances of six 

assignment strategies for SAVs with no shared trips (i.e. two simplistic strategies, based 

on FCFS algorithms, and four optimization-based strategies). The results show that two 

optimisation-based assignment strategies – (1) strategies that allow en-route pickup 



AVs to be diverted to new traveller requests and (2) strategies that consider en-route 

drop-off AVs – produce the lowest vehicle travel distances and traveller waiting times. 

1.2.Objective 

In general, vehicle itineraries are calculated in such a way that each new user is 

considered automatically and independently while the dispatcher looks for a match 

between the user and all available service vehicles. The time required to calculate 

matches is therefore restrictive for big operational services. However, unlike classical 

transit systems, service users do not need to transfer between vehicles and are 

transported directly to their destination station. The objective of this paper is to 

reformulate the problem with more flexibility but also to reach an aggregated solution to 

optimise calculation time. 

This paper explores the optimisation of system performance through 

coordination between vehicles for a shared on-demand mobility service. In particular, 

we focus on two assignment strategies: the single-vehicle strategy, where the taxi is 

only concerned with its own performance, and seeks to maximise its utility without 

consideration for other vehicles in the system; and the dispatching strategy, where the 

vehicles communicate through a dispatcher and collaborate to maximise the system’s 

total utility. This paper is a development of the model developed by Poulhès et al. 

(2018), which considers only the first configuration under simplified terms. In addition, 

it assumes that taxis choose the most pertinent system users from a queue of waiting 

users. Finally, the objective is that the model should serve as a decision tool that helps 

to optimise supply resources (i.e. fleet size and vehicle capacity) and user satisfaction 

(i.e. waiting time). The original contributions of this paper include:  

 The description of two assignment strategies and their mathematical 

formulation.  



 The presentation of the solution of the utility maximisation problem using 

non-heuristic methods, which encompass all possible combinations of 

vehicle cooperation. 

 Quantitative comparison between the performances of the single vehicle 

assignment strategy and dispatching.  

 Assessment of the role of dispatching from the perspective of passengers and 

the service provider.  

 The application of the model to a real network.  

1.3. Approach 

As previously mentioned, the proposed taxi assignment model is a development 

of Poulhès et al. (2018). It is based on a consideration of the physical interactions 

between vehicles, users and the service by cross-simulating vehicle itineraries and the 

boarding and alighting of booked users at the corresponding stations. This approach 

differs from classical operational research approaches, where all the physical aspects are 

combined in a cost function under a set of constraints.  

In particular, the model adopts different algorithms depending on the status of 

the taxis. (1) In the case of assigned vehicles, the itinerary is already defined, so 

potential new users must fit in with it. Under the single-vehicle strategy, the model 

determines which users should prioritise the vehicle. Conversely, under the dispatching 

strategy, several vehicles can potentially consider the same users. The best option for 

the overall system (users + operators) is determined as the combination of vehicles 

strategies. (2) Free vehicles serve residual demand by following the same assignment 

rules.  

As can be observed, the vehicle is considered in our model as the decision-make 

on movement strategies and passenger service priorities. Assignment is therefore carried 



out in accordance with the utility functions of vehicles, which consist of minimum 

travel time, minimum user waiting time and maximum vehicle occupancy. The model 

therefore proposes a new formulation of the problem of maximising vehicle utility. In 

addition, the assignment of passengers to vehicles is controlled directly by vehicle 

drivers at an aggregated level by origin-destination pair. Finally, the distinction between 

assigned and free vehicles and the restriction placed on the range of options reduce the 

complexity of the system. 

  The model thus examines two coordination configurations by detailing the 

strategies that vehicles are likely to adopt. Their utility functions are defined and their 

complexity is calculated.  

1.4. Article structure 

The structure of the paper is as follows. First, we present the framework of the 

model by defining the supply-side and demand-side entities (Section 2). We provide an 

overview of the specifications and general scheme of the model (Section 3). This part 

also explains the associated service framework. Then, we investigate the single vehicle 

service (Section 4) and cooperative service (Section 5) configurations by defining 

strategies and utility functions for assigned and free vehicles. Finally, a case study 

illustrates the theoretical model by testing different supply scenarios (Section 6 and 

Section 7). The difference between the two approaches is finally evaluated in term of 

running time and socioeconomic indicators. 



2. Model framework 

2.1. Supply side 

2.1.1. The network 

The network is represented by an oriented graph G = (V, A), where 𝑉 is the 

node set and 𝐴 is the link set. The node set 𝑉 consists of stations 𝑖 ∈ 𝑁 and link 

intersections𝑖̅ ∈ �̅�: 𝑉 = 𝑁 ∪ �̅�. Boarding and alighting are allowed at stations 𝑖 but not 

at link intersections. The link set A contains travel links on which vehicles run. Each 

travel link 𝑎 ∈ 𝐴 is characterised by a distance value 𝑙𝑎 and a maximum authorised 

speed 𝑣𝑎̅̅ ̅. The other modes (private cars, transit modes, walking…) are not considered 

within the model. 

2.1.2. The service 

A service consists of a fleet of vehicles 𝑘 ∈ 𝐾 and a set of stations𝑁. We 

consider that the service is station-based – rather than operating through smartphone 

geo-tracking– in order to structure demand, and to make the service available to users 

without smartphones as well as more secure and visible.  

(i) The stations  

The stations are the points where users access and leave the service. Vehicles 

reach the stations in a single trip. We therefore exclude transfers between two vehicles 

in a given station, even if this would optimise system performance. In particular, users 

specify their destination when booking the taxi, which means that their destination is 

fixed before they board. In addition, users cannot change their destination during the 

trip. The destination is necessarily the alighting station. Finally, we assume that 

platforms have infinite length and that vehicle queues are avoided, and also that stations 

can accommodate an unlimited number of users. 

(ii) The vehicles 



For a given vehicle k, the current speed on a link 𝑎 is 𝑣𝑎 = min(𝑣𝑎̅̅ ̅, 𝑣𝑘), where 

𝑣𝑘 is the default technical speed of vehicle 𝑘 and 𝑣𝑎̅̅ ̅the authorised speed value (or the 

exogenous congested speed value on the arc 𝑎). 

The capacity of vehicle 𝑘 is κ. At instant 𝑡, the number of occupied seats is 

𝜅𝑏̅̅ ̅(𝑡) while the number of available seats (relative capacity) is 𝜅𝑏(𝑡). Thus we have  

𝜅 =  𝜅𝑏(𝑡) + 𝜅𝑏̅̅ ̅(𝑡). We assume that all passengers in the vehicle are seated. We 

consider two vehicle states:  

 Vehicles with a defined itinerary where users are on board or reserved, 

noted 𝐾𝑙, 0 ≤ 𝜅𝑏(𝑡) ≤ 𝜅. This state is called “assigned vehicle” 

 Free vehicle without pre-defined itinerary, noted 𝐾𝑒 𝜅𝑏(𝑡) = 𝜅 and 

called “free vehicle”. In this state, vehicles are stationary and waiting for 

new demand to be assigned. Anticipation of reserved users with 

repositioning is not considered in this model. 

𝐾 = 𝐾𝑙 ∪ 𝐾𝑒. We define the projected relative capacity 𝜅𝑏
𝑖  as the available capacity of 

the vehicle before reaching the station i. 

2.2.Demand side 

2.2.1. Demand characterisation 

The demand is the number of travellers between pairs of stations. A traveller y is 

thus characterised by an exogenous fixed origin station 𝑠𝑖(𝑦) ∈ 𝑁, and a fixed 

destination station 𝑠𝑗(𝑦) ∈ 𝑁. In this paper, we consider that pairs, origin-destination 

pairs and legs refer to the same notion. We define 𝑄𝑖𝑗(𝑡) as the total number of 

travellers waiting for a vehicle at station 𝑠𝑖 in order to go to station 𝑠𝑗 . 𝑄𝑖𝑗(𝑡) is a set of 

users ordered on the basis of their waiting time, so that users who have been waiting the 



longest can be prioritised. At the origin station, users are generated in simulation by 

their waiting time 𝑤𝑦 = 0.  

The number of users in a station 𝑠𝑖 that are allowed – given relative capacity –to 

board a vehicle k running to station 𝑠𝑗 is represented as 𝑌𝑘𝑖𝑗(𝑡). It cannot exceed the 

number of empty seats in the vehicle 𝜅𝑏(𝑡). When  𝑌𝑘𝑖𝑗(𝑡)>0, the corresponding 

travellers are reserved by the vehicle k ,and leave 𝑄𝑖𝑗(𝑡).  𝑌𝑘𝑖(𝑡) = ∑ 𝑌𝑘𝑖𝑗(𝑡)𝑗  indicates 

the total users boarding at station 𝑠𝑖, 𝑌𝑘𝑖(𝑡) the total users alighting at station 𝑠𝑖, and 

𝑌𝑘𝑖̅̅̅̅ (𝑡 − 1) the total on-board users in k going to a destination 𝑠𝑗 ≠ 𝑠𝑖. Finally, the total 

number of travellers on board the vehicle k at the station is 𝑠𝑖 , noted 𝑌𝑘𝑖̅̅̅̅ (𝑡),and verifies 

𝑌𝑘𝑖̅̅̅̅ (𝑡) = 𝑌𝑘𝑖̅̅̅̅ (𝑡 − 1) − 𝑌𝑘𝑖(𝑡) + 𝑌𝑘𝑖(𝑡). Note specifically that 𝑌𝑘𝑖𝑗(𝑡) become 𝑌𝑘𝑖𝑗̅̅ ̅̅ ̅(𝑡) 

when travellers board the vehicle k.  

2.2.2. Changes in user states 

When registered at the origin station, the corresponding user 𝑦 is created with a 

waiting time 𝑤𝑦 = 0. When a given vehicle k decides to take 𝑦 on board, user y is 

considered to be reserved and leaves the booking procedure. His travel time is divided 

into an access time , waiting time and in-vehicle time 𝑡𝑦
𝑘 The user exits the simulation 

after alighting. The diagram below follows user y from arrival at station 𝑖 to destination 

𝑗 and shows the user’s progress in the successive sets.  

Figure 1 Progression states of a user y during the travel procedure 



3. Centralised Service Layout 

In an independent vehicle service, Strategies are determined at vehicle level by 

the strategy calculation module detailed in Poulhès et al. (2018), although the strategy is 

outsourced to a dispatcher.  

The diagram below shows the structure of the agent-based model of the 

proposed dispatching solution. In this model, users are only passive agents; they change 

their states as seen in the previous section and move between three locations: the origin 

station, the vehicle and the destination station. The smart agent is therefore the vehicle.  

Figure 2 General scheme of the model with heterogeneous data and in case of dispatching  

3.1. Simulation period 

With the simulation period noted [𝐻0, 𝐻0 +𝐻], an initial loading period of 

simulation [𝐻−1, 𝐻0] provides realistic locations for the vehicles with destination and 

initial passenger load. A symmetrical post-period [𝐻0 + 𝐻,𝐻1] is introduced to assign 

the last user introduced in [𝐻0, 𝐻0 + 𝐻] through to their destination. Indicators are 

calculated on users arrived at origin station in the simulation period. Similarly, 

indicators for vehicles come only from the simulation period.  

Centralised call centre 

The centralised call centre informs vehicles of a new call from a user, and 

updates the user bookings for each vehicle. The centre therefore manages the interface 

between users and vehicles.  



3.2. Model scheme 

By contrast with a transit network, the itineraries of shared vehicles are 

unconstrained. In addition, they offer the advantage of easier coordination with demand 

in the vehicle network. At each iteration, in two steps, the strategy calculation 

dispatcher maximises a common strategy for assigned vehicles first and subsequently 

for free vehicles if residual demand exists. 

Movement module: The movement module is active when the vehicle is 

assigned. It follows a calculated itinerary provided by a sequence of stations and links. 

Vehicle speed is considered constant, ignoring congestion effects. A vehicle’s location 

is obtained from its itinerary and speed.  

Strategy calculation module for dispatching service:  

At each defined step, the dispatcher checks with the call centre to update 

demand. If there is non-assigned demand in the system, the dispatcher runs the strategy 

calculation module for the all assigned vehicles in order to optimise loading. This 

module tests the opportunity for all vehicles to board new users. It compares the results 

of all pertinent vehicle assignments for all vehicles simultaneously. Obviously, each 

vehicle only considers new demand when its projected residual capacity at the 

corresponding stations is positive. The best result is selected to assign demand. The 

optimal associated strategy is addressed to the vehicles concerned as new users and 

potential new stops. The dispatcher then assigns free vehicles to the closest and longest 

waiting demand. 

Main assumptions:  

 Assigned vehicles consider only demand generated and with a 

destination on their “pre-determined” itinerary. This means that the 

itinerary and destination are fixed only when the vehicle is free. Only 



new demand and intermediate stop stations can move dynamically at 

each step.  

 The model considers detours only as extra intermediate stops in order to 

limit the spatial complexity.  

 Fares are not included in the simulation. Fares mainly impact the level of 

demand and supply management, which are exogenous to our model. In 

the event of different levels of service and fares per vehicle types, 

demand segmentation will be introduced. 

To sum up, the strategy, noted 𝑆𝑘
∗, is defined as a combination of stations served 

– 𝑁𝑘
∗ ∈ 𝑁 – links travelled – 𝐴𝑘

∗ ∈ 𝐴– and users reserved – 𝑌𝑘
∗ ∈ 𝑄 ∶ 

 
𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗} ( 1 ) 

where users are represented by origin-destination pairs {𝑦𝑘𝑖𝑗} ∈ 𝑌𝑘𝑖𝑗, (𝑖, 𝑗) ∈

𝑁∗2. 

For instance, consider a simple network of three stations (1, 2, 3). If the vehicle 

is located at station 1 with on-board demand going to station 3 , then there are different 

possible strategies depending on the demand to station 2 and 3: (1 → 2), (2 → 3), (1 →

3) and (1 → 2 → 3). The number of possible strategies is then dependent on the 

demand in stations and the relative capacity of the vehicle. If we describe the possible 

strategies as options, the vehicle has to test several options and choose the best one, 

which is its strategy. For instance, if we consider that the maximum demand allowed to 

board at each station is equal to (5, 3, 0), then the optimal strategy is 𝑆𝑘
∗ =

{𝑁𝑘
∗, 𝐴𝑘

∗ , 𝑌𝑘
∗} = {{1,2,3}, {𝑎12, 𝑎23}, {1, … ,8}}. The problem of strategy calculation is 

therefore formulated as a problem of assessing options. 

In the upcoming sections, we conduct an in-depth assessment of the options for 

a vehicle-centred approach (Section 4) and for a system-centred approach (Section 5). 



4. Single vehicle strategy model 

In this section, we focus on the strategy calculated by a given vehicle 

independently of other vehicles. The main aim here is to maximise individual 

performance for trips completed by each vehicle. The vehicle’s performance is 

evaluated through the notion of utility. The optimum strategy therefore corresponds to 

the option with maximum utility.  

The section is organised as follows: first, we determine the set of options for 

assigned and free vehicles (4.1). Then, the utility is calculated for these options (4.2). 

Finally, the strategy for the vehicle is deduced (4.3).  

4.1. Option combination set per vehicle 

 During operation time, demand is assigned dynamically. When the vehicle is 

assigned, the strategy depends on the destination of the on-board users. Therefore, the 

focus of the new strategy is to check new demand in stations on the vehicle’s itinerary. 

In the case of free vehicles, all stations with residual demand are tested, and then 

demand along the path to the initial demand destination.   

4.1.1. Assigned vehicles  

For a vehicle 𝑘 ∈ 𝐾𝑙(i.e. 𝜅𝑏 > 0), let 𝑁𝑙𝑘be the stations on its itinerary and 

specifically 𝑁𝐼𝑘
+ the stations where demand is positive. This gives us 𝑁𝑙𝑘

+ ⊂ 𝑁𝑙𝑘  and  

𝑁𝐼𝑘
+ = {𝑖 ∈ 𝑁𝐼𝑘, 𝑎𝑠 𝑄𝑖𝑗 > 0, 𝑗 ∈ 𝑁𝐼𝑘} . As a result, the  list of origin-destination pairs 

that will be considered by a vehicle is 𝑝𝑘 = (𝑖, 𝑗) ∈ 𝑁𝐼𝑘
+ × 𝑁𝐼𝑘 where 𝑁𝐼𝑘

+ × 𝑁𝐼𝑘 =

{(𝑖, 𝑗), 𝑖 ∈ 𝑁𝐼𝑘
+, 𝑗 > 𝑖, 𝑗 ∈ 𝑁𝐼𝑘}. Finally, if the set of all tested 𝑝𝑘is 𝜙𝑘 (i.e. 𝜙𝑘 =

{𝑝𝑘 ∈ 𝑁𝐼𝑘
+ × 𝑁𝐼𝑘}), then an option is a subset of 𝜙𝑘, noted 𝑜𝑘. This gives us:  

 
𝑜𝑘 = {𝜙𝑘

′  𝑎𝑠 𝜙𝑘
′ ⊂ 𝜙𝑘} ( 2 ) 

In addition, all the possible options for a vehicle 𝑘 ∈ 𝐾𝑙 are listed in the set 𝑂𝑘
𝐿. 



For instance, in a simple network of 3 nodes (1,2,3), the legs are the set 

{(1,2), (1,3), (2,3)}. Supposing positive demand for all pairs, the set of all options 

𝑂𝑘
𝐿could be written: 

{((1,2)), ((1,3)), ((2,3)), ((1,2), (1,3)), ((1,2), (2,3)), ((1,3), (2,3)), ((1,2), (1,3), (2,3))} 

The complexity of this vehicle-centred method of choice 𝑂(𝐶𝑙𝑘), 𝑘 ∈ 𝐾𝑙 is the number 

of combinations, 𝑂(𝐶𝑙𝑘) = (2|𝜙𝑘| − 1). Then for all vehicles 𝐾𝑙, the vehicle with the 

highest complexity 𝑂(𝐶𝑙𝑘
𝑚𝑎𝑥) is multiplied by the number of assigned vehicles: 

 𝑂(𝐶𝐾𝑙) = |𝐾𝑙|. 𝑂(𝐶𝑙𝑘
𝑚𝑎𝑥) 

( 3 ) 

4.1.2. Free vehicle 

For free vehicles, which are not constrained by the destinations of on-board 

users, all stations with positive demand are explored as potential first stations to serve. 

They are noted 𝑁0, where 𝑁0 ⊂ 𝑁. In concrete terms, the free vehicle takes the 

following steps in determining what option to adopt: 

Step 1: All stations with positive demand are determined. They constitute the set 

𝑁0. 

Step 2: For each station, we determine the set of user destinations. In particular, 

for a given station 𝑚, the set of desired destinations is 𝑁0+(𝑚). 

Step 3: After fixing the origin (Step1) and the destination (Step2), the 

intermediate stations on the itinerary are tested as in the case of assigned vehicles. 

Specifically, if 𝑁𝑒𝑘are the intermediate stations and 𝑁𝑒𝑘
+those with positive 

demand (i.e. 𝑁𝑒𝑘
+ = {𝑖 ∈ 𝑁𝑒𝑘, 𝑎𝑠 𝑄𝑖𝑗 > 0, 𝑗 ∈ 𝑁𝑒𝑘}),  and 𝜙𝑘

𝑒 is the set of all the origin-

destination pairs 𝑝𝑘, option 𝑜𝑘 is the subset defined as :  

 𝑜𝑘 = {𝑚 ∈ 𝑁0, 𝑛 ∈ 𝑁0+(𝑚),𝜙𝑘
′ (𝑚, 𝑛)𝑎𝑠𝜙𝑘

′ (𝑚, 𝑛) ⊂ 𝜙𝑘
𝑒(𝑚, 𝑛)} ( 4 ) 



Where, 𝜙𝑘
𝑒(𝑚, 𝑛) is the selected legs on the path 𝜋𝑘𝑚 + 𝜋𝑚𝑛, 𝜙𝑘

𝑒(𝑚, 𝑛) =

{(𝑖, 𝑗) ∈ 𝑁𝑒𝑘
+ ×𝑁𝑒𝑘}. 

Work is now being done to restrict the space of possible options for exploration, which 

could be important in a large network. Carsharing systems (2012) or for vehicle routing 

problem (2012) research fields explore deeply this question. 

All the possible options for the vehicle 𝑘 ∈ 𝐾𝑒 are listed in the set 𝑂𝑘
𝐸.  

The complexity for one free vehicle is the complexity of  𝜙𝑘
𝑒(𝑚, 𝑛),  multiplied by the 

cardinal of  𝑁0 and 𝑁0+(𝑚),𝑚 ∈ 𝑁0 

Thus for all free vehicles: 

 𝑂(𝐶𝐾𝑒) = |𝐾𝑒|. |𝑁
0|. |𝑁|. 𝑂(𝐶𝑒𝑘

𝑚𝑎𝑥) 
( 5 ) 

4.2. Option utility function for an assigned vehicle 

Vehicles choose passengers with the primary objective of maximising their total 

utility. We consider that the utility function increases with greater vehicle loading and 

significant user waiting time. This means that vehicles prefer users with a long waiting 

time or travel distance. These two main terms combine user and driver preferences. The 

utility function is attached to the vehicle but includes service and user considerations. 

With our vehicle-centred approach, utility could be fixed by setting vehicle use 

parameters for each utility term. In the utility terms provided, for greater clarity the 

utility functions are presented without parameters. Price is not considered in the utility 

function. The path (𝜋𝑖𝑗) between stations i and j on the graph G minimises travel time 

on the basis of Dijkstra’s algorithm. 

A singular strategy of stations served along a path is characterised by its utility 

in order to compare strategies. This utility function is divided into terms corresponding 



to pairs of stations. Each term is the sum of the total travel time and the total waiting 

time for all available users. 

In addition, we detail the utility function for a given option 𝑜𝑘 ∈ 𝑂𝑘
𝐿. 𝑜𝑘 =

(𝑝𝑘
1, … , 𝑝𝑘

𝑛), {𝑝𝑘
1, … , 𝑝𝑘

𝑛} ∈ 𝜙𝑘 for assigned vehicles or equally 𝑜𝑘 ∈ 𝑂𝑘
𝐸 for free 

vehicles. This subsection explains the utility calculation process with respect to demand 

per leg and the option for loaded flow between destinations. If the residual capacity is 

not sufficient to board all the demand at a station, the vehicle chooses the order of 

boarding priority for users on the basis of a utility term per user.   

4.2.1. Utility per leg  

Let us call a leg in the option 𝑝𝑘 = (𝑖, 𝑗) ∈ 𝑜𝑘. By definition, �̃�𝑖𝑗 > 0is true for 

the demand from 𝑖 to 𝑗 when the strategy procedure is launched. The relative available 

capacity 𝜅𝑏
𝑖  before each station depends onthe number of users already reserved by the 

vehicle. 𝜅𝑏
𝑖  changes depending on𝑌𝑘𝑖′𝑗 , , ∀𝑖

′ <  𝑖, ∀𝑗′ > 𝑖. The demand also shares the 

total residual capacity for station 𝑖 with the other legs of the strategy beginning at 𝑖. The 

next part details the user selection method and the number of users actually loaded 𝑌𝑘𝑖𝑗 

for the option  calculation.   

Utility per leg consists of three terms:  

 In the first, two perspectives are considered. Firstly, maximisation of 

occupancy rate and if necessary selection among users in the event of 

competition between destinations. If the number of passengers wishing 

to travel from 𝑖 to 𝑗 increases, the utility increases as well. Secondly, the 

preference for long paths without congestion (𝜋𝑖𝑗is the minimum path 

and 𝐶(𝜋𝑖𝑗) the associated cost) 



 In the second, priority is given to the passengers who have been waiting 

the longest. It sums the waiting time of all selected passengers 𝑌𝑘𝑖𝑗 in the 

stations going from 𝑖 to 𝑗 at the current time. The longer the waiting time, 

the greater the utility. We consider the penalty function 𝛼 to calculate 

waiting time utility. 

 However, the access time from the position of the vehicle k to the station 

i defined by the path 𝜋𝑘𝑖, is a negative term for users.  

Attributing weights (𝛽, 𝛾, 𝜃) to each term on the basis of service management and 

strategies is a way to favour user or operating considerations. The utility 𝑈𝑘𝑖𝑗 for leg 

(𝑖, 𝑗) is:  

 𝑈𝑘𝑖𝑗 = 𝛽. |𝑌𝑘𝑖𝑗|. 𝐶(𝜋𝑖𝑗) + 𝛾. ∑ 𝛼(𝑤𝑦). 𝑤𝑦
𝑦𝜖𝑌𝑖𝑗

− 𝜃. |𝑌𝑘𝑖𝑗|. 𝐶(𝜋𝑘𝑖) ( 6 ) 

4.2.2. Distribution of users per leg 

If the residual capacity of the vehicle is insufficient to board all interested 

demand, the vehicle needs to make a choice among users. The selection of users at a 

station among several destinations is a major strategy in all the service operator options. 

The operator can take a user-centred approach by favouring users who have been 

waiting the longest, or an operator-centred approach by simplifying loading operations 

and minimising the number of destinations among boarding users. We chose to adopt a 

uniform approach to the strategy, by selecting boarding users on the basis of their 

utility. For a user 𝑦𝑖𝑗𝜖�̃�𝑖𝑗 the utility for the service is: 

 𝑈𝑦𝑖𝑗 = 𝐶(𝜋𝑖𝑗) + 𝛼(𝑤𝑦).𝑤𝑦 
( 7 ) 

Access time does not need to be included, as it is the same for all users at station 𝑖. 



The utility for all users on the legs starting at station 𝑖 and matching the option 𝑜𝑘 can 

be sorted into a list 𝐿𝑠𝑘
𝑖 . The users who will board the vehicle are at the top of this list. 

Their numbers are restricted by the residual capacity of the vehicle at station 𝑖, 𝜅𝑏
𝑖 : 

|𝐿𝑠𝑘
𝑖 | ≤ 𝜅𝑏

𝑖  

An element 𝑙 of 𝐿𝑠𝑘
𝑖 ,where the origin is 𝑖, the destination 𝑗, the user identifier 𝑦𝑖𝑗, and 

the associated utility 𝑈𝑠𝑘
𝑖 (𝑙), is defined as: 

 𝐿𝑠𝑘
𝑖 (𝑙) = (𝑖, 𝑗, 𝑦𝑖𝑗, 𝑈𝑦𝑖𝑗) , 𝑦𝑖𝑗 ∈ �̃�𝑖𝑗, ∀𝑝𝑘 =

(𝑖, 𝑗) ∈ 𝑜𝑘  | 𝑈𝑠𝑘
𝑖 (𝑙 − 1) ≤ 𝑈𝑠𝑘

𝑖 (𝑙)

≤ 𝑈𝑠𝑘
𝑖 (𝑙 + 1) 

( 8 ) 

The users selected by origin-destination (𝑖, 𝑗) are the corresponding users 𝑦𝑖𝑗 in the list 

𝐿𝑠𝑘
𝑖 . This subset list is the set 𝑌𝑖𝑗 used in the utility calculation: 

 𝑌𝑘𝑖𝑗 = {𝑦𝑖𝑗 , 𝑈𝑦𝑖𝑗|𝑦𝑖𝑗 ∈ 𝐿𝑠𝑘
𝑖 } ( 9 ) 

4.2.3. Utility function for the whole option 

We then sum the utility for all legs for a vehicle k for a given service option. In 

order to favour a direct itinerary over a multi-stop route, we add a disutility term 𝐷𝑛 for 

time lost in new intermediate stops. 

𝐷𝑛 is calculated as the sum of access time, dwell-time and egress time. For station 𝑛 ∈

𝑁, access/egress time is the additional time used in accessing and leaving the station, 

respectively termed 𝑡𝑛
𝑎 and 𝑡𝑛

𝑒 . The dwell-time depends on the number of users boarding 

and alighting: 𝑡𝑛
𝑑 = 𝑡𝑢. (∑ 𝑌𝑗<𝑛 𝑘𝑗𝑛

+ ∑ 𝑌𝑗>𝑛 𝑘𝑛𝑗
), where a single unit 𝑡𝑢is used for 

boarding or alighting time. Hence, 𝐷𝑛 = 𝑡𝑛
𝑎 + 𝑡𝑛

𝑑 + 𝑡𝑛
𝑒. Boarding and alighting time for 

stations already served are ignored.  



𝑌𝑛, the on-board flow during the dwelling procedure, is the impact on flow caused by 

detour, 𝑌𝑛 = ∑ 𝑌𝑖<𝑛,𝑗>𝑛 𝑘𝑖𝑗
 

𝑁𝑘
−is the stops already programmed for an assigned vehicle, 𝑁𝑘

+(𝑜𝑘) the option stations 

obtained from the origin and destination stations for all legs of the option. The only new 

stations are 𝑁𝑘
+(𝑜𝑘) − 𝑁𝑘

−. 

Finally, where (𝛽, 𝛾, 𝜃, 𝜗) are the service parameters, the utility 𝑈𝑜𝑘for an option is:  

 𝑈𝑜𝑘 = ∑ 𝑈𝑝𝑘(𝛽, 𝛾, 𝜃)

𝑝𝑘∈𝑜𝑘

− 𝜗 ∑ 𝟏𝑛∉𝑁𝑘
− . 𝐷𝑛. 𝑌𝑛

𝑛∈𝑁𝑘
+(𝑜𝑘)

 ( 10 ) 

4.3.Choice of Strategy  

As we saw previously, an option defines a list of stations served. The path is 

unchanged for assigned vehicles but defined by the first and last stop stations for free 

vehicles. The reserved users are, as we saw, chosen at the same time as the option. 

4.3.1. For assigned vehicle 

The selection strategy𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗} corresponds to the option 𝑜𝑘
∗ ∈ 𝑂𝑘

𝐿 with the 

maximum utility: 

 𝑈∗(𝑜𝑘
𝑙∗) = max

𝑜𝑘∈𝑂𝑘
𝐿
𝑈𝑜𝑘 

( 11 ) 

4.3.2. For free vehicle 

The selection strategy𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗} corresponds to the option 𝑜𝑘 ∈ 𝑂𝑘
𝐸 with the 

maximum utility: 

 𝑈∗(𝑜𝑘
𝑒∗) = max

𝑜𝑘∈𝑂𝑘
𝐸
𝑈𝑜𝑘  

( 12 ) 

In addition, 𝑜𝑘
𝑒∗ defines the first stop station 𝑚∗ ∈ 𝑆0 and the last stop station 𝑛∗ ∈

𝑆0+(𝑚). Thus the corresponding itinerary is the shortest path from the vehicle’s 



position to the first stop station plus the path from the first stop station to the last one  

𝐴∗~ 𝜋𝑘𝑚∗ + 𝜋𝑚∗𝑛∗. 

5. Dispatcher solution 

We now go on to consider the case where vehicles cooperate through a 

dispatcher. We begin by presenting a general description of the service (5.1). Then, we 

describe the global option definition (5.2) and the utility function (5.3) for extreme 

sharing cases (i.e. where all options are independent or all options are common). Then, 

we investigate an optimized situation which combines shared and common options. In 

particular, we define the subset option definition (5.4.1) and the corresponding utility 

function (5.4.2). Finally, we present the optimal strategy defined for the particular case 

of free vehicles (5.5).  

5.1. Service description 

In a service with a central dispatcher, the vehicles share their planned itinerary 

and position. The operator’s objective is therefore a global aggregate cost that reflects 

the social optimum for the service. This cost takes into account both the user’s and the 

operator’s interests. Drivers dependent on this service have no role in either demand 

management or strategy selection. They are purely restricted to the role of driving. 

In a first step, we assign new users to already assigned vehicles. These kinds of 

vehicles have a fixed itinerary depending on the users on board. Potential new assigned 

users must have an origin and a destination on the vehicle’s itinerary. Priority in 

assigning users to assigned vehicles is based on the objective of optimising the number 

of service vehicles and number of trips and reducing calculation time. Two assigned 

vehicles could have shared itineraries and thus be interested in the same potential users. 

In this case, we calculate the strategy of the two vehicles simultaneously. More 



generally, we construct groups of strategies as a combination of users served for a list of 

vehicles. The set of all combinations is evaluated and the solution adopted is the one 

with the least cost. 

The second step is to assign the remaining demand to the free vehicles. 

5.2. Global option definition 

Each vehicle has its own list of options for legs travelled as defined in the 

previous section. The dispatcher’s aim is to generate a combination of assignments 

between vehicles and users that optimises a shared utility function. We have already 

described the search procedure for a single vehicle. The easy way to test all the 

assignment possibilities between vehicles is to combine all the options for all the 

assigned vehicles. We now present solutions for reducing the option space. 

Supposing that the assigned vehicles 𝐾𝐿 have a list of possible options named 

𝑂𝑘
𝐿 , 𝑘 ∈ 𝐾𝐿 precisely defined and calculated as in the previous section. The diagram in 

Figure 3 sums up all the options for each assigned vehicle. Some vehicles may have no 

available capacity or stations with positive demand on their path, with the result that the 

set 𝑂𝑘
𝐿 is empty. For other assigned vehicles, a global option is a set of options with one 

option per vehicle. Two distinct global options must have at least one vehicle that has 

two different options in each.  

 



Figure 3 Options for assigned vehicles  

The total global option 𝑁𝑂
𝐾𝐿  is the product of the number of options for each assigned 

vehicle, so 𝑁𝑂
𝐾𝐿 = ∏ |𝑂𝑘

𝐾𝐿|𝑘∈𝐾𝐿  

If we note a global solution 𝑂𝐾𝐿(𝑟), 𝑟 ∈ [0, 𝑁𝑂
𝐾𝐿]: 

 𝑂𝐾𝐿(𝑟) = (𝑜𝑘1
(𝑖1); … ; 𝑜𝑘𝑛

(𝑖𝑛)), 𝐾𝐿 = (𝑘1; … ; 𝑘𝑛), (𝑖1, … , 𝑖𝑛)

∈ ([1, |𝑂𝑘1
𝐾𝐿|], … , [1, |𝑂𝑘𝑛

𝐾𝐿|]  ) 

( 13 ) 

We group all the potential options 𝑂𝐾𝐿 for all assigned vehicles in a set:  

 Ω(KL)  =⋃ 𝑂𝐾𝐿(𝑟)
𝑟∈𝑁𝑂

𝐿
 ( 14 ) 

5.3. Extreme sharing cases 

The utility for each vehicle leg is calculated as in the vehicle assignment 

solution. For a given option 𝑜𝑘 ∈ 𝑂𝑘
𝐾𝐿 , 𝑘 ∈ 𝐾𝐿, the associated utility is stated as 𝑈𝑜𝑘. 

The users assigned to a vehicle depend on the order of arrival at the station in the option 

scenario. The first vehicle 𝑘(1) to arrive at a station 𝑖 can choose users 𝑌𝑖𝑗
𝑘(1)

 from all 

user demand 𝑄𝑖𝑗, ∀𝑗 ∈ 𝑜𝑘. The second vehicle can choose only users in  𝑄𝑖𝑗 −

𝑌𝑖𝑗
𝑘(1)

, ∀𝑗 ∈ 𝑜𝑘, and so on until the demand is zero on the leg. 

A global option 𝑂𝐾𝐿
(𝑟)

 has by definition a total utility calculated as the sum of all 

vehicle utility: 

 𝑈
𝑂𝐾𝐿
(𝑟) = ∑ 𝑈𝑜𝑘

𝑜𝑘∈𝑂𝐾𝐿(𝑟)

, 𝑘 ∈ 𝐾𝑙 ( 15 ) 

5.3.1. Naive formulation (100% shared options) 

A dispatcher aims to find options for all vehicles by maximising the total utility 

of the available assigned vehicles 𝐾𝑙. The optimal global option 𝑂𝐾𝐿
∗ (𝑟) is given by: 



 𝑈Ω𝐾𝐿
∗ = max

𝑂𝐾𝐿
(𝑟)
∈Ω𝑆

(𝑈
𝑂𝐾𝐿
(𝑟) , 𝑘 ∈ 𝐾𝑙) ( 16 ) 

The optimal strategy for the vehicle 𝑘 ∈ 𝐾𝐿 is the strategy corresponding to the option 

𝑂𝐾𝐿
(𝑟)∗

, 𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗} 

5.3.2. Independent strategies (100% independent options) 

The vehicle strategies are independent, in other words each origin-destination 

pair belongs to only one vehicle option set:1 

 ∀(𝑘, 𝑘′) ∈ 𝐾𝐿
2, ∀𝑜𝑘 ∈ 𝑂𝑘

𝐾𝐿 , ∀𝑜𝑘′ ∈ 𝑂𝑘′
𝐾𝐿 , 𝑝𝑘 ≠ 𝑝𝑘′  𝑓𝑜𝑟 𝑝𝑘 ∈ 𝑜𝑘, 𝑝𝑘′ ∈ 𝑜𝑘′ ( 17 ) 

In this case, each vehicle optimises its own strategy:  

 

𝑈𝐾𝐿
∗ = ∑ (𝑚𝑎𝑥 

𝑜𝑘∈𝑂𝑘
𝐿 
(𝑈𝑜𝑘))

𝑘∈𝐾𝐿

 

( 18 ) 

For a vehicle 𝑘 ∈ 𝐾𝑙 the assigned strategy 𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗} is the strategy with the 

highest utility among the options. This is the case we looked at in Section 4, where 

vehicles choose their strategies independently.   

5.4.Combined shared options 

The usual strategies contain vehicles with shared options and others with totally 

independent options.  

If more than one vehicle are available for same users, a dispatcher optimises 

matching between users and vehicles. The total utility depends on the attribution choice. 

Users are assigned to vehicles in a way that maximises total utility.  

                                                 

1𝑝𝑘 ≠ 𝑝𝑘′ means (𝑖 ≠ 𝑖′ 𝑜𝑟 𝑗 ≠ 𝑗′) and  𝑝𝑘 = 𝑝𝑘′ means (𝑖 = 𝑖′𝑎𝑛𝑑 𝑗 = 𝑗′)  where 𝑝𝑘 = (𝑖, 𝑗) and 𝑝𝑘′ = (𝑖′, 𝑗′) 



The cross strategies are evaluated together. The arrival order of vehicles in a 

station depends on the individual vehicle strategy. Two strategies can then pursue 

boarding solutions. 

The naive strategy combination set is all cross combinations of the 𝐾𝐿 vehicles. 

|𝑆𝑘| = (2
|𝜙𝑘| − 1)

|𝐾𝐿|
. We propose two main ways to reduce the size of the 

combination space.  

5.4.1. Subset definition 

The aim of this section is to subdivide the combination space into independent 

subgroups. Dispatching or choosing between vehicles are necessary only if several 

vehicles are available for the same demand, which means that sharing options, adopted 

where users match only one vehicle, are unnecessary.  

From the vehicle point of view, on the one hand, the strategies of some vehicles 

may be totally independent, while on the other, some vehicles may have options that 

overlap with the options of other vehicles. In this case, the search space for the optimum 

strategy can be subdivided into several smaller subspaces. If a no-demand leg is shared 

between two vehicles, there is no need to combine all the strategies. The optimal 

strategy of the first vehicle and the optimal strategy of the second vehicle are the 

combined optimal strategy. Vehicles with shared legs are aggregated in the same group. 

Secondly, vehicles in the same group have their own strategies, totally independent of 

the other vehicles of the group. The strategies of all group vehicles on a shared leg are 

then combined into a single subgroup.  

First, we create groups of dependent strategies. All the vehicles that have one leg 

in common belong to the same group. Consider the subgroups 𝐾𝐿
(𝑙)
⊂ 𝐾𝐿 of vehicles to 

be 𝐾𝐿=𝐾𝐿
(1)
∪ 𝐾𝐿

(2) ∪ …∪ 𝐾𝐿
(𝑙)

. A subgroup 𝐾𝐿
(𝑙)

 is the set as: 



 
∀𝑘 ∈ 𝐾𝐿

(𝑙), {
∀𝑘′ ∈ 𝐾𝐿

(𝑙)
, ∃(𝑜𝑘 , 𝑜𝑘′) ∈ 𝑂𝑘

𝐾𝐿 × 𝑂𝑘′
𝐾𝐿  | ∃𝑝𝑘 ∈ 𝑜𝑘 , ∃𝑝𝑘′ ∈ 𝑜𝑘′ , 𝑝𝑘 = 𝑝𝑘′

∀𝑘′ ∈ 𝐾𝐿\𝐾𝐿
(𝑙)
, ∀(𝑜𝑘 , 𝑜𝑘′) ∈ 𝑂𝑘

𝐾𝐿 × 𝑂𝑘′
𝐾𝐿| ∀𝑝𝑘 ∈ 𝑜𝑘 , ∀𝑝𝑘′ ∈ 𝑜𝑘′, 𝑝𝑘 ≠ 𝑝𝑘′

 ( 19 ) 

 

For instance, consider the  

Figure 4. The vehicles 𝑘1 and 𝑘2 have the green leg in common. Then, they belong to 

the same group 𝐾𝐿
(2)

. In addition, they are independent of 𝑘3 and 𝑘4.  

 

 
Figure 4 Illustration case for subset definition  

We can then separate the optimal strategy into subgroups 𝐾𝐿
(𝑙)

 where 𝑛 is the number of 

subgroups: 

 𝑈Ω𝐾𝐿
∗ = ∑ 𝑈

𝐾𝐿
(𝑙)
∗

𝑙∈[1,𝑛]

 ( 20 ) 

In each subgroup of 𝐾𝐿: 𝐾𝐿
(𝑙)

,two types of groups form the set Ω(𝐾𝐿
(𝑙)
): 

(i) the group of common options. These, therefore, are the options with at 

least one leg in common. The group of cross options with one common leg 

through several vehicles Ω̂
KL
(𝑙) ⊂ Ω is defined as  

 Ω̂
KL
(𝑙)

=

{
 
 

 
 𝑂𝐾𝐿(𝑟) ∈ Ω𝐾𝐿 ,

[
∀(𝑂𝐾𝐿

(𝑟)
, 𝑂𝐾𝐿

(𝑟′)
) ∈ Ω̂

KL
(𝑙) × Ω̂

KL
(𝑙) , ∀(𝑜𝑘 , 𝑜𝑘′) ∈ 𝑂𝐾𝐿

(𝑟)
× 𝑂𝐾𝐿

(𝑟′)
 | ∃𝑝𝑘 ∈ 𝑜𝑘 , ∃𝑝𝑘′ ∈ 𝑜𝑘′ , 𝑝𝑘 = 𝑝𝑘′

∀(𝑂𝐾𝐿
(𝑟)
, 𝑂𝐾𝐿

(𝑟′)
) ∈ Ω̂

KL
(𝑙) × Ω𝐾𝐿\Ω̂KL

(𝑙) , ∀(𝑜𝑘 , 𝑜𝑘′) ∈ 𝑂𝐾𝐿
(𝑟)
× 𝑂𝐾𝐿

(𝑟′)
| ∀𝑝𝑘 ∈ 𝑜𝑘 , ∀𝑝𝑘′ ∈ 𝑜𝑘′, 𝑝𝑘 ≠ 𝑝𝑘′}
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(ii) The complementary set represents the group of other single options per 

vehicle, Ω̅
KL
(l) = ΩKL\⋃ Ω̂KL

(l) defines as  



 �̅�
𝐊𝐋
(𝒍) = {𝑶𝑲𝑳(𝒓) ∈ 𝛀(𝑲𝑳

̅̅ ̅̅ ) | ∀(𝑶𝑲𝑳
(𝒓), 𝑶𝑲𝑳

(𝒓′)
) ∈ �̅�

𝐊𝐋
(𝒍) ×∪ �̂�

𝐊𝐋
(𝒍) , ∀(𝒐𝒌, 𝒐𝒌′)

∈ 𝑶𝑲𝑳
(𝒓) × 𝑶𝑲𝑳

(𝒓′)
, ∀(𝒑𝒌, 𝒑𝒌′) ∈ 𝒐𝒌 × 𝒐𝒌′ , 𝒑𝒌 ≠ 𝒑𝒌′} 

( 22 ) 

The strategy with the maximal utility belongs to one of these two homogeneous groups 

of vehicles: Ω̅
KL
(l) and Ω̂

KL
(𝑙). 

5.4.2. Utility formulation of optimised strategies for a subgroup 𝐾𝐿
(𝑙)

 

Total utility can be defined as the maximum between two independent subgroups: 

 𝑈
KL
(𝑙)
,Ω

∗ = max (𝑈Ω̂
KL
(𝑙)

∗ , 𝑈Ω̅
KL
(𝑙)

∗ ) 
( 23 ) 

Within,  

 

{
 
 
 

 
 
 
𝑈Ω̂

𝐾𝐿
(𝑙)

∗ = max
𝑂𝐾𝐿
(𝑟)
∈Ω̂

𝐾
𝐿
(𝑙)

( ∑ 𝑈𝑜𝑘
𝑜𝑘∈𝑂𝐾𝐿

(𝑟)

)

𝑈Ω̅
𝐾𝐿
(𝑙)

∗ = ∑ ( max
𝑜𝑘∈𝑂𝐾𝐿

(𝑟)
𝑈𝑜𝑘)

𝑂𝐾𝐿
(𝑟)
∈Ω̅

𝐾
𝐿
(𝑙)

 

( 24 ) 

 

In which the first utility 𝑈Ω̂
𝐾𝐿
(𝑙)

∗  is the maximum utility for shared options 𝑂𝐾𝐿(𝑟) in the 

𝐾𝐿
(𝑙)

 vehicle group. And the second, 𝑈Ω̅
𝐾𝐿
(𝑙)

∗  is the utility corresponding to the individual 

options of vehicles. 

Vehicles in two groups belonging to 𝐾𝐿 are independent by construction. The global 

strategy is then the concatenation of all subgroup strategies. 

For the dispatching method, the final maximal utility of assigned vehicles gives the 

strategy 𝑆𝑘
∗ = {𝑁𝑘

∗, 𝐴𝑘
∗ , 𝑌𝑘

∗}, ∀𝑘 ∈ 𝐾𝐿. 



5.5.Free vehicle case 

Free vehicles are not restricted to a fixed itinerary. However, once a vehicle 

chooses a first target group of users on a leg, it is equivalent to an assigned vehicle. The 

first step is to match vehicles to remaining demand. 

 The demand remaining after assigned vehicles, called �̂� = {�̂�𝑖𝑗 > 0, (𝑖, 𝑗) ∈

𝑁²}, should been assigned. A simple matching key is applied to limit tests between 

vehicles and demand. The number of free vehicles could be insufficient, so pairs (𝑖, 𝑗) 

are assigned to vehicle following the decrease in total waiting time: 𝑊𝑖𝑗 = ∑ 𝑤𝑦𝑦∈�̂�𝑖𝑗
. 

Let �̂�𝑖𝑗 > 0, (𝑖, 𝑗) ∈ 𝑁² be the number of users at the station 𝑖, and 𝐾𝐸
𝑖𝑗

 the 

number of tested vehicles that verify the condition: all vehicles that have been parked 

less than 𝜏𝑖, a maximum fixed time for access to the station 𝑖, are tested. Otherwise, 

only the nearest vehicle to 𝑖 is tested: 

 𝐾𝐸
1 = {𝑘 ∈ 𝐾𝐸 , 𝐶(𝜋𝑘𝑖) < 𝜏𝑖}, 𝑖𝑓 |𝐾𝐸

1| > 0 𝑡ℎ𝑒𝑛 𝐾𝐸
𝑖𝑗
= 𝐾𝐸

1 𝑒𝑙𝑠𝑒 𝐾𝐸
𝑖𝑗
= 𝑘

∈ 𝐾𝐸 , 𝐶(𝜋𝑘𝑖) = min
𝑘′∈𝐾𝐸

𝐶(𝜋𝑘′𝑖) 

( 25 ) 

The optimum strategy for free vehicles can then be obtained on the basis of 

vehicles with initial demand. The case is the same as that of assigned vehicles with an 

initial itinerary and stations served. 

6.  Study case presentation 

6.1. Territory issues 

The model framework is applied to a French city located 17 km from the centre 

of Paris. It has a population of around 32,000 and provides some 22,000 jobs. The 

distribution of homes and jobs is heterogeneous. Palaiseau was chosen because of the 

French EVAPS project, headed by the VEDECOM Institute with a view to 

implementing a shared taxi service. Palaiseau is also becoming an area of interest 



because it is a part of a future French scientific cluster containing universities, graduate 

schools, research institutes and companies research labs. Today, Palaiseau is mainly 

connected to the rest of the Paris metropolitan area by the RER B train line. However, 

by 2030 the Greater Paris Express will provide public transport in the area through 

transit line 18. 

6.2.Network design 

A ridesharing service is provided in the area. It consists of a homogeneous fleet 

operating on a selected network that connects Massy-Palaiseau station at the eastern end 

to universities and research institutes located at the western end. The proposed network 

is designed to take into account the major spatial and demographic constraints of the 

area. It consists of 13 links and 11 stations (Figure 3). The arc cost is deduced directly 

from the length of the arc (e.g. in grey the Erreur ! Source du renvoi introuvable.) 

and the running speed of the vehicle. In the absence of congestion and other 

externalities, vehicle speed is assumed to be constant (30km/h).  

6.3. Demand generation  

The simulation is carried out for one morning peak hour and for home-to-work 

trips. Trips are estimated using a four-step model for the Paris area and then 

disaggregated by taxi stations by analysing the distribution of homes and jobs (TRB 

accepted). The total number of trips is found to be equal to 600 passengers. Finally, 

trips are generated over time using a Poisson distribution per 1 minute time step for one 

hour of simulation. Vehicles are generated at station 1, which represents Massy-

Palaiseau station.  



 

Figure 5 Drawing of the case study network 

6.4.Description of scenarios 

Our aim is to assess ridesharing service performances under the two assignment 

strategies, “single-vehicle strategy” and “dispatching strategy”. For each strategy, we 

consider different fleet sizes and different levels of market penetration. The fleet size 

ranges between 10 and 40 vehicles. Market penetration is simulated by varying demand 

level: from 50% to 150% with a step of 25%. These scenarios were combined with two 

capacity scenarios: (1) vehicles with 30 seats (e.g. minibuses, shuttles) and (2) vehicles 

with 5 seats (e.g. mid-sized cars). The weights of the utility function are fixed and are 

equal to 1. This results in 2*(4*2+5*2)=36 scenarios.  

7. Simulation results 

7.1. Operational performances 

Figure 6 depicts the empty time and flow-capacity ratio for the 36 scenarios 

defined. Empty time refers to the average ratio of time that vehicles are free during the 

study period. The flow-capacity ratio, on the other hand, relates the number of 

passengers using the service to the total capacity of the fleet. The assignment strategies 



are drawn in the same figures to allow intuitive comparison between their respective 

performances. Red crosses indicate extreme values. 

 

Figure 6 Operational performances with tests on operating condition and demand level 

Figure 6.a shows that the dispatching strategy promises better results for all fleet 

sizes tested.  In particular, the larger the fleet, the bigger the gap between the 

performances of the two strategies. For a fleet of 10 mid-sized vehicles, empty time for 

the single-vehicle strategy is almost double (60%) that of the dispatching strategy 

(35%). Increasing the number of vehicles results in higher empty times for both 

strategies, therefore leading to higher empty mileages, and hence higher operating costs. 

In addition, going from 10 to 40 vehicles, the values of the flow-capacity ratios for the 

two assignment strategies decrease and become increasingly close.  

Figure 6.b confirms the results observed in Figure 6.a for 30-seat vehicles. It 

shows, however, that the gap between the two strategies in terms of empty time 

increases with fleet size, rising from 5% for 10 vehicles to 40% for 30 vehicles. 

Moreover, opting for high-capacity vehicles decreases the flow-capacity ratio 

significantly by comparison with mid-sized vehicle scenarios. 



Figure 6.c and 6.d present operational results for different levels of market 

penetration by fixing the fleet size at 40 vehicles. They show that increasing demand 

results in higher flow-capacity ratios and lower empty times. In particular, with lower 

demand levels, the two strategies produce almost the same operational performances. 

When demand grows, however, the dispatching strategy becomes more efficient. For 

instance, Figure 6.d shows that including the dispatcher reduces empty time by about 

25% when demand increases from between 300 to 900 passengers (i.e. for a multiplier 

of 0.5 and 1.5 respectively). The figures prove in addition that the greater the vehicle 

capacity, the lower the flow-capacity ratio and the bigger the gap between the two 

strategies.   

7.2. Quality of service performances 

Quality of service is measured by waiting time. Figure 7 depicts the maximum 

and average waiting times for different scenarios.  

Figure 7 Quality of service with tests on operating condition and demand level 



Figure 7.a shows that increasing the fleet size improves the quality of service on 

both services. The comparison between the performance of dispatching and single-

vehicle strategies confirms the findings of the operational analysis. However, the 

performance outcomes improve much faster in the case of dispatching. The 

coordination between vehicles appears more efficient when the number of vehicles 

increased. In particular, for a 40-vehicle scenario, the maximum waiting time with a 

single-vehicle strategy is 35 minutes, as compared with 20 minutes with a dispatcher. 

The average waiting time gain with dispatching varies by only some 10-20%, while the 

maximum waiting time benefit can be close to 90%. Increasing vehicle capacity (Figure 

7.b) has little impact for the single-vehicle strategy, whereas the gain is around 20% for 

the dispatching strategy.  

In term of demand sensitivity (Figure 7.c and Figure 7.d), having a fixed number 

of service vehicles reduces sensitivity to demand variation. The single-vehicle strategy 

is more sensitive, ranging with 5-seat vehicles from -40% for a 0.5 ratio to +30% for a 

1.5 demand ratio, while dispatching varies from -20% to +20%. Obviously, 30-seat 

vehicles provide a more robust service, and the performance is the same as 5-seat 

vehicles for a 0.5 demand ratio but significantly better for a 1.5 ratio, -30% for average 

waiting time with dispatching or -15% for the single-vehicle strategy. When demand is 

halved, some vehicles are almost unused, travelling less than 5 km, while other vehicles 

travel an average of 25 km.  

 Another major finding from Figure 7 is that the assignment strategy does not 

have a highly significant impact on average waiting time. The gap, widens, however, 

when demand increases with a fixed fleet size, and when the fleet size decreases for a 

given fixed demand volume.  



7.3.Running time 

In this case study, our model is run by a Matlab program. For the single vehicle service, 

each hour of simulation takes 10 seconds, and 20 simulations were run for each 

scenario. The step time is 1 minute and the strategy calculation module is run every 

minute. Initial loading in terms of cars and users is included in the simulation. All 

vehicles start from the same station at the beginning of the simulation. The solution runs 

for between 30 seconds and 2 minutes, depending on the number of vehicles. The step 

time value has to be calibrated to two opposing phenomena: a shorter interval limits 

demand size and hence strategy space, meaning that vehicles are poorly optimised; on 

the other hand, a large interval increases user waiting time and restricts passenger 

information. 

 

Conclusion  

We described two theoretical models of dynamic ridesharing strategies in the 

context of a station network. These models are original in that they adopt a vehicle-

centred approach that integrates user preferences into the utility function, with the result 

that optimisation can be comprehensively resolved through demand aggregated by 

origin-destination pair. In the first solution, the strategy decision is vehicle centred, 

while in the second, available vehicle options are shared via a central dispatcher. The 

model provides a primary framework for the testing of potential improvements. By 

choosing a station-based network, the demand is aggregated in specific points, hence 

avoiding an unjustified increase of the number of intermediate stops.  

A real case study illustrates the simplification of a real fleet size adjustment with 

evaluation by performance indicators for both solutions. Dispatcher based vehicle 

assignment is clearly beneficial for users and operators but restrictive for drivers. In 



addition, the initial results show that a service with large-capacity vehicles is less 

efficient than a fleet of 5-seat vehicles, even in a network with high demand and limited 

station numbers. With a sufficient number of vehicles, an acceptable maximal waiting 

time value is achieved. If the only consideration in the utility function is waiting time, 

the maximum waiting time is 15 minutes. 

There are, however, some limitations of this research work. One major 

limitation is the absence of detours in our first approach, mainly for reasons of 

optimisation of complexity. The possibility of detours introduces in addition 

uncertainties regarding both travel time and user waiting time. They also involve an 

increase of the number of intermediate stops, leading then to an exponential rise in the 

complexity of the calculation. Another major limitation is the estimation of the travel 

time while considering real operational condition such as the register time, the 

dispatcher response time and the waiting time. Another way in which the model could 

be developed would be to incorporate stochastic vehicle travel time to reflect traffic 

congestion. The model should also provide users with a predicted maximum waiting 

time. In addition, sensitivity analysis of the waiting time parameters is required.  

Last but not least, much of the current research uses big-city case studies, where the 

optimisation algorithms achieve an approximate match between users and vehicles, 

though falling short of the absolute optimum solution. On a small network, our 

aggregated demand approach enables us to achieve a precise optimum. In our future 

work, for large networks, compromises will need to be found between authorising 

detours and achieving optimum solutions (Agatz, et al., 2012). In addition, recoding our 

algorithm in a powerful programming language such as C++ would make it possible to 

enlarge the network. 



In addition to recommendations mentioned above, future studies will need to 

investigate stations design issues. The location of stations would affect the 

performances of the service. Also, the capacity of stations would have impact on 

boarding/ alighting times, inducing perhaps significant extra-times. Therefore, deeper 

studies on operational design of stations according to the volume of the current demand 

and to the number of vehicles will improve the model and opens a new research field.  

Finally, a standard DIAL a ride solution is competitive in a large network with 

low demand (Agatz, et al., 2012) while the present model operates in a structured 

network with high demand aggregated in a limited number of stations. This model of 

vehicles in a station network on shared roads can then be applied to various scenarios. 

Some public transport authorities such as Île de France Mobilité are thinking about an 

autonomous vehicle network connecting territories to metropolitan stations in place of a 

bus transit system. With calculated itineraries, such transport systems could run with 

autonomous vehicles replacing drivers. A socio-economic assessment will help to 

decide whether this kind of service would replace a bus transit system with complex 

origin-destination links. An in-depth economic analysis could compare the scenarios in 

terms of cost to users and operators and from a social perspective.  Other possibilities 

that could be explored are user fare balancing, operating costs and benefits in term of air 

pollution, or benefits in accessibility. To sum up, this research could be considered as a 

starting point that compares technical performances of high capacity vehicles as buses 

and micro-transit services and mid-sized cars. 
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