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Polyepoxy samples are synthesized from diglycidylether of bisphenol A (DGEBA) and ethylene diamine (EDA) monomers at a
stoichiometric ratio of 2 DGEBA : 1 EDA in model conditions in order to promote a high degree of polymerization and a low
density of defects and to try to approach the ideal models obtained by simulation. A slow polymerization (>24 h at ambient
temperature) and a postcuring achieved in an inert atmosphere lead to a conversion degree of 92 ± 2% and a midpoint glass
transition temperature of 391 ± 1K. In parallel, a model is created with a multistep cross-linking procedure. In this work,
all-atom molecular dynamics (MD) simulations are performed with LAMMPS and the GAFF 1.8 force field. In the initial liquid
mixture of reactants (600 molecules), proper mixing is demonstrated by the calculation of the partial radial distribution
functions (RDF), which show a minimum intermolecular distance of 2.8 Å and similar distributions for EDA-EDA,
DGEBA-DGEBA, and DGEBA-EDA molecules in the simulation boxes. Then, in alternation with MD equilibrations,
cross-linking is performed on frozen configurations by creating covalent bonds between reactive pairs within a reaction radius
of 3Å. The resulting boxes show conversion rates of 90-93% and densities close to the experimental value. Finally, a cooling
ramp from 700K to 25K is applied in order to monitor the specific volume and the coefficient of volumetric thermal expansion
(CVTE) of the polymer and to derive the glass transition temperature. Experimental thermomechanical analyses (TMA)
compares well with simulations for both the specific volume and the CVTE evolutions with temperature. Whereas the
uncertainty remains high with the fitting procedure used, we calculate a glass transition temperature of 390 ± 8K which
compares very well with the experimental values (391 ± 1K from DSC and 380K from TMA).

1. Introduction

One of the great challenges in computational chemistry is to
derive the physical, mechanical, and thermodynamic proper-
ties of solids and especially of polymers. In recent years, poly-
mers have been implemented in a variety of applications,
from medicine to space industries [1–5]. Therefore, it is of
great importance to investigate their network structures and
properties in order to engineer their bulk and surface proper-
ties efficiently.

Thermosetting polymers of the polyepoxy family are
widely used in applications in the areas of aeronautics and
space, luxury, and sports. They exhibit superior thermal
and mechanical properties when compared to other poly-
mers, and thus are used as the matrix in composite materials

(e.g., carbon fiber/epoxy). Unfortunately, such composites
lack a variety of properties desirable for many components,
such as electrical and thermal conductivities. Surface functio-
nalization through metallization is then necessary, but it still
represents a challenge [6, 7]. A better knowledge of polye-
poxy surfaces would be a first step towards the understanding
of surface phenomena occurring during metallization.

The first step before the development of a surface model
is to obtain a bulk polyepoxy polymer model cross-linked in a
simulated chemical process. Molecular dynamics (MD) has
proven its ability to achieve thermodynamically accurate
bulk epoxy models and to derive thermodynamic and struc-
tural properties. To obtain the bulk models, cross-linking
processes that have been used computationally can be classi-
fied into two categories:
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(1) Cross-linking and Monte-Carlo or molecular
dynamics simulations using a coarse-grained model
and then conversion back to the original atomistic
description [8–11]

(2) Starting with a stoichiometric mixture of the epoxy
monomer and the hardener and then “polymeriz-
ing” the mixture in conjunction with atomistic
molecular dynamics (MD) simulations. This method
has also proven effective for complex cross-linking
reactions [12]

The most extensive research effort is found in the polye-
poxy systems EPON 862 resin cross-linked with diethyltolue-
nediamine (DETDA) [13–16] and triethylenetetramine
(TETA) [17–20] because of their wide use in the fields of
modern aeronautics and composite materials and their use
in the development of micro- and nanodevices with desired
properties. The cross-linking of the diglycidyl ether of
bisphenol-A (DGEBA) resin was also widely studied with
different hardeners, i.e., isophorone diamine (IPD) [21, 22],
trimethylene glycol di-p-aminobenzoate (TMAB) [23],
DETDA [24], diaminodiphenyl sulfone (DDS) [9], methy-
lenedianiline [25], poly(oxopropylene) diamines (POP) [26,
27], 4,4′-methylenebis(cyclohexylamine) (MCA) [26], diethy-
lenetriamine (DETA) [28], and JEFFAMINE® D-230 [29].

In the present work, we use atomistic MD and a static
cross-linking code to create a model polyepoxy from the
epoxy resin diglycidyl ether of bisphenol-A (DGEBA) and
ethylenediamine (EDA).

We have been studying this model system in the last few
years because the monomers are small and suitable for model
experiments and ab initio calculations [30, 31], but yet close
to real materials used in the industry. To generate atomistic
model configurations, we have developed a cross-linking
procedure based on the works of Jang et al. [27] and Sirk
et al. [32]. Molecular dynamics simulations at 700K are used
in order to mix efficiently and relax the strain in the simula-
tion boxes and thus achieve the maximum percentage of
polymerization starting from a stoichiometric mixture of
DGEBA and EDA (2 : 1). The thermal properties of the
model polyepoxy are characterized by the determination of
the density, the coefficient of volumetric thermal expansion,
and the glass transition temperature (Tg) of the polymer,
which are compared to experimental data.

2. Methods

2.1. Experimental Details. The chemical structures of the
epoxy monomer (DGEBA) and the hardener (the primary
diamine EDA) are shown in Figure 1 (reactants 1 and 2),
along with a few polyaddition steps of the polymerization
reaction. DGEBA is a bifunctional reactant with two epoxide
groups, while EDA has four reactive sites with two primary
amine groups. Thus, the stoichiometry ratio of DGE-
BA : EDA is 2 : 1. The polymerization consists in the reaction
of the H atoms of the amine groups of EDA with the O atoms
of the epoxide groups of DGEBA and the bonding of the N
atoms of the amine group with the C atoms of the epoxide

groups. We assume that the homopolymerization is negli-
gible in the present conditions of temperature and in the
absence of a catalyst.

We use the stoichiometric ratio of DGEBA (D.E.R. 332,
Dow Chemical Co., n = 0 03) and EDA (Analytical Grade,
purity> 99.5%, Sigma-Aldrich). Since the mass of DGEBA
(mDGEBA) is fixed to 5 g, the mass of EDA (mEDA) is deter-
mined as follows:

mEDA =
f DGEBA
f EDA

×
MEDA ×mDGEBA

MDGEBA
= 0 43g, 1

where MDGEBA is the molar mass (348.52 g/mol) of this
DGEBA and f DGEBA is its functionality (2), and MEDA is the
molar mass (60.10 g/mol) of EDA and f EDA is its functional-
ity (4). We assume that no etherification occurs. The DGEBA
resin has a density of 1.170 g/cm3, and the onset of its glass
transition temperature determined by differential scanning
calorimetry equals 231K. EDA is a liquid amine with a den-
sity of 0.897 g/cm3.

The mixture is then mechanically stirred in an Ar glove
box for 7min before it is poured as a thin droplet on Si cou-
pons. Polymerization is then allowed for 48 h at ambient
temperature, followed by a postcuring of 2 h at 413K, either
in the Ar glovebox, in ambient atmosphere, or in a primary
vacuum (with a short air exposure in this latter case).

Fourier transform infrared spectroscopy (FTIR, Frontier,
PerkinElmer equipped with a NIR TGS detector) is achieved
in transmission in the 4000-8000 cm-1 range. 16 scans are
collected for each analysis with a resolution of 4 cm-1. Back-
ground spectra are performed on the two empty microscope
glass slides used for maintaining the polyepoxy samples. The
decrease in the IR normalized band intensity of epoxy groups
is directly proportional to the increase of conversion degree.
We quantify the characteristic epoxy band (combination
band of the –CH2 of the epoxy group) at 4530 cm

-1. The ref-
erence band (i.e., the band conserving the same area during
the chemical reaction of polymerization) is the combination
band of C=C with aromatic –CH at 4623 cm-1 [33]. Peak
areas are then used for calculating the conversion degree
(Xe,NIR) of epoxy groups:

Xe,NIR = 1 −
Aepoxy/Areference t

Aepoxy/Areference t=0

2

The terms Aepoxy and Areference refer to the areas of the
peaks of the epoxy and reference groups, respectively (i.e.,
Aepoxy = A4530 and Aref = A4623).

Differential scanning calorimetry (DSC) is used for the
determination of the glass transition temperature (Tg). We
use a DSC 204 Phoenix Series (NETZSCH) coupled with a
TASC 414/4 controller. The apparatus is calibrated against
melting temperatures of In, Hg, Sn, Bi, and Zn, applying a
+10 deg/min temperature ramp. Samples are placed in alumi-
num capsules. Mass is measured with an accuracy of ±0.1mg.
We report and compare the midpoint Tg temperatures.
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In addition, thermomechanical analyses (TMA) are
performed on a cubic 3 7 × 3 7 × 3 7mm3 sample with a
NETZSCH TMA 402 F3 apparatus. 3 cycles are executed
consecutively from 134K to 485K with a heating ramp
of +5 deg/min. During the first cycle, the sample is heated
up and maintained at 485K for 1 h before cooling. This is
intended to erase the thermal history of the sample. The
other two cycles include a 15min plateau only at maxi-
mum temperature.

2.2. Computational Details. The generalized AMBER force
field (GAFF 1.8) [34] is used to describe the intra- and
intermolecular interactions. Any missing force field param-
eters are determined using the AmberTools16 package [35].
The energy minimizations and molecular dynamics calcula-
tions are carried out using the LAMMPS simulation pack-
age [36]. The atomic charges on all atoms were calculated
with the RESP method [37], applied to monomers, dimers
(1 DGEBA bonded to 1 EDA), and trimers (2 DGEBA
bonded to 1 EDA) in order to get charges for all atom
types present during the cross-linking procedure and in
the final polyepoxy. The particle particle particle mesh
(PPPM) algorithm [38] is used to calculate the coulombic
interactions with a real-space cutoff of 9Å. A cutoff dis-
tance of 9Å (with the buffer of 2Å) is also used for the
van der Waals interactions.

The velocity-Verlet integrator [39] is used to integrate the
equations of motion using a time step of 1 fs. The tempera-
ture and pressure are controlled using the Nosé-Hoover ther-
mostat [40] and barostat [35].

The first step of our methodology is to generate a “mix-
ture of reactants” containing the stoichiometric amounts of
DGEBA and EDA. In order to approximate a correct repre-
sentation of a bulk polyepoxy, we build a cubic box which
contains 400 DGEBA and 200 EDA molecules at a density
fixed at 0.7 g/cm3 using PACKMOL [41] and the amorphous
buildermodule included in theMaterials Studio package [42].

The process of obtaining a polymer from the initial
monomer mixture involves the cross-linking of monomers.
To that aim, we developed a homemade code (FORTRAN
90) based on the works of Jang et al. [27] and Sirk et al.
[32]. This multistep cross-linking process is presented in
Figure 2. MD simulations are performed at 700K between
two cross-linking steps in order to relax the structures and
decrease local strain. In complement, two runs are performed
at the experimental curing temperature (413K) and at high
temperature (900K).

The multistep cross-linking process sketched in Figure 2
consists in the following steps:

(1) Packing of the reactants (stoichiometric mixture:
400 DGEBA and 200 EDA molecules) in a box of
predefined density (0.7 g/cm3)

(2) NVE MD simulation (constant number of atoms,
volume, and energy) for 1 ns, followed by NPT
simulation (constant number of atoms, pressure,
and temperature) for 1 ns, at a pressure P = 1 atm
and at a temperature T = 700K to equilibrate the
initial monomer mixture
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Figure 1: A few steps of the polymerization reaction between one EDA (1) and one DGEBA (2) monomer (a), leading to the final cross-linked
structure (b).
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(3+4) Pairs of unreacted atoms are identified within a
search reaction cutoff distance of 3Å. To
cross-link these atoms, the identities (IDs) of mod-
ified atoms are changed. The topology file is
updated. New angles, dihedrals, and RESP charges
that result from the creation of the new
cross-linked bonds are assigned

(5) MD simulations (1 ns) in NVE, NVT, and NPT
(700K, 1 atm) ensembles are performed; the tem-
perature is fixed at 700K, which is far above the
glass transition temperature Tg of the polymer
determined experimentally (391K), thus allowing
some mobility of the chains to obtain a relaxed
structure

The sequence of (3 + 4 + 5) steps is repeated until no
change in the conversion degree is observed between two
sequences. The maximal conversion degree is then obtained.

(6) An NPT MD simulation at 700K for 2 ns is per-
formed on the final reticulated simulation box,
followed by stepwise cooling to 300K to get relaxed
structures and density of the polyepoxy model at
300K. More details on the cooling process are given
below in Section 3.2.4 where results on the
volume-temperature behavior of the polymer are
presented

It is noted that the cross-linking algorithm outlined
above is not intended to mimic the actual polymerization
reaction kinetics, as conducted in the laboratory. Experimen-
tally, curing is carried out at temperatures of 140°C (413K)
over much longer times than can be accessed by atomistic
MD simulation. Our choice of 700K, a temperature actually

exceeding the thermal decomposition temperature of ordi-
nary cured epoxy resins, is motivated by the need to bring
about a vigorous configurational rearrangement within the
time spans of tens of nanoseconds that can be simulated
atomistically with MD and thus push unreacted reactive
groups to come together, leading to a degree of conversion
comparable to that obtained experimentally. Our use of such
a high temperature also accelerates the process of relaxation
of the structure around a newly created N-C chemical bond.
The cutoff distance of 3Å used in the search of pairs of atoms
to be bonded by chemical reaction is another parameter of
the computational cross-linking procedure that does not
have a direct chemical counterpart. It will thus be an interest-
ing question whether the structural, volumetric, and thermal
properties of the resulting cross-linked polymer match those
obtained experimentally.

3. Results

3.1. Experimental Results. We perform experimental tests in
different postcuring conditions with the aim to maximize
the conversion degree. Each test is repeated five times. The
results are summarized in Table 1, where the conversion
degrees are derived from FTIR analyses.

Under noninert conditions, the conversion degree is
low at70 ± 6%. It is improved under vacuum with a con-
version degree of 84 ± 4%. However, the postcuring in
the Ar glovebox ensures the highest conversion degree
of 92 ± 2% and the repeatability is excellent. These results
are in agreement with previous results with the
DGEBA-EDA system [30].

We determine the glass transition temperature by DSC.
The midpoint temperature is 391 ± 1K, in good agreement
with values reported elsewhere [43, 44].

Start (1) Initial liquid mixture of unreacted
monomers 

(2) Equilibration of structure using
NVE and NPT MD simulations 

Still unreacted
pairs within

search radius?

(3) Change IDs of modified
atoms

(4) Assign new angles,
dihedrals, and partial

charges

(5) Equilibration using
NVE, NVT, and NPT MD

simulations

N

Y

(6) Equilibration
using NPT MD

simulations
End

Figure 2: The multistep cross-linking flowchart.
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3.2. Simulations. Six simulation boxes (Box#1-6) are created,
and the multistep cross-linking procedure outlined above is
used to get polymerized model samples. Average values of
the polymer properties are then calculated.

3.2.1. DGEBA and EDA Liquid Mixture. Boxes of 600 mole-
cules (400DGEBA + 200 EDA) containing 22,000 atoms are
equilibrated performing NVE and NPT (700K, 1 atm) simu-
lations for 1 ns. The final density of the reaction mixture is
0 798 ± 0 005 g/cm3 at 700K. Then, the identities of one O
atom of DGEBA and one N atom of EDA are changed in
the topology file in LAMMPS. This permits calculating par-
tial RDF functions of O atoms of different DGEBA molecules
and N atoms of different EDA molecules. Therefore, we can
calculate the ODGEBA-ODGEBA, NEDA-NEDA, and ODGEBA--
NEDA distributions. The partial RDFs averaged over the 6
boxes are shown in Figure 3 and they help in determining if
the mixture is homogeneous.

We first observe that there are no intermolecular dis-
tances below 2.8Å. Then, except for differences between
RDF amplitudes, distributions are similar and oscillate
around g r = 1 (dotted line), corresponding to a homoge-
neous distribution. This point is important to ensure that
epoxide groups are in the vicinity of amine groups to pro-
mote cross-linking and mimic the effect of the experimental
mechanical stirring. We also note that the highest amplitude
of the partial RDFs is when EDAmolecules are present, likely
because of the rather high temperature for the amine.

3.2.2. Polymerization Procedure. Five boxes are generated
and equilibrated as mentioned above. All boxes are then
polymerized with the multistep procedure achieved at
700K as described in Figure 2, and the conversion degree
(number of created -OH over the total number of epoxy
groups: NOH/2NDGEBA) is calculated at each step and plotted
in Figure 4. We observe that final conversion degrees are all
above 90% after 11 steps. In the most promising cases, we
obtain a conversion degree of 93%. The mobility of the
remaining molecules or the steric availability of the remain-
ing reactive sites is too low at these polymerization rates to
promote further cross-linking. We also tried to maximize
the polymerization rate with an additional box equilibrated
in NVT and NPT at 900K, but without more success
(92%). This tends to show that the 93% limit will be difficult
to surpass with these simulation parameters. As a comple-
ment to our comment in the last paragraph of Section 2.2,
we show the results obtained with the multistep procedure
achieved at 413K; i.e., the temperature that is used experi-
mentally. A plateau is reached at about 70% conversion

(72% after 16 steps, not shown). This confirms that higher
temperatures must be chosen if one want to achieve high
conversion degrees for such short simulations times. Finally,
the first conversion degrees for given steps are different from
one box to another; for instance at step 2, the conversion
degree of Box#1 is 70%, whereas for Box#5 it is 48%. It is
noted that there was no noticeable difference between their
RDFs before polymerization. Box#1 was generated in PACK-
MOL, whereas Box#2-5 were generated with the randomiza-
tion algorithm of Materials Studio. Since randomization

Table 1: Results obtained by FTIR spectroscopy using different
experimental conditions for postcuring.

Sample Xe,NIR

Postcuring in ambient air 0 70 ± 0 06

Postcuring under vacuum (brief air transfer) 0 84 ± 0 04

Postcuring under Ar atmosphere 0 92 ± 0 02
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Figure 3: Partial DGEBA-DGEBA, EDA-EDA, and DGEBA-EDA
intermolecular RDF functions of the liquid mixture equilibrated at
700K and 1 atm, averaged over the 5 boxes. RDFs are calculated
between epoxy oxygen atoms of two different DGEBA molecules
(i and j), amine nitrogen atoms of two different EDA molecules
(i and j), and O and N atoms of DGEBA and EDA molecules.
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relies on Monte Carlo algorithms, each box distribution is
different and may take different trajectories during MD
equilibration. Anyway, it seems that whatever the initial
box configuration, the final conversion rates converge to
90% and a little more.

Box#4 is selected in its final configuration (conversion
degree = 93%) in order to analyze its bonded and nonbonded
RDF functions. Results are shown in Figure 5 along with a 3D
representation of the box in the inset. The minimum non-
bonded distances found in the polymer correspond to a peak
ranging from 2 to 3Å, i.e., the packing is dense as expected
for cross-linked epoxy networks, where the interchain dis-
tance is constrained by reticulation. The nonbonded RDF
rapidly reaches a value of 1 (between r = 3 5 to 5.5Å) that
demonstrates the homogeneity of the distribution of the
disordered structure.

On the bonded RDF in Figure 5, we identify 5 local max-
ima that correspond to first-neighbor distances. Labels 1 to 5
correspond to (1) O-H (0.96Å), (2) N-H (1.01Å), (3) C-H
(1.09Å), (4) Cph-Cph (1.39Å) and C-O (1.43Å), and (5)
C-C (1.54Å) bonds. Further peaks correspond to combina-
tions of first-neighbor distances, until the RDF homogenizes
above r = 3 5 − 5 5Å.

3.2.3. Density. The polymer density, calculated at 300K and
1 atm, is also in very good concordance with the literature.
We calculate a density of 1 118 ± 0 003 g/cm3, whereas the
value obtained through empirical calculations is 1.142 g/cm3.
This empirical density is calculated through the relationship
ρ = 350 + 120M (kg/m3), where M is the molecular weight
of the repeat unit [44, 45]. The value of M is representative
of the polyepoxy polymer based on the 2DGEBA : 1EDA
stoichiometry.

3.2.4. Glass Transition Temperature and Coefficient of
Volumetric Thermal Expansion. Experimentally, the TMA
analysis consists in the monitoring of the linear expansion
of the polyepoxy sample during a thermal cycle from 134K
to 485K. We then extrapolate the measured Δl/l into a volu-
mic Δv/v, considering an isotropic expansion. Then, we plot
the specific volume v (the inverse of the calculated density) as
a function of temperature. Results are shown with (black) full
circles in Figure 6. For calculations, we follow a protocol
based on the work of Sirk et al. [32]. First, the procedure con-
sists in heating the polymer at 700K for 2 ns and cooling it at
a rate of 25K/ns down to 25K (red, empty circles in
Figure 6). Two different regions are observed below and
above 400K, roughly, corresponding to the vitreous and rub-
bery states.

The determination of Tg is explained and involves the use
of the coefficient of volumetric thermal expansion (CVTE).

An elegant procedure to analyze the plots of Figure 6 con-
sists in distinguishing the glassy and rubbery temperature
domains. Actually, although there is a change in physical
properties during the glass transition, the structure evolves
through an undefined range of temperatures. Temperature
regions must then be identified to fit the linear regimes prop-
erly and to estimate Tg at the intersection. For that reason,

we plot the CVTE versus temperature in Figure 7 for both
the experimental and the calculation procedures.

CVTEs are calculated as follows:

CVTE = 1
v

∂v
∂T P

3

The term ∂v/∂T P is calculated using a finite-difference
method in Origin software.

Since glass transition is a second order transition, the
CVTE should show a smooth step separating two constant
regions. Figure 7(a) shows the results for 3 different simula-
tion boxes (empty circles) and for one TMA cycle (full black
circles). Figure 7(b) makes a focus on the 3 TMA cycles in
order to extract quantitative data more easily.

By simulation (Figure 7(a)), the glassy state region is
easily identified up to T = 275K and the dispersion between
the 3 v t datasets is small. There, the average CVTE varies
from 2 0 × 10−4 K−1 at 100K to 2 5 × 10−4 K−1 at 275K. At
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functions of Box#4 after polymerization. Labeled peaks in the
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bonds (3), Cph-Cph and C-O bonds (4), and C-C bonds (5). The
inset shows a 3D representation of the box.
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higher temperatures, the CVTE reaches 8 × 10−4 K−1 and
more, but the dispersion is high and no region can easily
be identified. Nevertheless, we tentatively place a second
limit at T = 450K. By doing so, we assume that all points
above 575K are not valid because they exceed known limits
for the CVTE of thermosets in the rubbery region, i.e., 4 ×
10−4 − 8 × 10−4 K−1 [45]. An additional trial has been made
to double-check the accuracy of the MD calculations at high
temperatures. We applied a cooling ramp of 5K/ns instead
of 25K/ns from 700 to 600K, in order to equilibrate the
box more smoothly (not shown). This did not improve the
results, neither for the linear fitting of v T nor for the
determination of a rubbery state plateau below 8 × 10−4
K−1. Consequences are that we can fit the simulated plot
in Figure 6 with a single linear regression calculated from
25K to 275K. Above, there are multiple possibilities for the
range of the linear regression, resulting in a high uncertainty
of ±8 degrees in the determination of Tg. With the linear fit-
tings proposed, we determine a simulated Tg of 390 ± 8K.

Experimentally (Figure 7(b)), the CVTE evolves linearly
in the glassy region from 0 9 × 10−4 K−1 at 134K to 2 0 ×
10−4 K−1 at 350K. In the transition region between 350K
and 405K, it increases drastically before reaching the rubbery
state, at an average value of 5 8 × 10−4 K−1. In Figure 6, linear
fittings are then executed between 134K and 350K and
between 405K and 485K. The experimental Tg obtained at
the intersection is thus 380K.

The simulation/experiment match is good. The experi-
mental and calculated CVTEs are similar in the glassy state
(1 − 2 × 10−4 and 2 × 10−4 K−1) and in the good range in the
rubbery state (5 8 × 10−4 and 8 × 10−4 K−1). The tempera-
ture domain for the transition state is much larger in the
simulations (175K) than in the experiments (55K), likely
because this polymer is not suitable for MD at temperatures
above 500K. This adds uncertainty to the determination of
the simulated glass transition. Nevertheless, the simulated
Tg (390 ± 8K) compares very well with both experimental
glass transition temperatures of 391 ± 1K measured by dif-
ferential scanning calorimetry and through TMA (380K).

This is a good result considering the t − T dependence of
the results. Actually, simulations are performed at cooling
rates (qsim = 4 17 × 108) that are 108 orders of magnitude
above that of TMA (qexp,TMA = 5 deg/min) and DSC
(qexp,DSC = 10 deg/min). A rearrangement of the Williams-
Landel-Ferry (WLF) equation (3), based on the t − T
superposition principle, can express the expected difference
between simulated and experimental Tg [46]:

ΔTg = Tg,sim − Tg,exp =
−C2 log qexp/qsim

C1 + log qexp/qsim
, 4

where C1 and C2 are the WLF equation parameters. Using
“universal” values (C1 = 17 44K and C2 = 51 6K), the
simulated Tg should be found 42.9K above the TMA one
and 40.0K above the DSC one. This is above what we
determine, and we may have to find more appropriate
WLF parameters. These parameters depend on the fraction
of free volume within the polymer and on the CVTE of
this free volume, and they may be related to the polymer
density. Since the matching between experimental and sim-
ulated densities is not perfect, there may be some level of
porosity within the experimental samples that slightly
modifies the CVTE vs. T behavior and then modifies the
determination of Tg,exp. Conversely, C1 and C2 values are
probably not correct for our system which is highly
cross-linked. For instance, in the DGEBA-TETA system,
if the cross-linking density is high, then the free volume
fraction is low (1.6-1.8%) and C1 equals 24-27 [47]. With
a lower functionality and a longer aliphatic chain, the more
flexible DGEBA-diaminomethylpentane system exhibits a
higher fraction of free volume (4.3%) and a lower C1 value
(10) [48]. ΔTg would then be much higher in the latter
example. Thus, C1 and C2 should be better determined
for the DGEBA-EDA system with a series of experiments
and/or calculations at different cooling rates, as it has been
done for other DGEBA-primary amine systems [49].
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Figure 7: Coefficients of volumetric thermal expansion (CVTE) as a function of temperature for 3 different initial mixtures (empty circles)
and for one TMA cycle (full circles) (a). Zoom on the TMA experimental results (b).
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4. Conclusions

In our effort to model epoxy polymers, we have created a bulk
polymer model starting from a stoichiometric liquid mixture
of the two reactants DGEBA and EDA, EDA being a small
liquid diamine molecule with a functionality of 4, similar
enough to amines used in the industry, such as DETA and
TETA. Six model structures were created through a stepwise
procedure. We developed a cross-linking code that identifies
any close reactive centers (reaction radius 3Å) and creates
bonds. The global polymerization procedure comprises also
all-atom molecular dynamics (GAFF 1.8 force field) equili-
bration steps alternating with cross-linking. For the first five
models, we performed 1ns-long 700K MD simulations
between two cross-linking steps. In the latter steps, the diffu-
sion of the monomers in the partially reticulated polymer
could limit the cross-linking of the remaining reactive sites.
To favor the diffusion of the monomers, we increased the
temperature of the MD simulations to 900K, but there was
no significant increase in the conversion degree that is finally
higher than 90% for the six boxes. Thanks to additional
molecular dynamics simulations, we were furthermore able
to equilibrate and calculate the properties for the liquid mix-
ture, as well as for those of the intermediate semipolymerized
phases and the final polymer model. The properties (the den-
sity and glass transition temperature) of the final polymer
model compare very well with experimental values, despite
the uncertainty of the fitting of the rubbery state temperature
region. Finally, the proposed bulk polyepoxy 3D-network is a
good model, in agreement with its experimental counterpart
showing the validity of the cross-linking procedure. Work is
in progress to propose a surface model that will be useful to
study the surface reactivity of epoxy polymers.
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