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Global Measures of Local Convective Instabilities

C. Cossu and J. M. Chomaz

LadHyX, CNRS UMR 156, Ecole Polytechnique, 91128 Palaiseau Cedex, France
(Received 4 March 1997

We examine the linear stability of the Ginzburg-Landau operator with spatially varying coefficients,
which mimics strongly nonparallel open flows such as wakes, jets, and boundary layers. The streamwise
non-normality of the global eigenmodes explains the observed large transient growths, classically
interpreted in terms of local convective instability. The use of pseudospectra provides an exact measure
of spatial amplification and aids in the determination of when entrance noise dominates the open-flow
dynamics. [S0031-9007(97)03331-0]

PACS numbers: 47.15.Fe, 47.20.-k, 47.27.Vf, 47.27.Wg

Wakes behind bluff bodies are known to present a Hopfaboratory frame, a convectively unstable flow will relax
bifurcation at a critical Reynolds number [1]. However, everywhere to the basic state as the transient is advected
before the threshold, while the flow globally stable, downstream. It will behave as a so-called spatial amplifier
wakes are also known to exhibit large transient growthg3] when spatially localized harmonic forcing is applied.
on impulsive perturbations and strong responses to smadih contrast, in an absolutely unstable flow, a transient will
harmonic forcing. This ability to behave as spatialinitially grow in place and then saturate, leading to self-
amplifiers has been interpreted in a Wentzel-Kramerssustained oscillations.

Brillouin-Jeffreys (WKBJ) framework (slowly varying Actual flows are not parallel since they evolve in the
wave approximation) and linked to the existence of astreamwise direction. In this case the exact stability
region where the flow idocally convectively unstable analysis is calleglobalasx is now an eigendirection, i.e.,
[2,3]. Local means that the instability is determined forthe x dependence of the eigenmode is unknown, rather
the parallel flow obtained by extending to infinity the than sinusoidal. When the basic flow varies on a slow
velocity profile that exists at the streamwise locationspatial scal&X = ex with e < 1, the concepts developed
x. The present paper, extending a work by Reddy andor parallel flows apply locally at each statioh. The
Trefethen [4], proposes an alternative interpretation baseobjective of recent theoretical efforts is to establish a re-
on the non-normality of the global modes associated withationship between local and global instability properties.
the loss of Galilean invariance and.of— —x symmetry. On the one hand, self-sustained resonances are well un-
Concepts developed for non-normal operators such as therstood from both local and global points of view. In
norm of the evolution operator and the pseudospectrumarticular, the existence of a finite region of local absolute
[5,6] provide practical tools for quantifying the amplifying instability has been shown, using a WKBJ approximation
behavior of weakly or strongly nonparallel flows. These(s < 1), to be necessary for global instability [11,12].
concepts apply to wakes or dynamo wave [7] belowThese mathematical results justify the physical interpre-
criticality as well as to mixing layers, boundary layers, tation that a self-sustained oscillation may occur through
or jets up to arbitrarily high Reynolds number, sincea purely hydrodynamic feedback loop consisting of two
these locally convectively unstable flows never becoménstability waves propagating downstream and upstream
globally unstable. The same ideas are also valid whem the absolutely unstable region. On the other hand, the
the instability breaks the — —x symmetry, as in binary transient amplifying behavior of locally unstable but glob-
convection [8] or nonlinear optics [9]. ally stable nonparallel flows has only received a local in-

The concept of absolute and convective instability wagerpretation: “the flow can be thought of as a collection
originally introduced in plasma physics [10] and hasof spatially evolving vortical instability waves of different
been successfully applied to understanding parallel operfrequencies traveling in the downstream direction” [11].
flow dynamics [3]. It applies only to parallel flows, The purpose of the present study is to develop the global
i.e., flows invariant under translation in the streamwisepoint of view associated with this transient amplifier be-
direction x. The criterion used to discriminate betweenhavior. In the global approach the flow will be thought
absolute and convective instability is based on the lineaof as a collection of initially excited non-normal global
impulse response: i.e., the Green functiGfx, 7), in the  modes whose amplitudes decrease in time but whose su-
“laboratory” frame singled out by boundary conditions. perposition produces a wave packet initially growing in
The instability isabsolutewhen G(x, t) becomes infinite time and moving in space as the relative phases of the
with time at any fixed locatiorr in that particular frame modes vary.
andconvectivevhenG(x, r) goes to zero in that particular ~ To llustrate these ideas, the linearized Ginzburg-
frame and to infinity in a different Galilean frame. In the Landau equation is considered. This equation describes
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the wave amplitude in a bifurcating spatially extendedanalysis we use Hunt's solution [16] to the nonparallel
system and has been considered to model the transition pfoblem d,G — L G = 6(x — 5)6(¢) governing the re-
closed [13] as well as open [14] fluid dynamical systemssponseG(x, s; t) to an impulse applied at the locatiorat

It has been generalized [11] to include spatially varyingtime ¢t = 0. This nonparallel Green function is
coefficients that model nonparallel flows. The linear N 2 2

evolution of the amplituded(x, r) about the basic state Glx,5:1) = ct(H @) explea(t) (7 + 57) + c3(0)xs

A = 0 is governed by + Ux — 5)/29),
3A=LA=-UjA + ,LL(X)A + v9nA, (1) (5)

with U the mean advection velocityu(x) the local  with ¢,() = [h/my sinb(ht)]V2 expl(pmo — U?/4v)t},
blfurgqtlon parameter, angs = 1 + icy thg_ diffusion g the Heaviside function;,(r) = —(h/4y) coth(ht), and
coefficient U, u, ¢, real). Boundary conditions on (1) ¢,(s) = (h/2vy)[coth(ht) — tanh(ht/2)]. Following [6],

areA fini.te forx = Zoo. _ the transient growth may be estimated by the norm of the
Equation (1) governs the evolution of small perturba-eyolution operatoe<",

tions A to a nonparallel flow characterized by the function
w(x). If u(x) is constant, the flow is stable fqr < 0, leZll = sup llef!Aoll, (6)
convectively unstable fod < u < u, with ll4oll=1

which quantifies the maximum amplification over all nor-

— 772 2
o= U/Aly I, (2) malized initial conditionsAy(x) of the solution to Eq. (1)
and absolutely unstable jif > u,. at time 12 A(x,1) = (e“'A¢) (x,1). This operator norm
From now on we consider quadratic Variatiqmsc) = dependS on the choice of function norm on the right—hand

wo + wax?/2, with uy < 0. For a global bifurcation Side of Eq. (6). Rather than the energy,X norm, we
parameteru, < 0 the flow is locally stable everywhere. choosel.., which measures the amplification of maximum
A finite domain of local convective instability appears @mplitude overr, and which is more suitable for describ-
for 0 < wo < m;, and for uy > u, the flow becomes ing highly inhomogeneous transients. However, we have
absolutely unstable in a portion of this domaip, plays yerlfled systematically that this choice has no qualltatlve
the role ofe in defining the spatial scale over which the impact on our results. The.. norm of the evolution op-
flow is nonparallel. Whenu, # 0, Eq. (1) becomes a erator can be computed analytically by writidgx, r) =
global stability problem, solved in [15], with eigenvalues (¢X"A0) (x,1) = [Z.. G(x,s;)Ao(s) ds, where G is the

and eigenfunctions given by Green’s function given in Eq. (5), and maximizing over
Ao,
A = po = (U*/4y) = (n + 1/2)h, o
(3) lef!ll. = sup |G(x,s;1)| ds
bu(x) = exp{(U/2y)x — x*x*/2}H,(xx), e
with h = =2y, x = (/29" n=0,1,2,..., = lerl) —=
and H, the nth Hermite polynomial. The eigenfunction c2, (1) 5
basis is orthogonal, i.e., the operatfr is normal, only % exr( v ) 7)
whenU = 0 or u» = 0. WhenU and u, are nonzero, 4y Ples (1) = 2¢0,(0)])

L is non-normal. The global stability is determined by here ¢,,(r) and c3,(r) denote the real parts of the
the sign of the real part of the leading eigenvalde The  fynctionsc,(r) ande; ().

system is globally unstable jio > . with Figure 1 shows the time evolutio? péL || for various
_ values of ug. By definition (6),|le* || = 1 for + = 0.
pe = t 1h/2]cod(Arey)/2] @ Large-time expansion of (7) givelfeL’|| ~ exp{(uo —
A portion of the flow is absolutely unstable [11,16] when u.)t} which grows exponentially whemy > u., i.e.,
no exceedsu., sinceu. > w;. The “parallel flow” limit ~ when the system is globally unstable (curge When
w> = 0is singular. Foru, finite, the parameter value,  wo = we, llef!|| saturates (curvel). When uo < w.,
at which the global bifurcation occurs is bounded awaylle’|| decays at large times (curvasb, c) but presents a
from zero sinceu. > u; > 0, whereas whem, = 0the transient growth only whep, > 0, i.e., when the system
bifurcation takes place foxy = 0. is locally unstable (curve). For the present moderate
This singular limit is associated with the fact that, for value of u,, i.e., strong nonparallelism, it is surprising
0 < uo < u,;, the smallem,, the longer and stronger are that the local instability still has physical implications and
the initial transients as demonstrated by numerical simuinduces extremely large transient growth exceedifg
lation [11,15]. From the local point of view, compact for u¢ close tow.. We define the total growth as the
perturbations will initially grow as if the flow were paral- maximum of the curvéle’!|| (Fig. 1),
lel and will start decreasing when they move away from _ L1
the unstable region. To confirm this intuition by a global M(po, 2, U, y) = ?;I]O”e I (8)
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‘‘‘‘‘‘‘ T stable flow, independent of its degree of nonparallelism.
101 | e e - Similarly, we now wish to characterize the noise ampli-

L

fying behavior of globally stable open flows using the re-
cently popularized tools of non-normal operators ([6] and
references therein). The response of the flow to a forcing
term —f(x)e?" is A = A(x)e”" where[L — cJ]JA = f
ando is complex ( is the identity operator). This prob-
lem is formally solved by introducing the resolvent op-
eratorR(o) = [L — oI]!, so thatA = R(o)f. The
resolvent norm||R(o)|| = SURf=1 IR(o)f] is infinite

on the spectrum off . When £ is normal,||R(o)|| de-
cays strongly with the distance betweenand the spec-
trum of L (the decay is inversely proportional to this dis-

10°

llexp {£t}]

FIG. 1. Norm of the evolution operatdfe£||.. versus time

for u»=-0.1, y=1—1i, U=6, and curvea u, <0, tance if the energy norm is used). The decay may no
curveb uy = 0, curvec 0 < wo < u., curved po = u., and  longer be strong when the operator is non-normal and
curvee wo = fhe. [IR(o)|| may then retain extremely large values even far

from the spectrum.||R(o)|| is related to the pseudospec-
Figure 2 presents the contours #f in the (ug, mz)  trum which has been the focus of much recent interest
space for the same parameters as Fig. 1. In the glol6]: the e pseudospectrum of is the set ofo such that
ally unstable (dark gray) region of the parameter spacéR(o)ll = €.
[mo = me(ua, U, y)], M is infinite. In the globally sta- Figure 3 presents numerical computations [17] of the
ble region,M is finite. Foru, > 0, M diverges asu, boundaries of the pseudospectra of the operatofor
goes to zero, indicating that the parallel flow limit is sin- #0 = 0, i.e., contours of the resolvent norffR(o)l|.
gular. For small but finitew,, we haveM > 1 if a Two cases are considered: a highly nonparallel flow
locally unstable region is present in the flowo(> 0), [Fig. 3(a)] with u, = —0.1 and a weakly nonparallel
whereas we have/ = 1 when the flow is everywhere flow [Fig. 3(b)] with o = —0.001. The spectrumA,)
locally stable 1o < 0). From Fig. 2, for strongly non- is also plotted on Fig. 3 as a set of crosses. In the
parallel flows (largeu,) the evolution ofM follows only  highly nonparallel case of Fig. 3(a), the rightmost point
broadly the local instability criteria. However, it is re- of the [IR(a)ll = 10° contour is close to the rightmost
markable that, foru, as large as—0.1, a 10° transient  Cross, i.e., the leading eigenvalug. In contrast, in the
growth in amplitude may be experienced by the perturbaweakly nonparallel case of Fig. 3(b), th&(o)ll = 10°
tion although the flow is globally stable. Therefore wecontour is far from the spectrum. This shows that
claim that the quantity¥ (which is global and does not becomes increasinglypon-normalas the flow becomes
depend on the WKBJ approximation) quantifies the tranmore parallel(x, small). Once again, the limjz, = 0

sient amplifying behavior of a locally convectively un- is singular. Whenu, — 0, the resolvent normiR (o)l
tends to infinity exponentially withl/|u,| for all o

inside a critical curve [the dashed curves in Figs. 3(a) and
3(b)]. This critical curve is the (continuous) spectrum
of L for w, =0, i.e., the temporal branch for the
instability of the parallel flow. In other words, as
u2 — 0, an e-pseudospectrum boundary far small
approaches the spectrum of for w, = 0, whereas
the spectrum itself does not. Similar behavior was
observed in [4] for a convection-diffusion operator on an
interval. The pseudospectrum (but not the spectrum) for
the inhomogeneous system—our nonparallel flow, and
the finite interval of [4]—approaches the spectrum of the
homogeneous system—our parallel flow and the infinite
line of [4]. However, this behavior was not interpreted in
terms of local instability.

The above discussion pertains to a single value of the
global bifurcation parametejy = 0. We now examine
) ) the effect of varyinguo. Although, in general, the
FIG. 2. Total growthM as a function ofuz and o With — yagolvent normi|R(o)|| depends in a complicated manner
y=1—-i, U=6. M =1 in the light gray (LS) region; .
M = = in the globally unstable (GU) region (dark gray) limited on the parameters of a problem, in our Cdb%(a)l_l can
by the u.(u2) curve. The contour levels arks, 2, 10, 102,  be obtained for any value qgf, merely by translatingr,
..., 10° (boldfaced solid),10'%, 10%°, 10%, 10%. via||R(o, wo)ll = |IR(e — wo,0)||. Hence Fig. 3 can be

4389




VOLUME 78, NUMBER 23 PHYSICAL REVIEW LETTERS 9 UNE 1997

quantify the receptivity (e.g., the ability to amplify external
perturbations) of locally unstable flows and may explain
why some globally stable flows are observed apparently
unperturbed (e.g., the wake of a circular cylinder forRe
47) and others always present irregular structures (mixing
layers or jets). A complete analysis of these hydrodynamic
instabilities should combine the effect of non-normality in
both cross-stream and streamwise directions. An ideal test
case for these combined effects could be a nonparallel (i.e.,
streamwise) perturbation of Poiseuille or Couette flows.
We greatly thank L. Tuckerman for her assistance
and helpful comments and G. Giolitti for stimulating
research by providing inspiring “gelati.” We acknowl-
edge the computational facilities provided by the Insti-
tut du Développement et des Ressources en Informatique
(IDRIS/CNRS) under Grant No. 9607/CP6.
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