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Abstract

We designed and realized a novel vibration energy harvester based on a P(VDF-

TrFE) membrane. The mechanical arrangement consists in an incompressible fluid

confined between two thin P(VDF-TrFE) piezoelectric membranes. It is called piezo-

electric hybrid fluid diaphragm (PHFD). Compared with conventional vibration har-

vester, this solution appears to be simple and suitable for miniaturization and inte-

gration. The fluid-structure interaction allows a drastic reduction of the resonant

frequency of the membrane whose mechanical tension is used to generate electri-

cal power. Consequently, the realization of compact generators for low frequencies

excitation (typically under 100 Hz) using membranes are possible. Moreover, non-

linear hardening behavior offers wideband capability. A theoretical model is estab-

lished and allows the performance of the generator to be estimated. A first prototype

has been fabricated and tested. The influence of the electric load,the amplitude and

the frequency of the excitation on the voltage and the generated power have been

investigated. A maximum output power of 158.33 µW per cubic centimeter of active

material was obtained at 119.56 Hz for 40 m/s2 amplitude acceleration.

Keywords: Vibration energy harvesting, Piezoelectric polymeric membrane,

Fluid-structure interaction
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Nomenclature

b Nonlinear stiffness, N/m3

C0 Capacitance, F

C j Constant

d Damping, N.s/m

d31 Piezoelectric coefficient, C/N

DB Flexural stiffness, N.m

DS Stretching stiffness, N/m

Dz Electric displacement, C/m2

~ei Coordinate system (i refer to subscript)

E Diaphragm Young modulus, Pa

Ei Energy (i refer to subscript), J

Ez Electric field, V/m

f Frequency, Hz

h Diaphragm thickness, m

H Fluid height, m

I , q̇ Current, A

k Linear stiffness, N/m

mmt Inertial mass, kg

mt f Moving fluid mass, kg

n Prestress stiffness, N/m

p Pressure, Pa

P Power, W

q Electrical charge, C

Q Quality factor

r Radial position, m

R Diaphragm radius, m

rl Load resistance,Ω

Ropti Optimal resistance,Ω

t Time, s

u, us0 Radial displacement, m

V Velocity, m/s

Vel ec Voltage, V

V̇el ec Voltage derivative, V/s

Vmec External velocity, m/s

V̇mec External acceleration, m/s2

W f Fluid work, J

ws , us Unitary displacement

w Vertical displacement, m

x, X Membrane center displacement, m

ẋ Membrane center velocity, m/s

ẍ Membrane center acceleration, m/m2

z Vertical position, m

Greek Symbols

α, αE , β Electromechanical coefficient, N/V

ε33 Relative permittivity

ε Strain

ε0 Vacuum permittivity, F/m

ν Diaphragm Poisson coefficient

ρ f Fluid density, kg/m3

σ Stress, Pa

ψ, φ, φ̃ Velocity potential, m2/s

ω Pulsation, rad/s

Subscripts

0 Initial or resonant

B Bending

el ec Electrical

f Fluid

L Linear

max maximum value

mec Mechanical

N L Nonlinear

pi ezo Piezoelectric

r radial orientation

S Stretching

z Vertical orientation

θ Orthoradial orientation
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1. Introduction

Wireless sensors networks (WSN) developments have increased over recent years.

The potential implementation of these WSN in industrial, transportation or build-

ings applications could offer significant benefits: improved reliability integrating

predictive maintenance, energy performance optimization using extensive collected5

information (temperature, humidity, electric consumption, ...). Because of the ad-

vancements of low-power WSN and MEMS technology, millimeter scale vibration

harvesters (VEH) have attracted worldwide research interests [1]. VEH have been

proposed using three main transduction principles: piezoelectric, electromagnetic

and electrostatic [2, 3]. For the aforementioned applications, frequencies of typical10

ambient vibration sources are relatively low (typically less than 200 Hz) [4], which

hinders the development of miniature VEHs.

Diaphragms like geometry are attractive to aim at simple and robust VEH. More-

over, low cost fabrication process can be envisioned for their mass production. Some

prototypes have been proposed in the literature for vibration energy harvesting [5–15

7]. The 5 mm×5 mm square membrane introduced in [5] shows a 2.4 kHz resonant

frequency, while the harvester from [6], based on a 20.5 mm radius PZT buzzer, op-

erates at 1.7 kHz. The very high resonant frequency of these devices prevents their

use in realistic applications. Thus, some attempts have been made to solve the fre-

quency issue by the addition of a bulky mass to the membrane. Chen proposed a20

30 mm radius PZT buzzer with a bonded inertial mass estimated at 100 g [7]. It re-

duced the resonant frequencies in the 113 Hz range, but the integration capability

of this structure is then hindered.

The membrane structures are also especially suitable for pressure energy har-

vesting. In this case, the excitation is no longer associated to vibration of the sup-25

porting structure but by the pressure fluctuation of any fluid. The imposed pressure

excitation could lead to enhanced energy generation using optimized electrode dis-

tribution. Kim et al. [8–11] studied this route. They proposed analytical and experi-

mental works to improve PZT piezoelectric membranes conversion when submitted

to quasi-static pressure solicitations. The total stress due to bending and stretching30

is considered in the model to aim at a better anticipation of the generated power.

But only quasi-static excitation is dealt with here.

PVDF (or similar materials P(VDF-TrFE), loaded PVDF, ...) is chosen as elec-
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tromechanical transducer [12–15] in many VEH. The flexibility of this material is

a major advantage for low frequency application, but its intrinsic performance is35

lower than PZT. The power density (considering the volume of piezoelectric mate-

rial) from the studied literature [12–15] presents a range from 0.15µW/cm3 [13] to

195.12µW/cm3 for PVDF [14]. Such spread of values come from the quality of the

PVDF material but also on the way the mechanical stress is induced in the mate-

rial by the external excitations. For PZT diaphragm structures, literature shows a40

power density ranging from 15.04 mW/cm3 [6] to 122.44 mW/cm3 [7]. As expected

the power density is much larger due to better material performance, but low fre-

quency operations imply the use of a very large proof mass (122 g in [7]).

This work aims at demonstrating the modeling, the fabrication and testing of a

new piezoelectric hybrid fluid diaphragm structure VEH. A diaphragm architecture45

aiming at the drastic reduction of the resonant frequency was proposed in [16]. It is

based on an incompressible fluid encapsulated between two flexible membranes.

The fluid dynamic inertia, when submitted to external excitations, generates hy-

draulic pressure on the diaphragms, resulting in a global low natural frequency and

allowing their optimal deformation. Compared with similar structures with central50

mass introducing a rigid zone [7], the mechanical deformation is maximized here

as the whole membrane is deformed. The assembly process would be simplified

by using fluid as inertial fluid. Indeed, membrane are usually fragile due to their

small thickness which make any mass addition a critical step. In this paper, sin-

gle layered P(VDFTrFE) membranes are used to allow integrated transduction. This55

straightforward approach is justified because mechanical tension effect can be eas-

ily obtained for polymer membranes. As a result, the piezoelectric effect can be used

with low complexity with respect to realization and electrical connection. The first

part of the paper describes the VEH architecture and presents a complete theoret-

ical electromechanical model. Realistic applications call for an efficient evaluation60

of a VEH performance potential under constrained background. Analytical is pre-

ferred here to a FEM approach because of the complexity of the device. In the case

of the Piezoelectric Hybrid Fluid generator, a strongly coupled multiphysics model

is indeed required: nonlinear membrane dynamic, piezoelectric and fluid-structure

interactions have to be dealt with. The analytical approach eases the optimization65

step: Geometrical characteristics are used to simplify the model, which eventually
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allow a low computation time evaluation of the generator performance. Complex

effects, such as mechanical or fluid damping, geometrical flaws are not taken into

account in the proposed analytical approach. These issues would however not be

easily addressed by a FEM strategy, that would induce a larger simulation time. Sim-70

ulation results for low and large excitation amplitudes are analyzed to underline the

nonlinear behavior of the structure. In a second part, the realization and testing of

a prototype are detailed. Finally, based on the comparison between the theoretical

and the experimental results, an additional unexpected distortion effect is identi-

fied. The model is modified to allow future optimization. Further developments are75

finally suggested.

2. Theoretical modelling

2.1. Architecture

The architecture is based on the work of Formosa et al. [16] which demonstrates

the possible use of fluid-membrane interaction to realize thick low resonant fre-80

quency membranes. It consists in an incompressible fluid confined between two

thin membranes. The former is used as an inertial mass which allows a drastic re-

duction of resonant frequency for the global structure. The height of the device can

be easily tuned to induce more or less inertia effect. The chosen fluid has to fulfill

the trade-off between high density to enhance the fluid inertia effect and low viscos-85

ity to limit the potential mechanical dissipations. Here, the concept is developed to

a further step by the integration of piezoelectric membranes for energy generation.

The hybrid fluid diaphragm (HFD) structure is defined in the Fig. 1, which describes

the architecture and it geometrical parameters.

R
x(t )

h

~er

~ez

H

Electro-active
top membrane

Rigid frame

Incompressible
fluid

Electro-active
bottom membrane

~̇Vmec (t )

Figure 1: Schematic of the proposed structure HFD

The circular diaphragms are made from thin film P(VDF-TrFE). It is composed of90

a single piezoelectric material layer and top and bottom electrodes. The poling is or-
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thogonal to the film plane. Table 1 defines the geometrical parameters and material

properties of the system.

Due to the film structure and the electrodes’ locations, flexural deformations in-

duce a same amount of compressed and stretched piezoelectric material across the95

thickness and over the radius so the generated voltage is theoretically zero. However,

large deformation amplitude generates stretching through the thickness that can be

the major mechanical stress. Then, it produce an electrical voltage. This nonlinear

behavior is the underlying principle of the proposed VEH.

Diaphragm properties (P(VDF-TrFE))

Radius (m) R Thickness (m) h

Young modulus (Pa) E Poisson coefficient ν

Piezoelectric coefficient (C/N) d31 Relative permittivity ε33

Fluid Properties (Glycerin)

Height (m) H Density (kg/m3) ρ f

Table 1: Main parameters of the PHFD

2.2. Analytical model100

The model in [16] was based on the Ritz method to obtain approximate solutions

for both the fluid motion and the diaphragms’ deformation. In the present work, this

mechanical model is simplified and the piezoelectric membrane behavior is added.

Indeed, from the mechanical point of view, the final dynamic behavior (i.e the first

resonant frequency) of the HFD is notably lower than the first natural frequency of a105

diaphragm alone. Therefore, a simple static behavior description of the membrane

can be used for approximation of the mechanical solution instead of the first modal

shapes as it was done in the previous model. Additionally, the frame displacement

is introduced which is in line with the vibration energy harvesting application back-

ground of this work.110

The modified modeling strategy is developed hereafter using the following as-

sumptions:

• Clamped edge mechanical boundary condition.
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• Same geometry and materials properties for each membranes.

• The initial prestress of the diaphragm is taken into account considering an115

initial uniform radial displacement uS0 applied on the membranes’ rim.

• Large strain is considered.

• The shear stress is neglected.

• The fluid is incompressible and inviscid.

• The fluid motion is assumed to be irrotational [17].120

• Axially symmetric motions.

• Diaphragms have the same displacement (in-phase motion).

• The polarization direction is along the normal of the diaphragms (~ez ).

2.2.1. Mechanical approximate static solution

The transverse and radial deformations of the diaphragm can be written as the125

quasi-static solution under uniform pressure [18]:

w(t ,r ) = x(t )ws (r ) = x(t )

(
1−

( r

R

)2
)2

u(t ,r ) = x(t )2us (r ) = x(t )2

126R3 r (R − r )

(
(179−89ν)+ 3

R
(−79+13ν)r

) (1)

In which w(t ,r ) is the deflection of the diaphragms along the vertical direction

(~ez ). u(t ,r ) is the radial displacement along ~er . x(t ) is the maximal relative with

respect to its clamped rim vertical displacement at the center of one diaphragm.

2.2.2. Fluid equations and approximate solution130

As the liquid motion is assumed to be irrotational, its velocity ~V f (t ,r, z) can be

associated to a velocity potential ψ(t ,r, z) defined such as:

~V f (t ,r, z) =~∇ψ(t ,r, z) (2)
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In which ~∇ is the gradient operator. In order to take into account the vertical

velocity of the entire frame (Vmec (t ) in Fig. 1) and in a case of small relative motion,

a new velocity potential φ(t ,r, z) is defined as:135

~V f (t ,r, z) = ~Vmec (t )+~∇φ(t ,r, z) =~∇ψ(t ,r, z) =~∇(Vmec (t )z +φ(t ,r, z)) (3)

Finally, the equilibrium equation for the liquid results in:

~∇2φ(t ,r, z) = 0, ∀ r ∈ [0,R] and ∀ z ∈
[
−H

2
,

H

2

]
(4)

In which~∇2 is the Laplace operator. Based on the solution of the transcendental

Eq. 4, the general form of the fluid velocity potential is:

φ(t ,r, z) =
N∑

j=1
(C j (t )sinh(k j z))J0(k j r ) (5)

In which N is the number of retained fluid modes J0(k j r ) is the Bessel first kind

function and k j is the jth root of Eq. 4. C j (t ) is a parameter which depends on the140

velocity of the diaphragm center (ẋ).

The boundary conditions for the fluid can be expressed as:

~V f .~er = 0, f or r = R and ∀ z ∈
[
−H

2
,

H

2

]
~V f .~ez =

(
d w

d t
+Vmec

)
, f or z =±H

2
and ∀ r ∈ [0,R]

(6)

Using Eq. 1 and Eq. 3, the boundary conditions from Eq. 6 are written again as:

∂φ

∂r
= 0, f or r = R and ∀z ∈

[
−H

2
,

H

2

]
∂φ

∂z
= ẋws , f or z =±H

2
and ∀r ∈ [0,R]

(7)

For developing the weak form solutions of Eq. 7, we define the new function

φ̃(t ,r, z) =C0(t )+φ(t ,r, z) and integrate it over the whole fluid domain:145

−
∫ H

2

− H
2

∫ R

0

(
∂φ

∂r

∂φ̃

∂r
+ ∂φ

∂z

∂φ̃

∂z

)
r dr d z +2

∫ R

0
ẋwsφ̃

(
R,

H

2

)
r dr = 0,

∀ C̃ j , j = 0..N

(8)
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Solving Eq. 8, N is chosen such as the boundary condition at the diaphragm sur-

face is satisfied with a sufficient accuracy. Using N = 3 actual deformed shape of the

membrane is matched [16].

The fluid pressure can be expressed using the Cauchy-Lagrange equation for un-

steady flow:150

ρ f
∂ψ

∂t
+ 1

2
ρ f V 2

f +p = const ant (9)

Where ρ f is the fluid density. Eq. 9 is developed using Eq. 3. For simplification

purpose, the relative weights between the terms are assessed defining the dimen-

sionless variables given in table 2.

Attribute Length Time Velocity potential

Variable r z t φ

Reference value R H Vmec
h hVmec

Dimensionless variable r∗ = r
R z∗ = z

H t∗ = ht
Vmec

φ∗ = φ
hVmec

Table 2: Definition of the dimensionless variables

The dimensionless expression of Eq. 9 is then:

ρ f

(
∂φ∗

∂t∗
+ V̇mec

H z∗

h2

)
+ 1

2
ρ f

((
Vmec

R

∂φ∗

∂r∗

)2

+
(

Vmec

H

∂φ∗

∂z∗

)2

+ V 2
mec

h2

)
+ p

h2 = const ant

(10)

Considering the size of the considered structure (Table 5) and Eq. 10, the first155

and second order terms
(
∂φ
∂r

)2
,
(
∂φ
∂z

)2
are neglected.

At the whole fluid domain frontier (r = R) the constant right hand term of Eq. 10

is null, so the pressure can be finally written as:

p =−ρ f

(
∂φ

∂t
+ V̇mec z

)
− 1

2
ρ f Vmec

2 (11)

The joint effects of the global motion of the fluid (Vmec ) and the local perturba-

tion is clearly established by Eq. 11: the frame motion acts as a buoyancy force on160

the membranes.

2.2.3. Global dynamic equilibrium

The dynamic equilibrium equations are obtained using the Energy method ap-

plied to each of the piezoelectric diaphragms. The model is detailed for the bottom
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diaphragm. The procedure is same for the top one.165

The piezoelectric constitutive relations are:

σr =
E

1−ν2 (εr +νεθ−d31Ez (1+ν))

σθ =
E

1−ν2 (εθ+νεr −d31Ez (1+ν))

Dz =−d31
E

1−ν (εr +εθ)+ε33ε0Ez

(12)

The strain components can be expressed distinguishing the linear bending and

the nonlinear stretching behaviors [19] such as:

εr = εr L +εr N L

=−x(t )z
d 2ws (r )

dr 2 +x2(t )

(
dus (r )

dr
+ 1

2

(
d ws (r )

dr

)2)
εθ = εθL +εθN L

=−x(t )
z

r

d ws (r )

dr
+x2(t )

us (r )

r

(13)

Using Eq. 12 and Eq. 13, the bending and stretching energies (EmecB and EmecS

respectively) are derived. The linear and nonlinear stiffness coefficients k and b are170

finally defined as:

EmecB = 1

2

E

1−ν2

∫ R

0

∫ h
2

− h
2

∫ 2π

0
(ε2

r L +2νεr LεθL +ε2
θL)r dr d zdθ

= 1

2
x22πDB

∫ R

0

((
d 2ws

dr 2

)2

+ 1

r 2

(
d ws

dr

)2

+ 2ν

r

d ws

dr

d 2ws

dr 2

)
r dr

= 1

2
x2k

(14)

EmecS = 1

2

E

1−ν2

∫ R

0

∫ h
2

− h
2

∫ 2π

0
(ε2

r N L +2νεr N LεθN L +ε2
θN L)r dr d zdθ

= 1

2
x42πDS

∫ R

0

((
dus

dr
+ 1

2

(
d ws

dr

)2)2

+2ν

(
dus

dr
+ 1

2

(
d ws

dr

)2)(us

r

)
+

(us

r

)2
)

r dr

= 1

2
x4b

(15)

In which, DB = Eh3

12(1−ν2)
, DS = Eh

(1−ν2)
. The initial prestress of the diaphragm asso-

ciated to the assembly procedure is taken into account. The ensuing in-plane radial
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and orthoradial stresses are:

σr S0 =σθS0 =
E

(1−ν)

uS0

R
(16)

From Eq. 16, the prestress mechanical energy is:175

EmecS0 =
1

2

∫ R

0

∫ h
2

− h
2

∫ 2π

0
(σr S0εr N L +σθS0εθN L)r dr d zdθ

= 1

2
x22π

E

1−ν
uS0

R

∫ R

0

(
dus

dr
+ 1

2

(
d ws

dr

)2

+ us

r

)
r dr

= 1

2
x2n

(17)

The prestress linear stiffness n is deduced from Eq. 17. Finally, the mechanical

work of the fluid dynamic pressure upon the diaphragm is:

W f =−x2πρ f

∫ R

0
ws

(
∂φ̄

∂t
− H

2
V̇mec +

1

2
Vmec

2
)

r dr

=−x

(
mm f ẍ +

mt f

H

(
−HV̇mec +

1

2
Vmec

2
)) (18)

In which mm f is the fluid inertial mass and mt f is the fluid total (static) mass.

The electric field Ez can be expressed as a function of the electric potential (Vel ec )

such as: Ez = Vel ec
h . The stretching of the structure induces in-plane strain. The180

piezoelectric coupling energy Epi ezo is then expressed as:

Epi ezo =−1

2
Ds (1+ν)d31

Velec

h

∫ R

0

∫ h
2

− h
2

∫ 2π

0
(εr N L +εθN L)r dr

=−1

2
2πDS (1+ν)31

Vel ec

h

∫ R

0

(
dus

dr
+ 1

2

(
d ws

dr

)2

+ us

r

)
r dr

= 1

2
x2α

Vel ec

h

(19)

In which α is the piezoelectric force factor.

Finally, the dynamic equilibrium equation for the bottom diaphragm is given by:

∂

∂x

(
EmecB +EmecS +Epi ezo +EmecS0 +W f

)= 0 (20)

Using Eq. (7-8), Eq. (11-15) and Eq. (17-19) to write again Eq. 20, the dynamic

equilibrium equation for the bottom diaphragm is:185

mm f ẍ +d ẋ + (k +n)x +2bx3 +α x

h
Vel ec = mt f V̇mec −

1

2

mt f

H
Vmec

2 (21)

11



In which the dissipation can be introduced as an equivalent viscous damping

coefficient (d) such as:

d =
mm f

Q
ω0 =

√
mm f (k +n)

Q
(22)

Where Q is the estimated mechanical quality factor of the structure in the case of

small amplitude vibration. Applying the same procedure, the top diaphragm equi-

librium equation is:190

mm f ẍ +d ẋ + (k +n)x +2bx3 +α x

h
Vel ec = mt f V̇mec +

1

2

mt f

H
Vmec

2 (23)

From Eq. 21 the linear case (small amplitude and closed circuit condition) natu-

ral pulsation can be written as:

ω0 =
√

k +n

mm f
(24)

To support the quasi-static approximation, ω0 is compared to the theoretical

natural pulsation calculated from the previous model [16] using the same geome-

try and material properties. Table. 3 presents the frequencies and the discrepancies195

between the two models for various membrane thicknesses.

Attribute Value

Thickness h (µm) 20 25 40 50 110

Dynamic model [16] f0 (Hz) 5.486 7.664 15.494 21.637 70.298

Static model f0 (Hz) 5.479 7.658 15.498 21.659 70.677

Difference (%) -0.127 -0.079 0.029 0.103 0.539

Table 3: Comparison of natural frequencies results from the two proposed models

The similarity of the results demonstrates that the simplification of previous

model is relevant in the case of the proposed structure.

2.2.4. Electrical equation

The electric equilibrium equation can be derived from:200

∂

∂Vel ec
Eel ec =−q (25)

Where q is the electrical charges so that q̇ is the generated current (I ).
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Using the piezoelectric constitutive relations Eq. 12, the electrical energy Eel ec is

written as:

Eel ec =
1

2
2π

∫ R

0
Dz Ez r dr

= 1

2
2π

∫ R

0

(
ε33ε0

Vel ec

h
−d31(σr +σθ)

)
Vel ec

h
r dr

= 1

2

(
CV 2

el ec −αE x2 Vel ec

h

) (26)

Eel ec is the addition of two terms: the stored energy in the capacitance (C0) and

the piezoelectric coupling related to the coupling factor (αE ). Using Eq. (12, 13) and205

Eq. 25, one can demonstrate the equality α=αE . From Eq. 25 and Eq. 26 the electri-

cal equilibrium equation is finally written as:

C0Vel ec −
1

2
α

x

h
x =−q (27)

Performing the time derivation of Eq. 27:

−C0V̇el ec +α
x

h
ẋ = I (28)

Eq. 28 underlines the voltage generation due to the large deformation of the

membranes as small displacements (x) lead to second order values of the piezo-210

electric coupling term (second term of the left hand side of Eq. 28). It can also be

deducted from Eq. 28 that in open circuit condition, the voltage is proportional to

x2. The piezoelectric voltage frequency is then two times the excitation frequency,

which is a another particular feature of the proposed concept.

Eq. 21 and Eq. 28 describe the electromechanical behavior of the PHFD. This215

lumped model can be summarized by the schematic of Figure. 2. The mechanical

part of the system (Fig. 2a) can be read as a moving fluid mass (mm f ) linked to a

linear spring (LS) whose stiffness is (k +n) accounting for the flexural diaphragm

stiffness and two nonlinear springs (NLS) whose total stiffness equals 2b. The lat-

ter are related to the nonlinear stretching associated to large amplitude motions of220

the diaphragms. The piezoelectric conversion coefficient (α) is parallel to the NLS.

The input force is mt f V̇mec with V̇mec the frame acceleration. One single damper

(d) stands for all the mechanical losses (the viscous losses within the membrane

13



plus the fluid dissipation). The obtained piezoelectric generator behaves as a volt-

age source whose value is proportional to the product of the diaphragm central dis-225

placement and velocity (Fig. 2b).

Spring

mm f Electrical
load

rlV
el

ec

I

x

mt f V̇mec

Frame

Piezoelectric
transducer α, C0

Spring b

k +n

Damper d

(a) Mechanical model

I

V
el

ec rlC0α x
h ẋ

(b) Electrical model

Figure 2: Nonlinear inertial generator electromechanical modeling

Table 4 details the whole model parameters, their units and relationship to the

geometry and material properties. It is worthy of note that the stiffness property is

independent to the mass property in the obtained structure, which is an advantage

for optimization.230

Parameter Symbol Relation Unit

Fluid inertial mass mm f See [16] f (ρ f , H ,R) kg

Fluid excitation mass mt f
Hπρ f R2

12 kg

Flexural stiffness k 32πEh3

9R2(1−ν2)
N/m

Tension stiffness b πEh(7505+4250ν−2791ν2)
39690R2(1−ν2)

N/m3

Electromechanical coefficient α − 4πE d31
3(1−ν) N/V

Diaphragm capacitance C0 ε33ε0
πR2

h F

Prestress flexural stiffness n∗ 4uS0πEh

3R(1−ν2)
N/m

Damping coefficient d

√
mm f (k+n∗)

Q∗ N.s/m

∗ Measured values

Table 4: Model parameters relation
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2.2.5. Simulation results

Table 5 gives the geometry and material properties values used in the simula-

tions. They are those of the prototype presented in section 3.

Diaphragm properties (P(VDF-TrFE))

R 10 mm h 84µm

E 1 GPa ν 0.34

d31 −5 pC/N ε33 8.25

Fluid Properties (Glycerin)

H 20 mm ρ f 1260 kg/m3

Table 5: Geometry and material properties of the PHFD

2.2.6. Acceleration

Fig. 3a shows the evolution of the LS and NLS forces according to the normal-235

ized displacement of the membrane center. The threshold from which the NLS ef-

fect is no more negligible compared to the LS one is estimated at 10 % of the LS

force. It is reached when the displacement is about two times the thickness of the

membrane (x ≈ 172.6µm). Fig. 3b plots the displacement evolution with respect to

the acceleration amplitude (V̇mec ). The nonlinear mechanical behavior appears at240

an acceleration of approximately 13 m/s2, which is the value required to reach the

aforementioned threshold. The NLS effect becomes predominant at 34 m/s2 (for

50 % of LS contribution). Between these two limits a transition area is identified.

Consequently, the acceleration value chosen for simulations is of 40 m/s2. It allows

large strains to be reached and nonlinear effect to be clearly observed and compared245

to the theoretical model.

2.2.7. Displacement and power

The first results are based on the parameters defined in table 4 and table 5. In

order to characterize the harvester performance, we carry out simulations using a

slow frequency sweep ranging from 80 Hz to 140 Hz and a varying electrical load250

resistance rl (from 0.6 MΩ to 14 MΩ).

Fig. 4a shows the displacement of the membrane center (x) and the generated

power with respect to the electrical load resistance and the excitation frequency.
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Figure 3: Linear / nonlinear limits

One can observe the typical response associated to the mechanical nonlinear hard-

ening behavior. Moreover, the electromechanical conversion has a weak impact on255

the mechanical behavior, which is in line with the anticipated low electromechani-

cal coupling obtained from the use of P(VDF-TrFE) material. This simulation reveals

a 130.31 Hz resonant frequency and a 456.2µm maximum displacement. The har-

vester power behavior (Fig. 4b) exhibits a peak power of 4.48µW at f = 130.31 Hz

(matching the maximum displacement) for an optimal load resistance of 2.21 MΩ.260

This value corresponds to the matching load for a voltage frequency equals to 2× f

so Ropti = 1
4π f C0

.

Frequency (Hz)rl (MΩ)

D
is

p
la

ce
m

en
t(
µ

m
)

80

100
120

140

0.6

2

6
14

100

200

300

400

500

150

200

250

300

350

400

450

(a) Displacement

Frequency (Hz)rl (MΩ)

Po
w

er
(µ

W
)

80

100
120

140

0.6

2

6
14
0

1

2

3

4

5

0.5

1

1.5

2

2.5

3

3.5

4

(b) Power

Figure 4: Theoretical simulation results
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3. Experimental approach

3.1. Prototype description and experimental setup

3.1.1. Prototype265

A PHFD prototype has been realized. Its purpose is the validation of the pro-

posed model. Its dimensions and properties are given in table 5. Fig. 5a presents a

CAD section of the HFD design, while Fig. 5b shows the realized prototype.

P(VDF-TrFE)
diaphragm

H
=

20
m

m

2R = 20 mm

Incompressible
fluid

(a) CAD design

P(VDF-TrFE)

Electrodes

diaphragm

Pressure
tuning screw

(b) Realisation

Figure 5: HFD prototype

P(VDF-TrFE) was selected because it presents the best ration between piezoelec-

tric performance and flexibility [20]. They were made from a solution of Poly(VinyliDene-270

Fluoride-co-TriFluoroEthylen. Compared with the use of commercial PVDF films, it

allowed us to define customized thickness. It also authorizes more margin for future

explorations of other dimensions or electrode optimization. The thickness varia-

tions of the obtained films are of a few microns over square a surface of 20 mm×
20 mm. Glycerin is chosen as the fluid for its high density though its dynamic vis-275

cosity is high.

An assembly procedure has been defined to guarantee the proper assemblage,

the membrane assemblage and the fluid filling. The first step is the clamping of

the membranes to obtain two symmetrical parts of the final PHFD. This operation

is realized without fluid. The membranes are stretched over a low shoulder to aim280

at flat surfaces and reduce the film wrinkles. This operation induces mechanical

prestress (coefficient n in Eq. 21). It is worthy of note that the design of the shoulder

could be used to control the induced prestress to a desired value. This study has not

been performed yet as it is beyond the scope of the paper.
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The next step is to put the two parts together when immersed into the cho-285

sen fluid to get a filled HFD without bubbles to guarantee incompressibility. The

tightness is provided by an O-ring as can be seen in Fig. 5a. The internal fluid pres-

sure, and consequently the flatness of the diaphragms can be tuned using a screw

(Fig. 5b). Indeed, the slight squeeze of the O-ring associated to the incompressibility

of the fluid turn any volume modification into static pressure variation.290

3.1.2. Experimental setup

The piezoelectric PHFD was tested on an electrodynamic shaker driven by a slow

varying increasing frequency signal similar to the used simulations excitation. Us-

ing an accelerometer and a dedicated control unit, a closed-loop control ensures

constant acceleration amplitude of the shaker over the frequency range. The dis-295

placement and velocity of the top diaphragm center are measured using a differ-

ential laser vibrometer. The control unit also drives a set of electric load resistance

(rl ) ranging from 0.6 MΩ to 14 MΩ. Different acceleration levels (from 30 m/s2 to

60 m/s2) allowing the nonlinear behavior to be triggered have been used.

3.2. Experimental results300

3.2.1. Displacement and power

The experimental results are shown in Fig. 6 to be compared to Fig. 4 for an ac-

celeration amplitude of 40 m/s2. The nonlinear effect associated to large displace-

ments is clearly visible (Fig. 6a) while the electromechanical conversion has a neg-

ligible impact. The displacement amplitude at the resonant frequency is 376.5µm,305

which is more than four times the thickness of the membrane. Fig. 6b plots the

power response. Its maximum is about 4.18µW at the resonant frequency and for

a 2.88 MΩ load resistance. It is worthy of note that the mechanical hardening effect

leads to a large bandwidth of about 40 Hz. The power density (calculated with re-

spect to the volume of piezoelectric material) of the proposed generator is 158.33µW/cm3,310

which is in the order of magnitude of P(VDF-TrFE) VEH performances reported in

the literature.

3.2.2. Temporal results

The temporal results underline the frequency doubling voltage in accordance

with Eq. 28. This is clearly visible comparing the blue line (displacement of the315
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Figure 6: Experimental performances at 40 m/s2

membrane center at 119.6 Hz) and the red dashed line (voltage) in Fig. 7a. However,

the Fourier transform of the voltage signal (red dashed line in Fig. 7b) reveals two

dominant harmonics: the first is at the diaphragm displacement frequency (blue

plain line in Fig. 7b) and can be related to a voltage produced by the bending motion

whereas the second is at about twice this frequency (224.2 Hz) and is the expected320

nonlinear behavior. An ideal piezoelectric membrane does not present electrical

generation associated to bending motion as stated by the theoretical model. Hence,

the first harmonic is thought to be induced by an energy generation due to the mem-

branes bending. This observation highlights what is thought to be the non-ideal flat

geometry of the membranes, which was not taken into account in the model. In-325

deed, tiny residual wrinkles are likely to bring complex mechanical neutral plane

shape which could induce piezoelectric voltage for flexural deformations. However,

this effect is not detrimental as it tends to increase the generated voltage.

4. Model / experiment comparison and optimization

The aim of this section is to validate the theoretical model so it could be used as330

an optimization tool for the design of PHFD generators. Moreover, the identifica-

tion procedure is mandatory for the dissipation of the prestress of the membrane.

Yet, the first prototype may present some specificity which are likely to generate dis-

crepancies between the theoretical and experiment results. An empirical law would

have to be established based on multiple prototypes. Therefore, an identification335

strategy of the model parameters is proposed here and the variations with the theo-
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Figure 7: Experimental displacement and voltages signals at 40 m/s2

retical model are carefully assessed.

4.1. Parameters identification

The mechanical behavior of the device is virtually not changed by the electric

behavior considering the low coupling coefficient of the polymer piezoelectric film.340

Therefore, the identification is performed in two steps. The first one is to identify

the mechanical parameters mt f , mm f , b, n and Q. It is assumed that a reliable value

of k is obtained from the theoretical approach. The prestress value n may be shifted

with different tightenings of the membrane and has to be experimentally identified.

The identification procedure is to minimize the difference between the simulated345

and experimental displacement when varying the excitation frequency for a fixed

given electrical load (rl = rpeakpower ). The least square method is used.

The second step is to identify the electrical behavior by adjusting the two pa-

rameters α and C0. The chosen strategy is slightly different here as two sets of refer-

ence results are used: i) The generated power when varying frequencies for a given350

load resistance (rl = rpeakpower ); ii) The power at a given frequency ( f = fpeakpower )

when varying the electrical load resistance.

The choice of the power results provides a characteristic point (peak power) with

more information than the voltage. Indeed, the voltage alone does not allow to ac-

curately determine the α and C0 parameters, because there may be several valid355

parameters’ values sets for a given frequency. The sum of the normalized differ-

ences between experimental and simulated results defines the objective function to

be minimized by the least square method.
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This identification procedure has been firstly applied assuming that the "bend-

ing voltage" is negligible compared to the "stretch voltage". A rather good model-360

testing correlation is obtained on both the mechanical (Fig. 8a) and electrical (Fig. 8b)

responses.
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Figure 8: Optimized simulation (color scale) and experimental (red mesh) results comparison

Table 6 shows the principal features of the VEH with relative error between ex-

perimental and simulation results. The errors are acceptable (< 10 %), except for the

bandwidth with a maximal discrepancy of 42.12 %.365

f0 Pmax Xmax Ropti B and wi d th

Exp 119.56 Hz 4.17µW 376.5µm 2.88 MΩ 40.28 Hz

Simu 119.56 Hz 4.09µW 373.6µm 2.88 MΩ 23.31 Hz

Error 0 % −1.92 % −0.77 % 0 % −42.13 %

Table 6: Comparison between experimental and simulation results with first identified parameter set

The power responses (Fig. 8b) present a larger divergence for values distant from

the power peak. As mentioned before, the experimental measured signal is com-

posed mainly of two harmonics (see Fig. 9a). In Fig. 9b, a Fourier transform allows

these frequencies to be read as 119.56 Hz and 239.12 Hz. This voltage generation for

bending motion is identified as the result of a slight initial bending of the membrane.370

As it is considered here as a unexpected behavior, the model has not been deeply

modified. Yet, an additional linear piezoelectric electromechanical coefficient (β) is

introduced and identified in the following to validate the interpretation.
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Figure 9: Optimized simulation and experimental signals comparison

The modified model is defined by the set of coupled equations (Eq. 29).

mm f ẍ +d ẋ + (k +n)x +2bx3 +βVel ec +α
x

h
Vel ec = mt f V̇mec

−C0V̇el ec +βẋ +α x

h
ẋ = I

(29)

A schematic representation of the model using for Eq. 29 is given in Fig. 10.375
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Figure 10: Nonlinear inertial generator modeling with flexural effect

Because of the negligible impact of the electrical behavior on the mechanical

behavior, only the electrical parameters (α, C0 and β) are identified again using the

strategy described above. It can be seen from Fig. 11b that the overall difference

between the simulated and experimental results has decreased. The bandwidth er-

ror decrease (table 7) is in accordance with this observation. Fig. 11a and 11c show380

a much better agreement between the experimental and simulated temporal dis-
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placement and voltages. The α and C0 parameters are also closer to those deter-

mined by the theoretical model (Table 7).
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Figure 11: Optimized simulation with flexural effect and experimental results comparison

f0 Pmax Xmax Ropti B and wi d th

Exp 119.56 Hz 4.17µW 376.5µm 2.88 MΩ 40.28 Hz

Simu 119.56 Hz 4.11µW 373.6µm 2.88 MΩ 28.39 Hz

Error 0 % −1.43 % −0.77 % 0 % −29.52 %

Table 7: Comparison between experimental and second identified parameter set simulation results

4.2. Effect of the acceleration and identified model validation

For further investigations, we compared the simulated and experimental results385

for two different accelerations (30 m/s2 and 60 m/s2) using the identified parame-

ters. For the lowest acceleration case the correlation is slightly deteriorated, but the

qualitative response is captured (Fig. 12b). The power is underestimated (Table 8).

For this level of acceleration, the generator response is close to a linear system be-

havior. The suspected "imperfections" of the membrane create important and com-390

plex effects associated with bending, for which coefficientβ alone cannot represent.

f0 Pmax Xmax Ropti B and wi d th

Exp 112.91 Hz 3.01µW 315.5µm 2.88 MΩ 32.85 Hz

Simu 111.29 Hz 2.13µW 302.1µm 3.58 MΩ 22.87 Hz

Error −1.43 % −29.23 % −4.25 % +24.31 % −30.38 %

Table 8: Comparison between experimental and optimized simulation results at 30 m/s2 of acceleration

For the high acceleration case for which the nonlinear behavior dominates the

response, the comparison is better. The performance criteria are validated (Ta-
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ble 9) with an error of 13.92 % for the power. The overall difference between is lower

(Fig. 12c and Fig. 12d).395

f0 Pmax Xmax Ropti B and wi d th

Exp 132.21 Hz 9.34µW 475.8µm 2.58 MΩ 38.28 Hz

Simu 136.04 Hz 10.64µW 487.5µm 2.31 MΩ 28.12 Hz

Error +2.89 % +13.92 % +2.46 % −10.45 % −26.54 %

Table 9: Comparison between experimental and optimized simulation results at 60 m/s2 of acceleration
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Figure 12: Comparison between experimental (red mesh) and optimized simulation (color scale) (a-b) at

30 m/s2 and (c-d) at 60 m/s2

5. Conclusion

An original membrane generator matching low frequency vibration energy har-

vesting applications is proposed. A complete theoretical model has been developed.
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A prototype was realized and is investigated aiming at the validation of the theo-

retical model. In this first prototype, single layered P(VDF-TrFE) film is used. The400

mechanical tension effect induced by large deformation has been obtained using

4 g excitation amplitude. The experimental results prove that this expected hard-

ening effect and its ensuing electrical power generation is captured by the model.

The realized generator exhibits low resonant frequency (119.56 Hz), large bandwidth

(40.28 Hz) and power density (158.33µW/cm3). However, unexpected additional405

voltage induced by the linear flexural mechanical response of the membrane is noted.

An identified linear piezoelectric electromechanical coefficient is then added to com-

plete the model. In the targeted acceleration scope of the generator (4 g and more),

the model gives rather good predictive results with an error lower than 15 % for the

chosen comparison criteria (peak power amplitude, frequency and load at the op-410

timal point). At lower acceleration or away from the resonance frequency, the de-

viations between analytical modeling and experimental results increase. In these

cases, the influence of the linear electromechanical coefficient β, which is thought

to be due to geometrical defects, on the membranes responses is indeed higher.

However, the origin of the linear coupling coefficient is not completely identified,415

but it explains the difference between the models and experiments at 3 g and 6 g ac-

celeration levels. The electric generation for linear (low amplitude) responses calls

for further investigations. The geometry of the membrane may present some flaws

and has to be verified. The material constitutive relations were considered as linear.

Though, initial prestress associated to the assembly procedure and the large defor-420

mation dynamic solicitations could lead to additional material nonlinear effect.

Based on the obtained proof of concept, dedicated studies are envisioned. A bet-

ter repeatability of the assembly will have to be reached. Plastic material was used

for the frame realization to ease the prototyping. More rigid and nonconductive

material may be used. It would also improve the prestress control of the membrane.425

The damping will have to be lowered to increase the performance. To the authors’

knowledge, most of the damping can be associated to the polymer membrane. How-

ever, different fluid will have to be tested to assess its contribution.

Furthermore, another architecture of electroactive membrane will be investi-

gated to increase the power density. For instance, the diaphragms bending could430

be fully utilized using multi-layered piezoelectric film (bimorph structure) and two
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dissociated electrode rings on the external faces of membrane stack. By doing this,

the bending deformation can be exploited and lower acceleration magnitude could

be focused on. Though, the expected increased stiffness may lead to higher column

of fluid to keep the low frequency response advantage of the proposed architecture.435

A global optimization will then be necessary to aim at enhanced power density de-

pending on the targeted application.
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