
HAL Id: hal-02042706
https://hal.science/hal-02042706v1

Submitted on 20 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal streaks in the wake of a blunt-based
axisymmetric bluff body and their influence on vortex

shedding
Mathieu Marant, Carlo Cossu, Grégory Pujals

To cite this version:
Mathieu Marant, Carlo Cossu, Grégory Pujals. Optimal streaks in the wake of a blunt-based axisym-
metric bluff body and their influence on vortex shedding. Comptes Rendus Mécanique, 2017, 345 (6),
pp.378-385. �10.1016/j.crme.2017.05.010�. �hal-02042706�

https://hal.science/hal-02042706v1
https://hal.archives-ouvertes.fr


C. R. Mecanique 345 (2017) 378–385
Contents lists available at ScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

Optimal streaks in the wake of a blunt-based axisymmetric 

bluff body and their influence on vortex shedding

Mathieu Marant a, Carlo Cossu a, Grégory Pujals b

a Institut de mécanique des fluides de Toulouse, CNRS–INP–UPS, 2, allée du Professeur-Camille-Soula, 31400 Toulouse, France
b PSA Peugeot Citroën, Centre technique de Vélizy, 2, route de Gisy, 78943 Vélizy-Villacoublay cedex, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 February 2017
Accepted 11 May 2017
Available online 7 June 2017

Keywords:
Fluid dynamics
Hydrodynamic stability
Flow control

We compute the optimal perturbations of azimuthal wavenumber m THAT maximize the 
spatial energy growth in the wake of a blunt-based axisymmetric bluff body. Optimal 
perturbations with m �= 0 lead to the amplification of streamwise streaks in the wake. 
When forced with finite amplitude m �= 1, optimal perturbations have a stabilizing effect 
on large-scale unsteady vortex shedding in the wake. We show that m ≥ 2 modes, which 
are forced with zero mass flux, can significantly reduce the amplitude of the unsteady 
lift force exerted on the body. When combined with low levels of base bleed, these 
perturbations can completely suppress the unsteadiness in the wake with reduced levels 
of mass injection in the flow.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Suitable three-dimensional perturbations applied to nominally two-dimensional basic flows are known to be able to 
weaken and even suppress vortex shedding in the wake of bluff bodies (see, e.g., [1,2] and [3] for a review). It has recently 
been shown that this stabilizing action is associated with the quenching of the local absolute instability in the wake [4,5], 
leading to the stabilization of the associated global mode [6,7].

In the case of 3D control of 2D wakes, the role of the stabilizing perturbations is essentially to force spanwise peri-
odic perturbations of the streamwise velocity in the wake. In the literature pertaining to wall-bounded shear flows, these 
spanwise periodic perturbations of the streamwise velocity are known as ‘streamwise streaks’ and they are known to be 
very efficiently forced by streamwise vortices through the lift-up effect (see, e.g., [8,9] for a review). The shape of the op-
timal forcing leading to the maximally amplified streaks can be computed through standard optimization techniques and 
is associated with large energy amplifications of the forcing, whose maximal value typically increases with the Reynolds 
number. Such an optimization has been recently performed on parallel and non-parallel model wakes [5,6] and on the cir-
cular cylinder wake [7], showing that the efficiency of the 3D control of 2D wakes can be greatly improved by forcing the 
streaks optimally. In the case of the cylinder 2D wake, it is found that the optimal spanwise wavelengths leading to the 
most amplified streaks in the wake almost coincide with the ones that are the most efficient to quench vortex shedding [7].

While important progress has been achieved in the case of the 3D control of nominally 2D wakes, the same is not true 
in the case of three-dimensional wakes, which are the most relevant to many applications (see, e.g., [10] for a discussion 
of this issue in the context of the aerodynamics of heavy vehicles). The scope of the present study is therefore to test 
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Fig. 1. Longitudinal section of the axisymmetric blunt-based cylinder of diameter D with axis x parallel to the free-stream velocity. The blunt nose of the 
cylinder is a half-ellipsoid of circular cross-section (diameter D) and longitudinal half-axis of length D extending from x/D = −1 to x/D = 0. The tubular 
body has a diameter D and extends from x/D = 0 to x/D = 1.

the effectiveness of an extension to 3D wakes of the approach used for 2D wakes. We choose as a testbed the wake of a 
blunt-based axisymmetric bluff body with an ellipsoidal nose and a square back whose global stability has been previously 
investigated [11]. For this configuration, it has been found that the sequence of global instabilities developing in the wake is 
similar to the one observed for a sphere and in other axisymmetric wakes with a first steady instability of the axisymmetric 
wake that breaks the axisymmetry by giving rise to a non-zero steady lift force. This primary state then undergoes a 
(secondary) instability leading to unsteadiness in the wake and to an unsteady lift force on the body. It has also been 
shown that for the considered configuration these global instabilities can be stabilized with base bleed [11]. Our approach, 
similarly to previous investigations [5–7,12–15], consists in first computing the steady, azimuthally (‘spanwise’) periodic 
optimal perturbations inducing the maximum growth of streaks in the wake and then study their stabilizing effect on 
the wake unsteadiness. We anticipate that the found m �= 1 optimal perturbations have a stabilizing effect on the global 
instabilities.

The mathematical formulation of the problem is introduced in §2. The computed optimal energy amplifications and the 
associated perturbations as well as the analysis of their stabilizing effect are presented in §3. These results are further 
discussed in §4 where some conclusions are also drawn.

2. Problem formulation

We consider the flow of an incompressible viscous fluid of density ρ and kinematic viscosity ν past an axisymmetric 
blunt-based cylinder of diameter D and total length L = 2D whose axis is parallel to the free-stream velocity U∞ex (where 
ex is the unit vector oriented parallel to the axis x of the cylinder). The blunt nose of the cylinder is an ellipsoid with 
circular cross-section of diameter D and longitudinal half-axis with 2:1 ratio. The tubular body has a diameter D and a 
length D (see Fig. 1). In dimensionless coordinates based on D , therefore, the nose of the body extends from x = −1 to 
x = 0, the tubular body from x = 0 to x = 1, and the wake occupies the region x > 1.

The flow is governed by the Navier–Stokes equations for an incompressible viscous fluid:

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u (1)

where u and p and the dimensionless velocity and pressure fields and Re = U∞D/ν is the Reynolds number. The velocity, 
pressure, lengths and times have been made dimensionless with U∞ , ρU 2∞ , D and D/U∞ respectively. Homogeneous 
boundary conditions for the velocity are enforced on the body surface except in the controlled case where wall-normal 
control velocities are enforced.

In the first part of the study, we compute the linear optimal spatial perturbations of the steady axisymmetric solution to 
the Navier–Stokes equations U0, which is linearly stable for sufficiently low Reynolds numbers. These perturbations satisfy 
the Navier–Stokes equations rewritten in perturbation form:

∇ · u′ = 0,
∂u′

∂t
+ u′ · ∇U + U · ∇u′ + u′ · ∇u′ = −∇p′ + 1

Re
∇2u′ (2)

where U = U0 and the nonlinear term u′ · ∇u′ is neglected for the computation of the linear optimal perturbations. In the 
following, steady perturbations u′ are considered, which are of particular interest in open-loop flow control applications 
and which are forced by radial blowing or suction u′

w(θ, x)er enforced on the body lateral surface (0 < x/D < 1, r/D = 1/2). 
Similarly to [7], the optimal spatial energy amplification of wall control forcing is defined as G(x) = maxuw e′(x)/e′

w, where 
e′

w is the (input) kinetic energy of the blowing and suction forced on the lateral surface and e′ is the (output) local per-

turbation kinetic energy at the station x respectively defined, in dimensionless coordinates, as e′
w = (1/4) 

∫ 2π
0

∫ 1
0 (u′

w)2 dx dθ

and e′(x) = (1/2) 
∫ 2π ∫ ∞ u′ · u′ r dr dθ .
0 0
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Fig. 2. Longitudinal section of the grid showing the increased grid density in the regions of higher shear.

To numerically compute G(x) and the associated optimal wall perturbation, we follow an approach similar to the 
one recently applied to the circular cylinder wake [7]. The (control) radial velocity, enforced on the lateral cylindrical 
surface u′

w(θ, x) is decomposed on a set of linearly independent functions b(n)
w , in practice truncated to N terms, as: 

u′
w(θ, x) = ∑N

n=1 qnb(n)
w (θ, x). Denoting by b(n)(θ, r, x) the perturbation velocity field obtained by using b(n)

w (θ, x) as in-
put, from linearity it follows that u′(θ, r, x) = ∑N

n=1 qnb(n)(θ, r, x). The optimal energy growth can therefore be computed 
with its subspace approximation G(x) = maxq qTH(x)q/qTHwq, where q is the N-dimensional control vector of components 
qn and the components of the symmetric matrices H(x) and Hw are defined as Hnj(x) = (1/2) 

∫ ∞
0

∫ 2π
0 b(n) · b( j)r dθ dr; 

H w,mn = (1/4) 
∫ 2π

0

∫ 1
0 b(m)

w (θ, x) b(n)
w (θ, x) dθ dx. The optimal energy growth G(x) is easily found as the largest eigenvalue 

μmax of the generalized N × N eigenvalue problem μHww = Hw. The corresponding eigenvector q(opt) is the set of optimal 
coefficients maximizing the kinetic energy amplification at the selected streamwise station x, and the corresponding optimal 
blowing and suction is given by u′ (opt)

w (θ, x) = ∑N
n=1 q(opt)

n b(n)
w (θ, x). In the following, as the basic flow U0 is axisymmetric 

and the equations linear, our results are obtained by computing independently the single-harmonic azimuthally periodic 
perturbations u′

w(θ, x, m) = f (x) cos mθ . The maximum growth is finally defined as Gmax = maxx G(x), and is separately 
computed for each considered azimuthal wavenumber and converged by increasing the truncation order N .

In the second part of the study, the effect of three-dimensional optimal perturbations on the wake unsteadi-
ness is investigated by forcing them with finite amplitude Aw, and therefore enforcing the following radial veloc-
ity at the wall in the nonlinear numerical simulations: u′

w(x, m) = Aw f (opt)(x, m) cosmθ , where f (opt) is normalized 
so as to obtain e′

w = (π/2)A2
w. The cost of the control can be quantified with the momentum coefficient of forc-

ing Cμ =
(∫

S lat
u2

wdS + ∫
Sbase

u2
bdS

)
/(πR2U 2∞/2), which, using dimensionless units, is Cμ = 8A2

w + 2C2
b . Even more im-

portantly in applications, the cost of the control can also be quantified in terms of dimensionless mass flux C Q =(∫
S lat

uw dS + ∫
Sbase

ub dS
)

/(πR2U∞). When optimal perturbations with m > 0 are used, the associated mass flux is zero 
and therefore C Q = Cb. However, for m = 0, the mass flux is non-zero and in this case, in dimensionless units C Q =
Cb + 4Aw

∫ 1
0 f (opt)(x, m = 0) dx, where positive and negative Aw are associated with blowing and suction, respectively.

All the presented results are based on numerical integrations of the full or the linearized Navier–Stokes equations per-
formed using a customized version of OpenFoam, an open-source finite volume code (see http :/ /www.openfoam .org), which 
has already been validated and used in a series of previous investigations in our group [5–7]. The flow is solved in a three-
dimensional domain extending 2.5 D upstream of the body, 3 D from the symmetry axis, and 10 D downstream of the body 
stern. The grid is structured and refined near the body surface, as shown in Fig. 2. The PISO and SIMPLE algorithms have 
been respectively used to advance the solution in time and to compute steady solutions.

3. Results

The different regimes of the wake observed in the uncontrolled case (no normal velocity forced on the body surface) have 
been thoroughly investigated in [11]. A steady axisymmetric flow is observed for Reynolds numbers below Re1 � 319. At 
Re = Re1, the axisymmetry flow becomes globally unstable and is replaced by a steady flow characterized by the presence 
of two (steady) counter-rotating vortices originated in the near wake and that diffuse further downstream. This new steady 
flow becomes unstable at Re2 � 413. Periodic vortex shedding is observed just above this second critical Reynolds number. 
Our numerical simulations retrieve these different regimes, as shown in Fig. 3 where the vortical structures corresponding 
to Re = 300, Re = 350, Re = 415, and Re = 500 are shown. The signatures of these different numerical regimes are well 
recognisable on the lift force exerted on the body, as shown in Fig. 4. While the lift is zero in the axisymmetric regime, it 
rises to a non-zero steady value in the range Re1 < Re < Re2 and, for Re > Re2, begins to oscillate around that non-zero 

http://www.openfoam.org
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Fig. 3. Vortical structures on the surface and the wake of the bluff body in the uncontrolled case in different dynamical regimes visualised with the 
Q = 0.001 surfaces. (a) At Re = 300, the flow is steady and axisymmetric. (b) At Re = 350, a steady (non-axisymmetric) flow with two counter-rotating 
streamwise vortices in the wake is observed. (c) At Re = 415, a periodic global mode oscillates on top of the counter-rotating vortices, while (d) at Re = 500
additional structures of smaller scales and higher frequencies enter the picture.

Fig. 4. Temporal history of the lift coefficient associated with the four dynamical regimes reported in Fig. 3. The permanent regime is observed for t >≈ 250. 
At Re = 300 the flow is steady and axisymmetric and therefore has zero lift. At Re = 350, the steady non-axisymmetric solution displays a steady lift which 
at Re = 415 oscillates periodically. A higher level of the oscillations and additional frequencies are observed at Re = 500.

mean value. The amplitude of the oscillations and their frequency content increase when the Reynolds number is further 
increased.

Having summarized the ‘reference’ uncontrolled dynamics of the wake, we next consider the optimal energy ampli-
fications that can be supported by the axisymmetric wake steady solution U0. In the axisymmetric case, the optimal 
amplifications and the associated optimal perturbations can be separately computed for the different azimuthal wavenum-
bers. We therefore compute the optimal spatial amplification of the steady radial velocity forcing u′

w(θ, x, m) = f (x) cos mθ

of azimuthal wavenumber m applied on the body lateral skin at Re = 300 < Re1. Following the procedure described in §2, 
the streamwise distribution f (x) for 0 < x < 1 is approximated with an expansion on Chebyshev polynomials Tn(ξ) (where 
ξ = 2 x − 1) truncated to N terms. Similarly to what was found in previous studies [6,7], the optimal amplification is found 
to converge to a 1% precision with N ∼ O (10) terms, as shown in Fig. 5. The m = 1 mode is found to be the most ampli-
fied (with Gmax > 500). However, as this mode becomes linearly unstable (with a zero frequency) above the first critical 
Reynolds number Re1 and therefore has a destabilizing action at higher Reynolds numbers, we do not further consider it 
in the following. The two most amplified modes at Re = 300 (excepted the m = 1) are the m = 2 and the m = 0, while the 
m = 3 and m = 4 are much less amplified, as shown in Fig. 6a. As expected, the amplifications increase with the Reynolds 
number (as shown in Fig. 6b for the m = 2 mode).

The dynamics of the m = 0 (axisymmetric) mode is qualitatively different from that of the other modes because, contrary 
to them: (a) it is not related to the amplification of streaks (the lift-up effect) but to the Orr mechanism [8], (b) it is 
associated with a non-zero mass flux, and (c) opposite effects are obtained with negative or positive amplitudes of uw. 
This different behaviour is also recognisable on the longitudinal shapes | f (opt)|(x) of the optimal blowing and suction that 
are reported in Fig. 7. The shapes of the m = 2, m = 3 and m = 4 modes are very similar and they all correspond to 
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Fig. 5. (a) Convergence of the G(x) optimal spatial energy growth curve with the number N of linearly independent distributions of wall blowing and 
suction included in the optimization basis for the m = 2 perturbations at Re = 300. (b) Corresponding convergence of the maximum amplification Gmax

with N . Converged results are obtained with N ≈ 6 terms.

Fig. 6. Dependence of the optimal growth curve G(x) on the azimuthal wavenumber m at Re = 300 (panel a) and on the Reynolds number for the m = 2
mode (panel b).

Fig. 7. Longitudinal shape | f (opt)|(x) of the optimal blowing and suction at Re = 300, where all the functions have been normalized by their maximum 
absolute value.

spanwise periodic blowing and suction increasingly concentrated near the trailing edge, while for the m = 0 mode the 
optimal distribution | f (opt)|(x) is non-negligible in the upstream half of the lateral section. The variations of | f (opt)|(x) with 
Re are small (not shown), similarly to what was found in the 2D case on the circular cylinder [7]. The spanwise periodic 
optimal blowing and suction of m �= 0 modes induces counter-rotating streamwise vortices that decay downstream while 
forcing the growth of streamwise streaks, as shown in Fig. 8.

Having computed the optimal perturbations leading to the optimal energy growth in the wake, we next consider their 
effect on the unsteady wake for Re > Re2. To this end, for each considered azimuthal mode m �= 1, we select the shape 
of the optimal forcing leading to the maximum amplification Gmax and we do force it with finite amplitude Aw. We find 
that this forcing has (for m �= 1) a stabilizing effect on the unsteadiness of the wake as measured by variations of the lift 
coefficient CL. For the m = 0 forcing the stabilizing effect is obtained with suction (Aw < 0), while blowing (Aw > 0) has 
the opposite effect (not shown). The effect of the forcing on the CL(t), shown in Fig. 9 for the m = 2 mode, is to lead to a 
permanent reduction of both the amplitude of the lift oscillations and their mean value when the amplitude Aw of optimal 
blowing and suction is increased. The stabilizing effect of forcing optimal perturbations is associated with an increasing 
‘symmetrization’ of the wake induced by the forced streaks, as shown in Fig. 10.
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Fig. 8. Cross-stream (y − z) view of the velocity perturbations forced by the m = 2 optimal blowing and suction at Re = 300 at the three selected streamwise 
stations: x = 1 (bluff-body stern, panel a), x = (xmax + 1)/2 (midway to the position of maximum streak amplitude, panel b) and x = xmax (position of 
maximum streak amplitude, panel c). The scales used to plot the cross-stream v ′–w ′ velocity components (streamwise vortices, arrows) and the streamwise 
u′ component (streamwise streaks, contour lines) are the same in all panels. The circular cross section of the base of the bluff body is also reported as a 
(red) circle for reference.

Fig. 9. Temporal history of the lift coefficient associated with the uncontrolled flow at Re = 500 (Aw = 0, as also reported in Fig. 4) and with the increasing 
amplitudes Aw of the m = 2 optimal blowing and suction at Re = 500.

Fig. 10. Vortical structures (visualised with the Q = 0.001 surfaces) on the surface and the wake of the bluff body at Re = 500 in the uncontrolled case 
(panel a, which is the same as panel d of Fig. 3) and with the m = 2 optimal blowing and suction enforced with Aw = 0.014 (panel b) and Aw = 0.028
(panel c).

Similar results are obtained for the other (m �= 1) modes, as shown in Fig. 11, where the dependence of the root mean 
square amplitude of the lift coefficient oscillations C (rms)

L on the control amplitude measured in terms of the momentum 
coefficient Cμ is reported. Complete stabilization can be obtained at Re = 415 (near the critical Reynolds number) and 
significant reductions of the ‘rms’ amplitudes can be achieved at Re = 500. However, excessive amplitudes of the control 
forcing can result in a new increase in C (rms)

L , now sustained by the induced streaks.
As already mentioned, for the considered flow, standard base bleed is an effective way to suppress unsteadiness in the 

wake [11]. We therefore compare the effect obtained with the selected azimuthal modes of optimal blowing and suction 
at Re = 500 to the pure base bleed in Fig. 12a. From this figure, it is seen how, among the optimal blowing and suction 
controls, the least effective mode is the axisymmetric one m = 0. The m = 2 mode is the most effective at low forcing 
amplitudes, while m = 3 is more effective at higher forcing amplitudes.
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Fig. 11. Dependence of the C (rms)
L root mean square amplitude of the lift coefficient oscillation on the control amplitude measured in terms of the momen-

tum coefficient Cμ for Re = 415 (diamonds) and Re = 500 (triangles) for the m = 0 (panel a), m = 2 (panel b) and m = 3 (panel c) optimal blowing and 
suction.

Fig. 12. Comparison of the C (rms)
L (Cμ) dependence of the m = 0, m = 2 and m = 3 optimal blowing and suction in the absence of base bleed (panel a) and 

with base bleed Cb = 0.01 (panel b) and Cb = 0.02 (panel c). For convenience, these curves are compared, in all panels, to the one obtained by pure base 
bleed (BB) in the absence of any forcing of optimal blowing and suction (Aw = 0).

Pure base bleed (Aw = 0) is found to be more effective than the optimal blowing and suction, but at the cost of a steady 
mass injection in the flow (while m �= 0 optimal blowing and suction are associated with zero mass flux). It is therefore 
interesting to test if combinations of base bleed and optimal blowing and suction could lead to the complete suppression 
of the unsteadiness using lower levels of mass injection in the wake. This is, actually, also interesting for the m = 0 mode, 
which, being associated with suction, could provide at least part of the mass used for base bleed. We have therefore explored 
if combinations of standard base bleed and optimal blowing and suction could enhance the control performance. The first 
two base bleed values reported in Fig. 12a (Cb = 0.01 and Cb = 0.02, corresponding to the second and third point from the 
right on the black-diamond curve) have therefore been used in combination with the optimal blowing and suction forcing, 
as reported in panels b and c of Fig. 12. From these figures, it is seen how the combination of optimal blowing and suction 
and base bleed is efficient, leading to the complete stabilization of the oscillations in the wake with a mass flux reduced 
when compared to the pure base bleed with the same Cμ .

4. Conclusions

The scope of this study was two-fold: (a) compute, for the first time, the optimal steady perturbations of a 3D (axisym-
metric) wake induced by optimal blowing and suction on the skin of the body and (b) analyse if these optimal perturbations 
have a stabilizing effect on the wake when forced with finite amplitude. In its scope and methods, the present study is 
therefore an extension to 3D wakes of the approach successfully implemented on 2D wakes [6,7].

It is found that the steady (m �= 0) optimal blowing and suction leads to the formation of streamwise vortices that 
induce the growth of streamwise streaks, like in 2D wakes. The m = 1 mode is the most amplified for Re < Re1, but it 
becomes linearly unstable for Re > Re1. Other modes are also amplified but, contrary to what found in 2D wakes, they 
are associated with maximum amplifications that are smaller than those found in the 2D case on the circular cylinder. 
This is not extremely surprising because, in the 2D circular cylinder wake, the most amplified mode corresponds to a 
spanwise wavelength λz ≈ 5 − 7 D (where D is the cylinder diameter), while shorter wavelengths are much less amplified. 
As in the axisymmetric case, the analogous of the spanwise wavelength is λz ≈ πD/m, the maximum accessible ‘spanwise 
wavelengths’ are therefore small, e.g., λz/D ≈ 1.5 for m = 2. The maximum amplifications achievable in an axisymmetric 
wake are therefore arguably small if an analogy with the 2D wake is made. Another consequence of the relatively small 
accessible λz is that the streamwise position where the maximum growth is attained is also smaller than in the 2D case 
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at comparable Reynolds numbers. Similarly to 2D wakes, the longitudinal shape of the optimal blowing and suction is 
not sensitive to the azimuthal wavenumber m (except for the m = 0 mode whose amplification is based on a different 
mechanism).

We have also shown that, when forced with finite amplitude, m �= 1 optimal blowing and suction has a stabilizing effect 
on the unsteadiness in the wake, reducing the mean and the fluctuating amplitude of the lift. When combined with the 
usual base bleed on the body base, this type of control can lead to the complete stabilization of the wake even at Re = 500. 
As the stabilizing optimal blowing and suction is associated with a zero mass flux for m > 0 and to net suction for m = 0, 
when combined with base bleed, the stabilization is obtained with smaller mass fluxes than in the pure base bleed case. 
Further investigation is under way to find if a combined optimisation including the base bleed shape can lead to further 
improvements of this control strategy.
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