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Abstract
The development of a predictive model for bone remodeling is becoming increasingly important for medical applications such
as bone surgery or bone substitutes like prostheses. However, as bone remodeling is a complex multiphysics phenomenon and
difficult to quantify experimentally, predictive numerical models remain, at best, phenomenologically driven. Patient dependency
is often ignored as its influence is usually considered secondary, although it is known to play an important role over long periods
of time. Another difficulty to study this patient dependency is the availability of experimental samples to carry out extensive
analyses. Using our recently developed statistical reconstruction framework, a set of ‘‘bone like’’ microstructures with variety of
distributions has been created to study pseudo ‘‘patient variabilities.’’ The method provides similar effective stiffness tensor,
equivalent stresses, and strain energy distributions for the original and the statistically reconstructed samples. The main out-
come of this study is the correlation of similar effective mechanical properties between samples when bone remodeling will
depend on the local strain energy distribution as a function of each bone microstructure. It is expected that two different micro-
structures with equivalent bone volume fraction will lead to identical bone remodeling in a short period of time, whereas this
needs to be proven for long term evolution. This work could be used to develop precise predictive numerical models while
developing parametric studies on an infinite number of virtual samples and correlating patient dependency with more precise
mechanobiological numerical models.
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1. Introduction

It is well established in the literature that the interaction between mechanics and biology plays a crucial
role in the interpretation of growing tissue behavior [1–3]. This mechanobiology depends on the natural
tendency of the biological tissue to develop optimizing behavior to gain proper mechanical strength with
the minimum amount of material. For bone adaptation and remodeling, this optimization problem is at
the origin of many studies since the early work by Wolff [4] followed by many others [5–9] exploring the
internal architecture and external conformation of bones changes in accordance with mathematical laws.
The evolution of bone microstructure being dependent on cells and microstructure distribution, various
mechanical stimuli have been proposed to trigger bone adaptation [10–13]. While continuum models, for
the description of natural bone regeneration, are widely spread in the scientific literature, scale related
effects of the material, are not often integrated in the structural evolution due to its highly heterogeneous
nature at the small scales. At these scales, the classical continuum theory does not allow to describe the
correct material behavior where the prediction made by Cauchy continuum theory starts being far away
from the experimental evidence [14–18]. Hence, adequate homogenization methods [19,20] need to be
developed in order to integrate all these local phenomena at the global scale.

Historically, bone mechanical behavior was dealt with using classical optimization processes based
mainly on the developed mechanical strain energy density (SED) through the material [21–29]. However,
to be able to obtain a good predictive numerical model, the biological phenomena [30] need to be linked
with the surrounding physics [31–35], and account for the growing capillaries and nutrient supply [36–39].
Lately, a new form of mechanobiological stimulus for bone remodeling has emerged integrating coupled
biological and mechanical effects accounting for cell migration and the nutrient supply chain [40–42].
Although this allows accounting for the couplings between the mechanics and biological phenomena, it
remains a macroscopic approach and requires more insight about the locally occurring mechanobiology.

Bone microstructure distribution is optimized in order to sustain the externally applied mechanical
loads and its evolution changes over the long term as a function of local biological information.
However, on a macroscopic scale, where the bone density is characterized only as a homogeneous
media, the influence of this microstructure over the long term remodeling kinematics is little investi-
gated. Although some numerical models tried to predict the bone remodeling kinematics from known
trabecular bone distributions [43–46], these do not provide insight about long term evolutions. In addi-
tion, patient dependent bone microstructure is very variable [47,48], this could impact directly the
numerical model predictions. Lately, some numerical models have investigated the correlations between
the bone stiffness and simplified microstructure distribution [49–53] through multiscale homogenization
procedures. However, the bone remodeling processes accounting for these microstructure variabilities at
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the macroscopic scale are not studied since these works are mostly related to the structural mechanics
homogenization process.

The ultimate goal of this research is to study the influence of the local bone microstructure distribu-
tion on the macroscopic bone density evolution over long periods of time. The first step of this study
require an adequate method for bone microstructure reconstruction in order to study large sets of speci-
mens as it is not possible to extract that amount of real bone samples, and show that the proposed recon-
struction method is able to provide corresponding results with different structural samples as equivalent
effective stresses, strain energy and stiffness tensor. For this, we present here a methodology to study the
influence of the bone microstructure distribution on the developed mechanical energy field. Real bone
microstructures are extracted from computed tomography (CT) scan data and segmented/reconstructed
to obtain the corresponding finite element (FE) numerical model. A statistical method is used to recon-
struct several equivalent bone microstructures with identical homogeneous stiffness. FE models are then
constructed from these statistical microstructures. The same mechanical loads are applied on the differ-
ent FE models to extract the variabilities of the local SED that will be at the origin of the bone remodel-
ing kinetics.

2. Experimental details

2.1. Specimen preparation

The real bone specimen was extracted from the femur of an 85-year-old woman post mortem. The adult
bone was harvested from the corpse at the Timone Hospital (Marseille, France). The specimen was cut
into a parallelepiped rectangle of length, width, and thickness dimensions 9.88 mm, 6.13 mm, and 2.29
mm, respectively, using a water-cooled low-speed diamond saw (Buehler Isomet 4000, Buehler, Lake
Bluff, IL, USA). The length of each specimen was measured with a digital calliper (Absolute digimatik
solar, Mitutoyo, Kanagawa, Japan, measurement error of 0.03 mm). The specimen was stored under
vacuum at 220�C.

2.2. Image acquisition

The specimen was imaged at 5.5 mm voxel size using a micro-CT system (Phoenix Nanotom 180 S,
General Electric, Germany). The scanning was done with a hydrated bone specimen, immersed in salt
water inside a 25 mm inner diameter plastic tube. The axial specimen main axis (i.e., Haversian canal’s
principal orientation and medullar canal orientation) was aligned with the rotational sample holder
axis. Scans were done with a field of view of 2284 × 2304 pixels, with a maximum voltage source of 90
kV, a current of 120 mA and a rotation of 360� providing 2400 projections per scan. The exposure time
was 500 ms with a total scan time of 85 minutes. The bone density was measured at 92% of the overall
specimen volume.

3. Theoretical modeling

The statistical reconstruction approach enables to obtain various different microstructures with identical
effective stiffness tensor by exploiting a single cut section image through the original bone sample. Bone
images can be extracted from CT-scan or other experimental techniques.

Following our previous works [54,55], several bone microstructures were generated with identical
effective stiffness tensor to evaluate the effect of the geometrical distribution of bone microstructure on
local energy. This enabled to study many different scenarios (different virtual samples), using the full
spectrum of two-point correlation function (TPCF) for eigen microstructure, without the need of
extracting real bone samples.

The characteristic function (CF) of the heterogeneous microstructure can be written [56] as:

kn
s =

1 if s 2 phase n

0 otherwise

�
ð1Þ

where n is a specific phase and the s index enumerates the voxel number of the sample.

Sheidaei et al. 3



This method is based on the fact that the material is not a functionally graded material (FGM) and
that the statistical information of parallel cut sections are identical.

To reconstruct a three-dimensional (3D) representative volume element (RVE) based on given two-
dimensional cut-sections, we introduce TPCFs, being statistical functions that give some information
about the volume fraction, shape and distribution of the microstructure phases and are correlated with
its various features such as effective thermal and mechanical properties [56].

In this research, we use fast Fourier transform (FFT) and a phase recovery algorithm to reconstruct
the microstructure [57]. The TPCF of the phases n and n

0
, Cnn

0

2 , for an arbitrary vector t, can be defined
as

Cnn
0

2 (t) =
1

S

XS

s= 1

kn
sk

n
0

s+ t ð2Þ

where S is the number of all voxels in the RVE and t is an arbitrary vector selected from the RVE. The
Fourier transform (FT) of equation (2) leads to a more convenient form [58] for computation:
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Using the variable exchange (t= z� s) and assuming a periodic extension of the RVE in all directions,
equation (3) can be written as

bK nn0

m =F Cnn
0

s

� �
=

1

S

XS

s= 1

kn
se
�2pis:m=S

XS

z= 1

kn
0

s e
2piz:m=S =

1

S
jbK n

mje�iu
n
m jbK n

0

m jeiu
n
0

m ð4Þ

where jbK n
mj and un

m are the module and phase of the FT for the CF, with
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It should be noted that the FT, expressed as F :ð Þ, is calculated over all axes (i.e. 3D FT for (s1, s2, s3)).
In equation (3), if n = n

0
the TPCF is also called autocorrelation function, and its FT, using equation

(4), can be obtained as

bK nn
m =

1

S
jbK n

mj
2 ð6Þ

Equation (6) shows that the FT of the autocorrelation function is related only to the FT module of the
CF. If the FT of the autocorrelation functions exist, it is then possible to calculate its modules. Hence,
for a two-phase microstructure, if the autocorrelation functions are to be known at first, it is possible to
reconstruct the microstructure if the phase of the microstructure (i.e. un

m) is determined (see equation
(5)). The reconstruction of an object based just on its FT modules, called phase recovery [59], is a com-
mon method in astronomy and microscopy.

The application of this procedure for microstructure reconstruction was first introduced by Fullwood
et al. [58]. The reconstruction procedure using the phase recovery algorithm is as follow:

(1) Based on the known autocorrelation functions, the module of the CF is calculated using equa-
tion (6). It is called the original amplitude. From this first step a random microstructure is
generated.

(2) Once the FT of the randomly generated microstructure calculated, its amplitude is replaced by
the original amplitude and then the inverse FT is calculated.

(3) Constraints of the generated microstructure are applied. If the difference between the FT ampli-
tude of the obtained CF and the original amplitude is below a given threshold, the reconstruction
procedure is considered completed and acceptable. Else, the obtained CF is defined inadequate
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for this generated microstructure and the procedure is reset until the difference between the two
amplitudes falls under the given threshold.

An improvement of this method was recently proposed by Hasanabadi et al. [54,55] on a new approxi-
mation for the calculation of the TPCFs for a 3D RVE. We assume that the TPCF of an identical vec-
tor in a given RVE in two parallel planes are approximately equal. Hence, only two perpendicular cut-
sections (planes) in the RVE are necessary for the TPCFs definition and reconstruction process. This
assumption is valid for statistically homogenous media [57]. As shown in Figure 1, an arbitrary vector r
in space can be decomposed into rz and rxy. If the TPCFs of two planes, xy and yz are known, the full
set of TPCF for 3D RVE can be approximated [55] based on

C11
2 rð Þ’ C11

2 (rxy)C11
2 (rz)

v1

+
(v1 � C11

2 (rxy))(v1 � C11
2 (rz))

(1� v1)
ð7Þ

where v1 is the volume fraction of phase 1.
The flowchart of the reconstruction procedure is presented in Figure 2. More details of this method

can be found in [58].
In this approach, TPCFs were extracted using CT images and used to reconstruct microstructures

converging to the real ones. The main reasons to choose this reconstruction technique are as follows:

(i) A strong contrast expansion shows that the stiffness tensor is linked to the TPCF of the micro-
structure; therefore the TPCF is a very good selection of the statistical distribution descriptor.

(ii) In the phase recovery algorithm, different sets of TPCF can be employed for the reconstruction
procedure, therefore enabling to reconstruct a variety of microstructures with few cut-section
images.

Figure 1. Decomposition of the vector r to rz and rxy .

Figure 2. Flowchart of the reconstruction procedure.
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An improvement of the reconstruction process is envisaged in future works using two-point cluster func-
tions but the mathematical framework for this needs to be developed.

4. Finite element model

The original CT scanned images were cropped into size 351 × 319 pixels and were imported into the
VCAT software (released by V-CAD Program, RIKEN, Japan). The images were then assembled into
stacks of 150 images after thresholding and made a 3D RVE of the bone microstructure. Figure 3 shows
the 3D RVE for the real bone specimen and the statistical one possessing similar realistic features (size,
shape, and distribution) as the real one, being suitable for the calculation of its mechanical properties.
Figure 3 also shows the connected network of voids inside the cortical bone. Effective properties were
extracted directly from the results of the FE analysis on statistical and real bone microstructures. A
direct comparison was made between the real bone sample and statistical reconstructed ones to validate
the reconstruction process.

In this work, the primary goal is to focus on the ability of the statistical reconstruction method to pro-
vide ‘‘bone like’’ microstructures and check whether these reconstructed microstructures show similar
mechanical characteristics as the real bone. Once the statistical reconstruction method validated on a
number of samples, it is then possible to create virtually an infinite number of microstructures showing
different microstructures distributions and bone densities, hence enabling to study an infinite number of
‘‘bone samples’’ without the need of specimen extraction. Although the computation time is an impor-
tant aspect, this is not the primary focus here as it can be addressed in future studies, but rather crucial
to validate the quality of the reconstruction method in the first place.

The V-CAT software was used with its built-in mesh generator to obtain a high quality tetrahedral FE
mesh, accounting for highly irregular and high aspect ratio solid and void clusters. This capability enabled
to preserve a good quality of the void volume fraction during the meshing process. The mesh simplifier
software has been used to reduce the number of elements in the bone part without sacrificing the volume
fraction of the void. The total number of elements in the bone part was around 3.5 million tetrahedral ele-
ments for all RVEs. The volume fraction of the void phase has been calculated around 8%, which is very
close to the original CT scanned data. More details about creating the 3D model, mesh generation and
homogenization process for real and reconstructed microstructures are provided in [60].

The real internal bone microstructure either cortical or trabecular is subjected to the combination of
normal and shear loads defined by the external bone geometry and load conditions (muscles, body
weight, bone type). However, it is rather difficult to extract quantitative data from such conditions.
Hence, in order to be able to validate the statistical reconstruction method by comparing developed
stresses and elastic strain energy on real and statistical bone microstructures, we conducted six simula-
tions (three tensile tests and three shear tests) on each RVE using the FE software ABAQUS�. These
were used to find the modulus of elasticity and Poisson’s ratios of the RVEs in the X, Y, and Z
directions.

Figure 3. Finite element mesh for cortical bone microstructures (left: bone phase, right: void phase): (a) real specimen; (b)
statistically reconstructed specimen from cut section 2. The approximate size of samples (real and reconstructed ones) is 1930 x
1750 x 600 mm3.
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Since bone is a highly heterogeneous material [61,62] and this affects its overall mechanical behavior
[63,64], it is necessary to compare the obtained results at the effective macroscopic scale. Based on these
tests, stiffness tensors of all RVEs were obtained and influences of the microstructure distributions were
quantified.

5. Results and discussion

Five statistical bone microstructures were reconstructed (see example in Figure 3). From these different
cases, including real bone sample, homogenized macroscopic stiffness coefficients (i.e. Young modulus
and Poisson’s ratio) were extracted for the validation of the reconstruction process, assuming the mate-
rial (bone solid phase) mechanical behavior was linear elastic with a Young modulus E = 15 GPa (aver-
age value for cortical bone) and Poisson’s ratio n = 0.3. The results are presented in Table 1. The real
bone sample presented values of Young modulus varying between 11.17 GPa and 12.89 GPa, and
Poisson’s coefficients between 0.228 and 0.301 in the different directions. It is observed that the Young
moduli Ex and Ey are the lowest and Ez is the highest which is due to the fact that cortical bone micro-
structure is orientated along the Haversian canal. Comparing these values with the obtained homoge-
nized coefficients of all statistically reconstructed cases, it was observed that for all of them, the obtained
Young moduli are very close to the minimum value obtained for Ey of section 6 at 10.76 GPa and high-
est value for Ez of sections 2 at 13.326 GPa. The errors developed from the microstructures variations
for the Young moduli are; for the minimum Young modulus value equal to 3.1%, for the maximum
Young modulus value equal to 3.38% and for the range min-max equal to 4.39%. For the Poisson’s
ratio, their variability checked between 0 and 0.06, which is a very small range. In addition, it was
observed that the real sample mechanical properties are mostly situated in the middle of all reconstructed
cases which show a good correlation with the different scenarios.

From the original bone sample, it was possible to reconstruct different bone microstructures corre-
sponding to different case scenario (different samples/different virtual patients) with a very good accu-
racy. The reconstruction method allows obtaining an infinite number of virtual cases (patients) from
the real bone sample, to study their mechanical behavior individually, and compare them with the real
bone sample. It is also possible to extract tendencies with given scenarios of specific microstructure
distributions.

Once the statistical reconstruction of different microstructure was validated, both tensile and shear
mechanical loads were applied on each of them to compare their mechanical behavior, as well as the
stresses and energy/energy density distribution fields developed. Each model is constituted of about 3.5
million tetrahedral FE elements in the solid phase. The applied load corresponds to an average standing
person body weight (about 750 N) downscaled to the size of the sample surfaces. This leads to small
deformation in the sample for the given mechanical properties; hence linear elastic analysis is adequate
here. For the sake of lightness of the paper, we present only the results of the real bone sample with two
other statistical microstructures built from cut section 3 and cut section 5 on the real bone sample
respectively.

For the tensile test, the stresses are plotted in the corresponding loading direction (x) and (z), together
with the corresponding SED developed within the microstructures. They are presented in Figures 4 and
5, respectively. For the shear load scenario, stresses in the (xy) direction together with SED are presented
in Figure 6. Although the effective equivalent mechanical properties are similar for all cases (see Table

Table 1. Modulus of elasticity and Poisson’s ratio in different directions for the real and statistical bone microstructures.

Ex (GPa) Ey (GPa) Ez (GPa) nxy nxz nyz nyx nzx nzy

Real bone 11.723 11.172 12.894 0.228 0.263 0.262 0.275 0.289 0.301
Cut section 2 12.506 12.064 13.326 0.291 0.272 0.274 0.281 0.29 0.301
Cut section 3 11.456 11.310 12.686 0.281 0.260 0.264 0.277 0.288 0.298
Cut section 4 11.456 11.310 12.713 0.281 0.260 0.264 0.277 0.289 0.297
Cut section 5 11.556 11.229 12.838 0.288 0.259 0.263 0.279 0.288 0.297
Cut section 6 11.185 10.765 12.370 0.282 0.259 0.258 0.271 0.287 0.298
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1), the stresses and SED, presented in Figures 4 to 6, show different distributions for both tensile and
shear applied loads. Despite this anisotropic distribution, the amount of developed energy within the
samples remains similar (see below).

The interpretations of these results tend to show that:

(i) The statistical reconstruction method provides a practical method to study any virtual sample
from the mechanical behavior point of view as homogenized mechanical variables (stiffness coef-
ficients, stresses, and strain energy) remain very similar. It provides a viable method to extract
local microstructures interpretations. More specifically, it shows the equivalent correlation

Figure 4. Developed stresses and strain energy density in the real bone and statistical samples (section 3 and 5) under tensile load
applied in the x-direction.

Figure 5. Developed stresses and strain energy density in the real bone and statistical samples (section 3 and 5) under tensile load
applied in the z-direction.
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between homogenized bone density measurements (as in magnetic resonance imaging informa-
tion, for example, for the gray scale of the Hue value) and different types of microstructure
distributions.

(ii) The variabilities of the mechanobiological response for each reconstructed case can be evaluated
as a function of the distributed SED and the different microstructure distributions. This in turn
can provide long term variations in the bone density evolution and can show the influence of each
of the different microstructures on the bone density kinetics.

To evaluate the potential bone density evolution as a function of the applied mechanical loads, the total
developed strain energy inside each sample for the different cases (real sample and five reconstructed
cases) in tensile and shear load conditions are presented in Figure 7.

Small variations of the developed strain energy are observed for each of the different load scenarios.
For tensile loads, the strain energy varies from a minimum of 1.485 mJ/mm3 up to 1.786 mJ/mm3. For
shear loads, it varies from a minimum of 2.284 mJ/mm3 up to 2.622 mJ/mm3. For all cases, the real

Figure 6. Developed stresses and strain energy density in the real bone and statistical samples (section 3 and 5) under shear load
applied in the xy-direction.
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Figure 7. Total developed strain energy for the different bone microstructures (X, Y, and Z indicate tensile test and XY, XZ, and
YZ indicate shear tests).

Sheidaei et al. 9



bone sample is always around the mid-value of the statistical cases in the same way as was observed for
the stiffness coefficients. The strain energy variation for all cases is within 3% to 6% compared to the
real bone sample showing the reliability of the statistical reconstruction method. The developed strain
energy in the z direction is slightly higher than in the x and y directions for tensile load conditions. This
is in agreement with the higher stiffness of the z direction reported in Table 1. However, interestingly,
shear load cases show significantly higher strain energy than simple tensile load conditions. The average
energy for shear load has increased by 53% compared to tensile load conditions. This needs to be inves-
tigated in future work with a more exhaustive screening of different bone microstructure in order to
extract the coupling effects between shear and tensile load conditions.

Nevertheless, as bone cells activation will depend on the developed mechanical energy within the
structure, we can assume that for different types of bone microstructures, this coupling effect (between
shear and tensile loads) will impact on the bone remodeling process. If shear stresses show to be predo-
minant, it could be correlated to the fact that cells are more sensitive to shear load conditions than
hydrostatic pressure [65], hence favoring shear loads for optimized bone reconstruction.

In order to correlate the viability of the reconstructed microstructures to the real bone sample, prob-
ability distribution functions (PDFs) were extracted. It represents the number of elements in the sample
having a specific strain energy and is plotted as an element count versus strain energy divided by the
total number of elements in the model. Figure 8 shows the average PDF value of the statistically recon-
structed cases with the real bone PDF distribution. Statistical variations are small and a very good agree-
ment is observed between the reconstructed cases mechanical response and the real sample.

Since mechanical load type, load direction and microstructure distribution impact directly the bone
density evolution, the SED for all the elements in each RVE were extracted. The PDFs of the SED for
each load case and microstructure are presented in Figure 9.

For each load case, the PDF of real bone is plotted in red. We observe that not only the overall
mechanical response of the statistically reconstructed microstructures is similar to the one of real bone
but also the distributions of strain energy densities are similar. The variabilities observed in these results
are based on the fact that a 3D stochastic reconstruction technique has been used for reconstruction of
the bone microstructure. The proposed method includes two steps: (i) a full set of TPCFs is approxi-
mated using correlation functions being extracted from two perpendicular images; (ii) the full set of
approximated TPCFs are used to reconstruct microstructures using a phase recovery algorithm. Hence,
the accuracy of the reconstructing technique can directly be related to the approximation of the full set
of TPCF. In our previous study [66], it was showed that for anisotropic microstructure, the error of the
estimated TPCF and consequently, the error of the reconstruction procedure increased in the direction
with high anisotropic distribution of microstructure. In addition, the reference image used for the recon-
struction is the source of errors as it depends on the approximated TPCF in the direction perpendicular
to the microstructure distribution of the reference image [66].

Nevertheless, accounting for the anisotropic complexity of the trabecular bone microstructures, the
differences obtained from the reconstruction method remain small, as presented in Table 2. Comparing
these results with those in Figure 9 shows that:

(i) All strain energies over the whole sample for the statistical cases remain lower than 10% varia-
tions compared with the real bone sample. For simple tensile load cases, variations were between
0.2% and 4.5%, showing the influence of the anisotropic microstructure distribution over the
reconstruction method [66]. For shear load cases, the differences were up to 9.4% in the yz direc-
tion showing in addition to the statistical error the sensitivity of the shear load scenario on the
microstructure distribution, as presented on Figure 7.

(ii) For the standard deviation variations, they are not correlated to the strain energy variations as
the mean strain energy does not account for the individual microstructure distributions.
However, we can still observe that for tensile cases, the z direction shows higher difference due
to the stiffness difference with other directions and reconstruction method [66]. This does not
appear in the shear load case as it is a tangential load. The full width at half maximum (FWHM)
deviations of the PDF for tensile load remain within the 10% variability. For the z direction, it is
almost identical.
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Figure 8. Probability density function for the YY (a) and ZZ (b) tensile cases, and XY (c) shear case as a function of the developed
local strain energy (mJ/mm3).

Figure 9. Normalized probability distribution function of strain energy density for the different microstructures with different
mechanical load directions.
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It appears from the results in Table 1, Figures 7 to 9, and Table 2 that the statistical reconstruction
method enables to study virtually an unlimited number of samples (bone like microstructures) as the
calculated effective mechanical properties are very similar to the one of real bone. Some improvements
remain to be done as the distribution of the strain energy shows variabilities over the statistical micro-
structures (up to 10%) due to the abilities of the reconstruction method to best adapt to the real bone
microstructure. These variations need to be evaluated with their respective impact on the bone density
evolution over long periods of time in future works.

Table 2. Differences between real bone sample and averaged of statistical cases for: (i) strain energy density variation in different
directions in tensile and shear load condition (X, Y and Z indicate tensile test and XY, XZ and YZ indicate shear tests), and (ii)
standard deviation difference at full width and half maximum (FWHM) as a representative of the variation of the energy density of
each element compared to the mean value.

Tension X Tension Y Tension Z Shear XY Shear XZ Shear YZ

Mean strain energy
density variation (mJ/mm3)

0.0186(1.8%) 0.0449(4.5%) 0.0021(0.2%) 0.0699(7%) 0.0138(1.38%) 0.0942(9.4%)

Standard deviation
difference at FWHM

11% 10% 42% 6% 11% 7%

(i) (ii) (iii)
(iv)

(i) (ii) (iii)
(iv)

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

Figure 10. Strain energy density (mJ/mm3) on elements surrounding the void space for mechanical load applied in the x, y, z, and xy
directions: (i) real bone, (ii) cut section 3, (iii) cut section 5, and (iv) probability distribution function for the three cases.
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As bone remodeling occurs on internal surfaces of bone where osteoblasts and osteoclasts are pres-
ent, it is necessary to look at the developed strain energy densities on these surfaces. These are presented
on Figure 10 for three cases : (i) real bone, (ii) cut section 3, and (iii) cut section 5 for the mechanical
load conditions of simple tension in x, y, and z directions and shear xy. In addition, the PDF functions
vs SED are plotted for the elements on the border. The tail of the PDF plots beyond a given energy is
not shown on the figures as their PDF values are very small.

The presented results highlight the geometrical localization where bone remodeling is more likely to
occur as osteoblasts and osteoclasts (respectively responsible of construction and resorption) are located
on the bone surface. Similar to previous results, the maximum distributed SED is for shear load scenario
with an average value around 1 mJ/mm3 whereas for tensile loads, the average values are around 0.2 mJ/
mm3 for x and y tensile loads and 0.7 mJ/mm3 for z tensile load. It appears again that tensile loads pro-
vide similar results compared to the stiffness coefficients proportions. We also observe that the real bone
sample shows mostly higher SED for tensile loads but lower for shear load. The statistical samples are
very close to each other, which could be correlated with the reconstruction method, as explained above
[66].

Nevertheless, as far as the mechanical properties are concerned, a very good correlation is observed
between the statistical cases and real bone which therefore provides good confidence in the statistical dis-
tribution of the developed strain energy. The impact of the observed differences needs to be quantified
with regard to the biological distribution of cells on the developed surface microstructures and cell acti-
vation thresholds for bone remodeling. This will be done in future works.

6. Conclusion

A statistical reconstruction method was utilized to reconstruct cortical bone-like microstructures. The
method is based on TPCFs using two perpendicular cutting planes within a real bone sample. Unlimited
statistical bone microstructure distributions can be obtained with this method enabling the study of the
influence of bone microstructure distribution without the need of extracting many patient bone samples.

All statistically reconstructed samples had identical effective bone density compared to the real bone
sample and showed similar mechanical properties. The local stress, strain, and strain energy were calcu-
lated for all samples under simple mechanical load conditions. Local variations were observed as a func-
tion of the different reconstructed microstructures, and linked to effective values. Good correlation was
observed for all cases.

The statistical reconstruction method enables us to create virtual bones, extract the variations of the
local strain energy distribution as a function of the bone microstructure, and compare with macroscopic
one. From this, bone remodeling could be incurred as a function of the local cell activation processes on
the bone inner free surface. This local bone remodeling could therefore be linked to the effective bone
density. The knowledge of the anisotropic stiffness tensor could then be used as a complementary indi-
cator of the long term evolution of bone density. This needs to be validated in future work.
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[13] Doblaré, M, and Garcı́a, JM. Anisotropic bone remodelling model based on a continuum damage-repair theory. J

Biomech 2002; 35: 1-17.

[14] Dell’Isola, F, Andreaus, U, and Placidi, L. At the origins and in the vanguard of peridynamics, non-local and higher-

gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 2015;

20: 887-928.
[15] Misra, A, and Poorsolhjouy, P. Identification of higher-order elastic constants for grain assemblies based upon granular

micromechanics. Math Mech Complex Syst 2015; 3: 285-308.
[16] Placidi, L, Andreaus, U, Della Corte, A, et al. Gedanken experiments for the determination of two-dimensional linear

second gradient elasticity coefficients. Z Angew Math Phys 2015; 66: 3699-3725.
[17] Abali, BE, Müller, WH, and Dell’Isola, F. Theory and computation of higher gradient elasticity theories based on action

principles. Arch Appl Mech 2017; 87: 1495-1510.
[18] Dell’Isola, F, Della Corte, A, and Giorgio, I. Higher gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin

and some future research perspectives. Math Mech Solids 2017; 22: 852-872.
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