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4 Duke University, Civil and Environmental Engineering Dept., Durham, NC, USA

Abstract. Experiments with evaporation of capillary bridges between two glass spheres show that the bridge 
gorge radius decreases much faster than the contact radius, distorting the original constant mean curvature 
bridge shape. In addition, the Laplace pressure calculated from local principal curvatures exhibits high 
gradients along the bridge moving external surface, most commonly with a high suction near the triple phase 
contact and positive pressure near the gorge. The high suction results from a negative external curvature at 
contact. Numerical dynamic simulations with a moving evaporating interface do not currently allow for 
reproducing a negative external curvature at contact. A series of static simulations are shown based on a 
representation of an experimentally observed interface, which does include the negative curvature at 
contact. The resulting Laplace pressure distribution is close to the experimental ones. Most importantly, the 
pressure gradients induce a consistent flow of liquid from the central area of the bridge, axially toward the 
solid contact, and then along the solid interface toward the contact area. The flow is believed to contribute to 
contact pinning. Pinning is viewed as one of the precursors of capillary bridge rupture.

1 Introduction

The capillarity phenomena are encountered in various ar-
eas of mechanical engineering, chemical engineering, geo-
engineering and energy engineering. They are encountered
in people’s everyday life, such as rain drop and floating
ants. Most of them are too familiar to be given special no-
tice. Among them are capillary bridges forming between
wetted solid grains.

The effect of drying on capillary bridges is of criti-
cal importance in many new technologies such as laser
printing, Atomic Force Microscopy, CO2 sequestration, to
mention a few, but also in traditional technologies, as
petroleum engineering, soil, agriculture engineering, for
its role in the onset of drying cracking [1–5]. The ba-
sic theory of capillary pressure, or surface pressure, or
Laplace pressure, that is the pressure difference between
the gas phase and the liquid phase separated by a fixed,
axially symmetric, curved interface is due to Young [6] and
Laplace [7], who separately postulated that the pressure
difference is proportional to the mean principal curvature
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of the gas/liquid interface. It is commonly expressed (see,
e.g., [8]) as follows:

pa − pl = γ

(
1
rg

+
1

rext

)
, (1)

where pa and pl are air and liquid pressures, rg and rext

are the gorge and the external profile curvature radii, re-
spectively, positive for a convex curve, while γ is surface
tension for water/air interface.

In the case of a water bridge between two spherical
grains the principal curvatures that are easily measurable
are the gorge curvature (always positive) and the external
curvature (either negative, positive or zero) at the gorge.
Alternatively, pressure difference can be calculated at the
triple contact [9, 10], where the values of external local
principal curvature, as well as the principal curvature of
the cross-section of the bridge normal to the bridge tan-
gent plane can be measured, under some reasonable as-
sumptions (as of radial symmetry).

The Young-Laplace equation is valid for static sur-
faces, with a curved, infinitely thin and immobile inter-
face and hence without account for evaporation [8]. For



the former case, and for a weightless liquid, the pressures 
in water and in the air are uniform, and their difference 
is constant, and hence through eq. (1) the interface mean 
curvature is deemed to be constant. That implies that 
the interface surface is one of the following constant mean 
curvature surfaces identified originally by Delaunay [11]: 
nodoid, catenoid, unduloid, segment of a sphere, or cylin-
der [12]. Equation (1) also implies for all the three media 
forming the bridge being in equilibrium, that the inter-
faces of separation at their intersection subject to surface 
tension forces between the media are in equilibrium and 
thus meet at contact angles that depend only on the sur-
face tension between the pairs of the media. Most com-
monly the surface tensions are constant and hence con-
tact angles (called hence equilibrium contact angles) are 
constant. In reality, for sessile drops they are known to de-
pend on temperature, contaminants, and direction of the 
motion of the contact [13–16].

Evaporation of the capillary bridge between two 
spheres brings additional experimentally observed factors 
into the picture. These are:

i) evaporation flux occurring at the interface between the
liquid and surrounding gas;

ii) the consequent loss of total liquid volume ranging from
its initial value to zero (in most cases);

iii) possible change of temperature, as evaporation is a
weakly endothermic process; however, temperature ef-
fects are considered as minor in our considerations;

iv) evolution of the shape and position of the liquid/gas
interface; stick-slip behavior of the triple interface line
between solid, liquid and gas;

v) ensuing intermittent changes in the surface area of liq-
uid/solid contact and of its perimeter length;

vi) evolution of contact angle (often linked to the contact
line behavior);

vii) internal liquid flow within the bridge;
viii) evolution of the original total attractive force be-

tween the spheres;
ix) possible mechanical rupture of the bridge (for certain

geometric proportions) as a single water body prior to
the transition of the whole liquid volume into vapor.

The majority of these phenomena were measured for
evaporating bridges and reported (except for iii) and vii)
by Mielniczuk et al. [17–19] (see also Maeda et al. [20]).
Temperature changes (iii)), and internal flows (vii)) were
either surmised from the general character of vaporization
(iii)), or observed, but not measured (vii)). Surprisingly,
very little attention has been given to evaporation of liquid
bridges, as opposed to extension of liquid bridges [10,21],
which was intensely studied since 1970. Luckily, quite a
lot of effort has been devoted to the evaporation of sessile
droplets [22, 23], which brought a substantial progress in
our understanding of evaporation of small liquid bodies.

This paper focuses on several features of the behavior
of the capillary bridges during evaporation observed and
reported in Mielniczuk et al. [19] that differ from the ex-
pected patterns of the processes involved. These include:

– initial differences in and evolution of Laplace pressure
at different locations of the evolving liquid/gas inter-
face as calculated from the evolving curvatures;

– pinning-depinning-repinning behavior of the triple
contact line during the process of evaporation;

– possible effect of the above on the liquid pressure
within the bridge;

– the distribution and evolution of evaporation flux at
the interface;

– the role of the vapor flux and pressure gradients in
generating internal flows within the bridge.

Pinning-depinning-repinning have been widely re-
ported, discussed and theorized in the context of both
evaporation and displacement of sessile drops [13, 24],
with two major types of solid surface roughness, nick-
named for their shape as Great Wall of China [25]
������ and fakir [26] /\/\/\, with the liquid in contact
with either the solid or gas filling the surface micro-
cavities [27–29]. Pinning consists in arresting of, other-
wise smooth, re-positioning of the triple phase interface
along the solid/liquid boundary. Flows within evaporating
drops [23, 30–32], and capillary bridges in extension [33]
were postulated, simulated and measured for some time.
However, the dynamics of capillary bridges induced by
evaporation somehow escaped a closer scrutiny.

This paper is prompted by prior observations by Miel-
niczuk et al. [19] of pinning, depinning and repinning dur-
ing evaporation of capillary bridges between two smooth
glass spheres together with the associated contact an-
gle evolution. Especially, repinning of capillary bridges,
when they reach tall bridge proportions calls for attention
as a precursor of the spontaneous rupture of the drying
bridges, while still containing a substantial volume of liq-
uid. We hence present data from the same experiments
regarding the evolution of principal curvatures at differ-
ent locations of the moving gas/liquid interface, and hence
of the calculated Laplace pressures, showing substantial
gradients along the interface. We then use these experi-
mental Laplace pressure distributions to validate an ap-
proximate numerical procedure to calculate the pressure
within the liquid bridge and the associated flow velocity
field. The approximation (employing a commercial soft-
ware) consists of a series of static solutions based on the
input of experimental shape and position of the bridge
free boundary. At the boundary the interface equilibrium
conditions are assumed, and through imposed curvatures
also the Laplace pressure at the boundary, which serve as
boundary conditions to the pressure field over a bound-
ary segment. The solution hence includes incipient values
of Laplace pressure, approximate pressure field across the
body of the bridge, and the resulting flow velocity patterns
within it. The data set used for the simulations refers to
the constant rate of evaporation period of the experiment
as documented by Mielniczuk et al. [18]. Consequences of
the observed patterns are then discussed. Temperature ef-
fects, variable surface tension, and specifically Marangoni
force effects [32,34], as well as ionized water effect [35] or
thin film effects [36] are not considered. And neither are
specific micro-scale solid surface roughness models.



Fig. 1. Liquid/gas interface surface principal curvatures, rhn

and rext at an arbitrary height h of the capillary bridge be-
tween two spheres. The principal radii of curvature and cur-
vatures themselves can be determined from 2D profile photos.
The principal internal radius is that of a tangent cone cross-
secting ellipsoid.

2 Experimentally observed evolution of
contact diameter, pinning, curvatures, and
Laplace pressure during evaporation

The experiments were conducted on pairs of smooth glass
spheres of 8mm diameter linked by demineralized water
bridges at various constant separations exposed to evap-
oration at a constant temperature of 21 ◦C and constant
environmental relative humidity of 25%. In what follows
we analyze the data of the behavior of the water bridge
with a grain separation of 1.3mm and initial water volume
of 4μL. During the test measurements of the total capil-
lary force change between the grains were made using a
precision balance, against the volume of water evaporated.
Materials and methods are described in detail in Miel-
niczuk et al. [18]. In the previous papers we reported only
the changes of curvature at the bridge gorge, as well as the
external curvature (of lateral profile), also at the bridge
gorge on the basis of what we were able to calculate with
the Laplace pressure using eq. (1). In what follows, we re-
port the values of the principal gorge and external radii
at four points at different distances from the horizontal
symmetry plane of the bridge for 18 states of decreasing
volume of water. The principal radii and curvature are lo-
cated at mutually orthogonal planes crossing the surface
of the interface, as shown in fig. 1.

The principal gorge radius of curvature at a point of
a bridge is that of a conic cross-section of a cone tangent
to the bridge at a point at a given height h, rhp (which
may be a circle, ellipse, parabola or hyperbola depending
on the considered point height, and hence conic section
slope) and is calculated from the corresponding horizon-
tal cross-section radius of a circle, rh. The values of the
radii, the corresponding local bridge opening angle, β, and
the local value of Laplace pressure are shown for selected
instances in fig. 2. In the rest of the paper the assump-
tion is made that axial symmetry is valid as well as that

Fig. 2. Profile and geometrical and pressure characteristics
of capillary bridges at constant separation of 1.3 mm during
evaporation at the relative water content of the original volume
of 100%, 69% and 33%, respectively. The values of the radii
of curvature and the pressure are calculated as averages for
two upper quadrants (left and right) of the projection shown
for all other replicas conducted. Radii are in mm, angles are
in degrees, and pressure is in Pa. The figures also show, how
much faster the motion of the gorge is compared to an almost
immobile triple contact line (see also fig. 3).

gravity effect does not affect the symmetry with respect
to the equatorial plane.

The most important consequence of the occurrence of
the evaporation flux at the free boundary, which is the
only external change affecting the bridge, is the evolu-
tion of the very same free boundary, i.e. the shape of the
bridge, of its curvatures, and thus the Laplace pressures
at the evaporation interface. By inspection of the evolu-
tion in fig. 2 it can be seen that the bridge surface appears
to evolve from nodoid through catenoid (not observed in
our experiments) to unduloid, to eventually cylinder (not
shown here because occurring during an unstable phase),



Fig. 3. (a) Evolution of (upper) contact radius and gorge radius vs. relative volume change of water for a bridge at 1.3 mm
separation. It is visible that the gorge shrinks more than three times faster than the contact. The rupture range shows a
relatively wide scatter in terms of the volume evaporated pointing to a possible role of randomness of glass surface imperfections
in generating the bridge rupture. The criterion of bridge rapture remains elusive; (b) Laplace pressure vs. relative loss of water
volume. At gorge, it is mostly positive and growing as rupture is approached, while at contact, it is predominantly negative,
slightly fading near rupture. Also shown is the difference between the gorge and contact pressure, always positive and growing
suggesting a push from the gorge toward the contact.

which are all surfaces of constant mean curvatures of De-
launay [19, 37, 38]. However, there is a visible localized
departure from such ideal transformation, consisting in
the intermittent evolution of the triple contact line, i.e.
the locus of contact of the three phases, marked with red
crosses in fig. 2.

Figure 3(a) presents the relative change of contact ra-
dius, compared to the relative change in gorge radius. The
contact radius decreases altogether by 15% only, whereas
the gorge radius decreases by 60%, by the moment the
bridge ruptures. In addition, the displacement of contact
radius is not continuous, it rather qualifies as stick-slip mo-
tion. It needs to be remembered, it is not the displacement
of the physical particles that the contact radius measures,
rather it is the liquid/gas interface translation, marking
the position of particles that are to become gas. Notably,
for nearly 1/3 of the volume loss, up to −dV/V0 = 0.177,
the contact radius does not change more than 3.4%, in
fact from 1.22mm to 1.18mm, what may qualify as pin-
ning, then slips for another 5%, to pin again, while losing
next 25% of volume, to slip for about 4% of the original
size, and finally to gently come to a halt, after which the
bridge ruptures.

Spontaneous rupture of capillary bridges is an inter-
esting phenomenon, as for taller bridges it occurs when
only 1/4 to 1/3 of the bridge volume has evaporated. It
appears that rupture is preceded by a mechanical instabil-
ity, linked to a drop in suction, which eventually becomes a
positive pressure associated with other forms of geometric
transformations [17,18].

The evolution of the gorge radius is quite different. Its
rate is nearly constant for the first 2/3 of the process, but
while the contact slows down toward the end, the gorge
accelerates. As the bridge volume is affected by the square
of the radii, the aforementioned difference is exacerbated.
This is the first indication that the loss of mass is highly

non-uniform throughout the bridge, with the center be-
ing substantially squeezed, while the contact areas barely
changing.

The pinning behavior has been discussed broadly for
decades in the context of sessile drops both under evap-
oration and motion on an incline [27, 39]. Most of the ef-
fort is centered on the contact angle hysteresis, or differ-
ences between advancing and retreating contact angles,
and explicit microscopic models for the occurrence of the
above, including surface roughness or surface tension vari-
ations, see e.g. Bormashenko [16]. In the context of cap-
illary bridges, the contact angle has been considered for
bridges in extension or compression [21]. Mielniczuk et
al. [19] found experimentally that repinning of contact
in evaporating bridges correlated with the onset of in-
stability with a substantial drop in suction followed by
an increase of Laplace pressure at gorge and a very fast
conversion of the unduloidal bridge into a slim cylindrical
water stick, and eventual rupture. For tall bridges, which
exhibit positive pressure at gorge from the onset, the in-
stability corresponds to a fast increase in gorge pressure
and formation of a cylindrical water stick.

The evolution of Laplace pressures at the gorge and
at the contact points to a substantial difference in pres-
sure values between the two locations at the initial state.
Note that the initial state corresponds to an instant ex-
posure to the relative humidity of the environment, hence
instant generation of the evaporation flux. Thus, it can be
expected that the initial state does not correspond to the
equilibrium situation, which implies no evaporation, hence
the uniformly saturated gas environment. In other terms,
also the initial Laplace pressure and the interface shape in-
cluding contact angle are in principle different from those
at equilibrium.

Over the course of evaporation, the gorge pressure
keeps being positive and increases in value by almost 15



times. However, this is in general agreement with gorge 
Laplace pressures for other so called slim bridges. Notably, 
stout bridges initiate their evolution with a negative pres-
sure, which slightly increases, arrives at a maximum of 
pressure, but shortly before that initialize a departure of 
the pattern of a continuous growth to then become unsta-
ble. At the same time the evolution of the initially stout 
bridges consists mainly in a reduction of the gorge radius 
accompanied by a stick-slip behavior of the contact ra-
dius, through which the bridge becomes geometrically a 
slim bridge with the proportions 1:1 of the bridge half-
height to contact radius. In the latter phase, the Laplace 
negative pressure drastically drops and turns into a pos-
itive pressure before either losing all its water through 
evaporation, or via a water-wire instability [19, 40].

The pressure at the contact area is negative (suc-
tion) from the very beginning and relatively high (about
−20 Pa) and it drops to a minimum of −28 Pa shortly 
before 30% of water volume loss. It then suffers a sharp 
turn to a prolonged segment of growth (pressurization of 
the contact area). In other terms, the initial suction sub-
sides nearly to zero (effectively −4 Pa) prior to rupture. 
Notably, the end of the initial increase of suction, and 
the onset of re-pressurization of the contact area coincides 
with the depinning or the onset of the slip phase. So, the 
difference between the Laplace pressure value at the gorge 
and at the contact along the evaporation interface is con-
sistently positive, and growing from about 20 Pa up to 
nearly 50 Pa. There are few contributions to such devel-
opments. First, as reported, the gorge radius is decreasing 
much faster than the contact radius; second, a continu-
ous pressurizing the center of the bridge and thus finally 
squeezing of water from the center toward the solid in-
terface and toward the contact. A similar pattern is seen 
from the numerical simulation of evaporation of sessile 
drops [30, 34].

It must be emphasized that the high suction values 
are caused by relatively high external curvatures at con-
tact, which are the only possible source of the negative 
component of Laplace pressure, and at the same time, a 
substantially decreasing curvature of the circumference at 
the highly inclined and gradually rotating normal cross-
section of the bridge “trunk”. It is to be restated that 
while quantitatively the experimental bridge realizations 
showed some scatter, mainly because of the way how much 
symmetrically water would get distributed when placed 
manually between the grains, the qualitative repeatabil-
ity was remarkable. Details of the procedure to determine 
the curvature by fitting Delauney curves are given in Miel-
niczuk et al. [37].

There are two main possible consequences of the ob-
served (or truly, calculated) significant Laplace pressure 
gradients: water pressure gradients within the bridge 
body, and caused by the latter, an internal water flow 
within the bridge. However, measurements of such quan-
tities were not possible in our experiments. To assess char-
acteristics of both pressures and flow velocities, we have 
undertaken their approximate numerical simulations, un-
der a set of hypotheses.

3 Approximate numerical simulations

3.1 Theoretical and numerical framework

The behavior of an evolving capillary bridge exposed to
a drying atmosphere is quite challenging to simulate nu-
merically. Most of the relevant numerical work has been
focused on sessile drops or rise in capillary tubes. Most
of work on capillary bridges is analytical (e.g. [12,21,37])
and refers to static bridges.

For an evaporating capillary bridge the problem is
stated as a Navier-Stokes flow with a constant viscosity,
bounded on one side by a frictional solid surface with a
Navier slip law, and a free and moving, evaporating liq-
uid/gas surface, on another, as well as symmetry condi-
tions on the remaining boundaries, see fig. 4(a). In two
hallmark problems of dynamic interface, namely moving
or drying sessile drop and moving capillary meniscus, the
central problem is the initial position, shape and evolution
of the free surface of the liquid/gas interface (see, e.g., a
comprehensive review of Scardovelli and Zaleski [41]) and
its relationship to the triple contact line. The interface
is considered as a discontinuity of density, viscosity, pres-
sure and because of the latter, it results to be curvilinear.
Physically, it appears to be extremely thin, but numeri-
cally, it often is represented as of certain finite thickness.
Clearly, the evolution of the interface requires a continu-
ous remeshing of the field. There is a number of problems
with numerical simulations of the interface and its evo-
lution. The first of them is a common assumption of a
non-slip condition at the liquid/solid interface, which is
clearly an untenable assumption for an evaporating liquid
surface, with a moving (often in a stick and slip fashion)
triple contact line, as pointed out in [42]. Otherwise, us-
ing a Volume of Fluid technique implying an explicit slip
length results in a convergence failure and mesh size de-
pendence. Diffuse interface algorithm seems to be a good
solution for some problems [43], but for our purpose based
on interface curvature would require further modifications.

An epic story is that of the contact angle. Clearly, a
constant equilibrium value of that entity is not supported
experimentally, or to some, not even measurable experi-
mentally (see Bormashenko [16]). For de Gennes et al. [39]
and Ramé and Garoff [44], its evolution is linked to either
receding or advancing motion of the triple line. Roughly
speaking, a change in contact angle takes place, when con-
tact radius is pinned, and vice versa, the angle does not
change when contact is de-pinned. Numerically, a number
of contact angle models have been proposed, each with its
own deficiency. Namely, the “slip models” lead to a pres-
sure singularity at the contact line, or to a flow kinematics
substantially different from those seen in experiments, or
both [45], while at no-slip boundary in an analytical solu-
tion (no evaporation) of Huh and Scriven [46] shear stress
becomes singular approaching the contact. Their solution
implies a significant pressure on the free surface, to be
balanced by the Laplace pressure at the interface, which
requires the interface to be strongly curved (see also Dus-
san [47]). Concepts of formation/disappearance of new in-
terfaces [48] and/or inclusion of surface heterogeneities at



Fig. 4. (a) Schematic of the capillary water bridge. The solid/gas interface is immobile. The liquid/gas interface is an ini-
tially undetermined moving boundary; (b) Mesh boundary conditions. Zero displacement components at the fixed boundaries;
satisfying Laplace equation at the mesh points, R and Z in both fluid bodies.

several scales [49,50] require additional experimental data
not accessible without additional modeling at molecular-
and microscales. Among others, that includes data on sur-
face tension in the free surface near the contact line that
deviates from the equilibrium ones.

Importantly, it is a practice in dealing with the contact
angle to use a piecewise linear representation of the inter-
face near the triple line. That likely is a suitable approx-
imation when the main concern is the flow of the liquid
within the corner (see Ramé and Garoff [44], Afkhami et
al. [42]). However, our focus is on the Laplace pressure and
its evolution toward rupture, and possible precursors of
that occurrence, for which a most faithful representation
of the interface curvature is crucial. So, piecewise linear
approximations with the zero interface-curvature are not
suitable for that purpose.

In view of the above-advanced complications, and our
limited experimental information, we opt for an approxi-
mate approach to simulate the static representation of the
deionized water behavior within the capillary bridge. We
have used a commercial software COMSOL Multiphysics
for simulation. As a characteristic dimension of the bridge
we take the separation of 1.3mm, while surface tension of
the standard liquid mixture used in University of Montpel-
lier laboratory is taken as 0.00496N/m (see [18], and [51]).
Hence the Bond number Bo � 1 and the effects of gravity
can be ignored. The flow velocity of liquid is slow enough
(Ma � 0.3), which means that the gas and liquid can be
regarded as incompressible fluid. Temperature is assumed
as constant at 294.15K.

We therefore consider the incompressible fluid flow of
the liquid and gas phases as described by Navier-Stokes
equations, continuity equations in both phases and the
conditions at the liquid/gas interface

ρ

(
∂v

∂t
+ (vc · ∇)v

)
= ∇ ·

[
ϑ

(
∇v + (∇v)T

)
− pI

]
+ F ,

(2)
∇ · v = 0, (3)

vc = v(X, t) − ∂x(Xm, t)
∂Xm

∂Xm(X, t)
∂t

, (4)

where ρ is the density of fluid, ϑ is the fluid velocity, t is
time, I is identity matrix, ν is dynamic viscosity, and F
is the volume force set here equal to zero as the gravity
is neglected. The extra velocity variable vc is a convec-
tive variable, while X, x and Xm(X, t), are Lagrangean,
Eulerian and Lagrangean moving mesh point coordinates
at time t. The latter one is a characteristic of the Arbi-
trary Lagrange-Euler (ALE) method to describe coordi-
nate points of the mesh to avoid mesh distortion (see e.g.
Donea et al. [52]).

Boundary and initial conditions are specified as fol-
lows: symmetry condition is applied at r = 0, and at
z = 0, including zero flow velocity and zero shear stress
components in r and z directions, respectively. The lin-
ear momentum balance at a generic liquid/gas interface
implies that

n1T1 − n1T2 = γ(∇t · n1)n1 −∇tγ, (5)

where n1 is the unit normal vector pointing toward gas
phase, T1 and T2 are the stress tensors, respectively, in
liquid and gas, γ is the surface tension associated with the
interface, and ∇t is the surface gradient. ∇t · n1 is twice
the mean curvature of the surface, and ∇t = (I−n1n

T
1 )∇.

The relationship between evaporating mass flux and
velocity in liquid and gas phase is described by the Rank-
ine -Hugoniot condition:

v1 = v2 + Mf

(
1
ρ1

− 1
ρ2

)
n1, (6)

where v1 and v2 are the flow velocities in the liquid phase
and gas phase at the liquid-gas interface, and ρ1 and ρ2

are the density of the liquid and gas, respectively. Mf is
the evaporating liquid mass flux (see, e.g., Scardovelli and
Zaleski [41]).

The liquid/solid interface is characterized by the
Navier slip, with the resulting friction force

Ffr = −ϑ

δ
v (7)

with δ being the slip-length, taken usually as 1/10 of the
grid size. Finally, at the triple line of solid/liquid/gas in-
terface the surface tension force is applied at the contact



angle θc away from the tangent to the solid

Fc = γ cos(θc). (8)

In the control algorithm of moving mesh, the easiest way
to control the mesh motion is to pre-specify the grid mo-
tion at the boundary and automatically solve for the in-
ternal grid point velocities by using Laplace equation. The
influence of the boundary conditions of the mesh on the
grid movement is gradually permeating into the interior
to obtain grid point variables and updates.

The mesh boundary conditions are shown in fig. 4(b).
At the boundaries of the considered field at r = 0 and
r = 4mm, the prescribed mesh displacements are zero in
z-direction, while at z = 0 and z = 2.5mm, the prescribed
mesh displacements are zero in r-direction. The prescribed
mesh displacement is zero in both r- and z-direction at
the surface of the solid sphere. Winslow smoothing is em-
ployed for the Laplace equation to update the internal
grid (see, e.g., Knupp [53]). Therefore, the effect of mesh
boundary conditions can be gently introduced into the in-
ternal grid, so that the mesh is smoothly deformed. The
velocity of mesh at the liquid-gas interface is then calcu-
lated by the equation

vmesh =
(

v1 · n1 −
Mf

ρ1

)
n1. (9)

A separate issue is that of modeling evaporation. Once
underwent the phase change, vapor moves via diffusion in
gas phases (convection is disregarded), which is described
by the equation

∂c

∂t
= ∇ · (D∇c), (10)

where c is the concentration of vapor, and D is the diffu-
sion coefficient.

The symmetry condition is applied at r = 0 and the
horizontal axis of symmetry at z = 0. The transport of
diluted species is zero in r-direction and in z-direction,
respectively:

−n · (−D∇c) = 0. (11)

At the liquid-gas interface, vapor concentration is assumed
to be saturated and an empirical relationship between
temperature near the interface Tin and saturated pressure
Psat can be approximated as [54]

Psat = exp
(

9.487 − 3.893 × 103

Tin + 230.47

)
. (12)

The saturated vapor pressure can be converted to concen-
tration by using the ideal gas theory

csat =
Psat

RTin
, (13)

where R is the ideal gas constant. At the external bound-
ary of gas phase, we impose vapor concentration as zero,
controlled by relative humidity, there, H = 0, hence,
c∞ = csatH = 0.

The initial conditions are as follows: the value of the
velocity is zero throughout both liquid and gas phases:

V = 0. (14)

The initial values of displacement of the mesh coordinates,
R and Z, are zero throughout the liquid body,

dRt=0 = 0, dZt=0 = 0. (15)

The initial pressure is zero. In this situation, the pressure
is the relative pressure of the liquid phase and gas phase:

Pt=0 = 0. (16)

The initial value of vapor concentration is set as the vapor
concentration of the environment.

ct=0 = csatH = 0. (17)

The free triangular mesh was chosen for the gas phase
as easier to adapt to the boundary than free quad mesh,
and the solution is easier to converge. The mapped mesh
is built inside the water bridge to avoid the singularity
and deformation of the free interface near the liquid-gas
interface. The maximum element size of mapped mesh is
0.02mm. Discretization type is P2+P1, which implies that
the velocity components are described by the second-order
function, while the pressure field is linear. Figure 5(a)
shows the schematic of the mesh for the initial configu-
ration.

3.2 Computational strategy

Our effort to employ the COMSOL code to simulate
Laplace pressure evolution and flow in a capillary bridge
during dynamic motion of the interface coupled with the
evaporation flux has been unsuccessful in generating rea-
sonable results. The main reason appears to be a com-
monly used approximation of the interface near the triple
line as piecewise linear in order to simulate well the con-
tact angle. However, that makes it impossible to simu-
late the negative Laplace pressure component, which can
only come from a negative curvature of the interface line,
which is excluded by the piecewise linear approximation.
Finally, the resultant pressure across the bridge is pos-
tulated in COMSOL as constant. This is far from what
we measure experimentally. One complication arises that
molecular scale physics of the contact area is not well
known, with a variety of mechanisms proposed, including
formation of a thin continuous film left after receding con-
tact [55], molecular layering in the liquid phase near the
contact, or formation of a single molecular layer [56,57].

Instead of following the dynamic process explicitly, we
convert the process in a sequence of static equilibrium
states defined by a successive approximated position and
shape of the interface as obtained in the experiments.
For the given boundary, we obtain a FE solution through
COMSOL code in terms of Laplace pressure resulting from
the condition of the interface equilibrium (5), the corre-
sponding pressure field in the liquid, and the correspond-
ing flow velocity field. All the above fields correspond to



Fig. 5. (a) An example of the initial finite element mesh configuration for the liquid bridge and the surrounding gas, neighboring
the undeformable solid grain; (b) Six considered configurations of the evolving phase transition interface (see table 1). The
configurations correspond to the experimental ones, as determined from fig. 2. Notably, configurations B, C and D correspond
to a pinned contact point. Configuration F is the last one, for which the computations would yield a solution.

Table 1. Selected configurations of gas/liquid interface for the indicated current water volume and evaporated fraction of the
original water volume.

Configuration code A B C D E F

Current water volume 4 μl 3.3 μl 3.1 μl 3.0 μl 2.8 μl 1.8 μl

Fraction of the volume evaporated 0 0.175 0.225 0.25 0.3 0.55

an instant of the onset of flow in response to placing the
interface at particular positions. We do not allow the soft-
ware to proceed and reconstruct the interface as composed
of a circle and a straight line near the contact, which we
consider un-physical, as it eliminates the possibility of a
strong suction at contact (see Dussan [47]).

As evident from the above outline, evaporation, or
specifically evaporation flux, is postulated to play no di-
rect role in the process. Clearly, the evaporating flux can
be calculated from the diffusion process of vapor from a
known fully saturated interface toward completely dry air
environment at a remote boundary. Thus we are in the
position to associate the evaporation flux with a particu-
lar position of the interface. Such a strategy of employing
experimentally observed shape and position of the inter-
face has been successfully used in other contexts, such as
drying of water in a capillary channel [55].

Because in the formulation we impose the position
and shape of the interface based on experimental obser-
vations, our effort loses the meaning of prediction of class
A. Rather, it is oriented at explaining certain mechanisms
involved. In particular, we are interested in the pressure
field and the flow pattern and amounts, which were not
measured in our experiments.

4 Results

Six different configurations, labelled as A-F , of phase tran-
sition interface have been examined, for a proper repre-
sentation, linked to the first phase of de-pinning, middle

phase of re-pinning, sliding and final repining, shown in
fig. 5(b). They correspond to specific instances character-
ized by the particular volume of liquid as shown in table 1.

Note that the interface configuration is based on the
experimental values of the contact diameter, 2rh and gorge
diameter 2rg, between these points a horizontal symme-
try axis centered circle was fit. The former of the two
points is corrected for a gravity-induced departure from
symmetry with respect to the r-axis, until a control on
the half-volume is verified. The resulting shape of the in-
terface is not exactly the same as the experimental one,
but very close. The driving intention was to allow a neg-
ative curvature at the contact point, necessary to allow
negative pressures at contact. Except for such a proce-
dure, COMSOL software converts an assumed interface
into a (usually smaller) circle with a tangent straight line
toward the contact point. As mentioned earlier, the latter
approximation arbitrarily eliminates a possible negative
pressure at the contact point.

Prior to examining the simulation of the pressures and
flow it is helpful to realize how highly non-uniform and
non-linear the vapor flux is. Clearly, there is no exper-
imental data to corroborate these results. The classical
approach to free evaporation is to assume it as driven
by the diffusion of vapor in the air, between the inter-
face with water, where we assume saturation concentra-
tion and an ambient level at an assumed distance, as by
Sobac and Brutin [58]. Deegan et al. [22] and Hu and Lar-
son [30, 34] concerning evaporation of a droplet assumed
its shape as a spherical cap and found a high concentra-
tion of flux near the droplet periphery. In this study, the



Fig. 6. (a) Evaporation flux distribution shown along the vertical coordinates of the free interface of the capillary bridge for the
decreasing liquid volumes during evaporation. Note that the flux is consistently about 2.5 times higher near the triple contact
line compared to the gorge region. Note also an acceleration of evaporation with time; (b) computed and experimental Laplace
pressure values at gorge, pg, and at contact, pc. The frame marks the range within which the solution is considered reliable.
Notably, gorge values are positive as in experiments and remarkably close. The contact suction values are also of the order of
the experimental ones, but not as close.

“Transport of Diluted Species” (TDS) module of COM-
SOL Multiphysics is used to obtain the vapor concentra-
tion distribution with the form of the liquid/gas interface
pre-imposed as the experimental one. At each new con-
figuration the interface is adjusted. As shown in fig. 6(a),
the value on the onset near the contact is higher by about
33% compared to average values in the middle of the
bridge. The overall flux increases as the process contin-
ues, with the concentration near the contact approaching
40% of the values in the middle of the bridge. The U-
shaped evaporation flux distribution has been seen both
for the evaporating menisci [55, 59], and for evaporating
sessile drops [30, 34, 57, 60]. The “edge enhancement” of
the evaporation flux is attributed to a greater probability
of an evaporating molecule’s volatization at the thin pe-
riphery, than when leaving from the center of a drop, or a
bridge (see Deegan et al. [60]). Notably, the pinned con-
figurations B, C, D and F yield the highest evaporation
flux values at the contact. This coincidence invites more
investigations.

Figure 6(b) shows the results of simulations of pressure
evolution at gorge and at contact. Notably, the former are
positive and the latter ones are negative, as in the experi-
ments. Clearly, they are derivatives of the evolution of the
radii and hence, the mean interface curvatures, whereas
the interface, while based on the experimental findings,
is actually fitted. Figure 7 presents a comparison of the
experimental values of both rg and rh, as well as rhext

and the corresponding values adopted in simulations. It
needs to be remembered that at each configuration rhn

is at a different coordinate z and that is projected over a
different angle β, so it is not an evolution of the same field
variable. The values of the Laplace pressure simulated at
contact points as they evolve in the course of evaporation
have to be compared to the values obtained experimen-

tally shown in fig. 3(b). The simulation values are gener-
ally lower (smaller suction) than in the experiments, but
relatively levelled, except for the last point, which is a
clear outlier (see below). The conclusion: contact is under
consistent suction. Although, the two calculations are de-
coupled in our approach, it is intuitive that water is under
the highest suction at the contact area, where the flux of
evaporation is highly concentrated, see fig. 6(a).

Figure 7 presents the comparison of the experimental
values of both rg and rh, as well as rhext and the cor-
responding values adopted in simulations. It needs to be
remembered that at each configuration rh is at a different
coordinate z and that it is projected over a different angle
β, so it is not an evolution of the same field variable.

The full comparison of the simulation of Laplace pres-
sure vs. experimental data along the entire interface is
presented in fig. 8 for three of the considered configura-
tions: A, C and F. As can be seen for most of the process,
the Laplace pressure values obtained through simulations
follow the experimental trend and to some degree even the
order of magnitude of the experimental data. First of all,
in both cases we have a positive pressure in the central
region, and negative pressures near the contact line. The
simulated data usually exhibit visibly lower values at con-
tact than the experimental ones, while the data closer to
the gorge level show a better agreement. The Laplace pres-
sures at the last successful configuration (F, at 1.8μl) do
not follow the previous trend. First, the values of suction
near contact (> 50Pa) are much higher than the experi-
mental values, while near gorge the positive pressures are
underestimated by the prediction. The static solution near
the contact point has been known for long time to produce
infinitely high suction values at the triple line (see Huh
and Scriven [46]) and requires a cutoff near the contact
(see e.g. Dussan and Davis [61]). Incidentally, configura-



Fig. 7. (a) Computed and experimental radii of curvature at the bridge gorge, rg, and at contact, rh evolving with the decreasing
volume. The frame shows the range of the simulation validity. The simulation result is better at the gorge than at the contact,
the latter is mainly affected by the initial point; (b) Computed and experimental pressures at the bridge gorge, pg, and at
contact, pc, evolving at decreasing volume. The frame shows the range of simulations.

tion F, at 1.8μl was the last one for which the solution
could be obtained through COMSOL, and with doubtful
results. For further configurations there were no conver-
gent solutions. On the physical side, it needs to be noted
that among several realizations of the 4μl bridge tested,
the one shown in fig. 2 reached the lowest volume of water
at rupture. The scatter range of the volumes of water at
rupture in the experiments shown in figs. 3(a) and (b),
see also Mielniczuk et al. [19], is quite significant (∼ 20%
of the initial volume). The average volume loss at rupture
for 1.3mm separation bridges is only 40% [17].

The Laplace pressure at the interface can be viewed as
boundary conditions activating the dynamics. Using the
prescribed experimental shape and position of the inter-
face COMSOL provides an instantaneous pressure field
for the entire bridge. Figure 9 presents incipient pressure
fields for two of all 6 configurations tested numerically.
The most important observation from these results is that
the pressure field evolves from an initial configuration (A)
where only very central part of the bridge is under posi-
tive pressure and the entire part in contact with the solid
is under suction, to E, at 2.8μl (last considered reliable)
where almost the entire central part of the bridge is un-
der positive (but smaller) pressure and only a limited ring
near the triple contact where the water body is really thin
is under suction. This is consistent with our previously
published results for the evaporation of the 4μl bridge at
1.3mm separation [19].

Notably, for a different realization of the same exper-
iments (there is a clear dispersion of the results due to
uneven water volume distribution) the resultant intergran-
ular force component due to pressure acting across the liq-
uid/solid contact is initially repulsive, and small, whereas
the resultant intergranular force component due to surface
tension acting along the triple gas/liquid/solid contact line

is initially attractive and decreases to near zero (ref. [19],
fig. 7). In principle, one should not be tempted to directly
compare the finite element stress (pressure alone based)
representations with the representation which employs a
concept of surface tension, which is a line force. It suf-
fices to note that in the obtained FE solution the positive
pressures initially decrease to increase toward the second
half of the process, and suction follows the same trend:
initial decrease followed by an increase. Notably, the geo-
metrical parameters used in the macro-scale theory refer
to the total surface area of contact and perimeter length
as opposed to a partial (central) area for pressure in FE
solution and to a peripheral ring where suction acts for
surface tension.

For completeness it is of interest to see the results con-
cerning shear stress (or viscous, for their proportionality to
shear strain, with viscosity coefficient) distribution along
the most relevant boundaries. For configuration C, fig. 10
presents components of shear stress along the liquid-solid
interface, along which Navier frictional conditions (eq. (6))
are imposed. Shear stresses are very small over most of the
contact.

Visible is a peak of shear stress near the triple line,
with a singularity in the r stress component. Notably, a
singularity is inherent in the solutions near the contact line
(see Huh and Scriven [46]; Snoeijer and Andreotti [50]),
unless the notion of Navier condition is revised (see e.g.
Gerbeau and Lelievre [49]).

Finally, the flow pattern is shown for both liquids:
water and gas, again for the advanced configurations C
and E, in fig. 11. For other configurations the pattern
is very similar. The flow pattern consists of three areas:
an intense, mainly inward radial flow at the gorge of the
bridge; a mid-section flow, that is almost entirely axial,
i.e. parallel to the bridge axis of rotation and directed to-



Fig. 8. Simulated and experimental Laplace pressure distribution along the interface for configuration A, B, . . . , F tested.
Both the trend and the values of Laplace pressure are well captured for configurations A, B, C, D, and E. The solution for
configuration F exhibits unrealistically high values of Laplace pressure at the contact point and hence is considered as invalid.
Laplace pressure calculation is based on an approximation of the experimentally observed position and shape of the interface,
and using the liquid/gas interface linear momentum balance condition (eq. (5)).

ward the solid contact; and finally, near the solid grain,
a predominantly radial outward flow parallel to the sub-
strate surface. The arrows refer to the points positioned at
their start. First, it needs to be noticed that the velocities
are very small, indeed. Again, it helps to realize that the
flow is not induced by evaporation, rather, it is forced by
the evolving shape/position of the interface (taken from
the experiment) induced by evaporation and/or by the
Laplace pressure.

Notably, the flow near the contact line has an opposite
direction to the triple line motion.

5 Discussion and conclusions

The results concerning flow and flow patterns within the
bridge, clearly confirm the previous postulates that evap-
oration may lead to induction of a visible flow within the



Fig. 9. Pressure contours for simulated configurations A, and E. Notably, in the initial configuration, A, positive pressure affects
almost the entire central half of the water body, while the portions in contact with the solid are under suction. In configuration
E the central part of the contact of the grain with liquid is under pressure while only the ring near the triple contact is under
suction. Note that the solution for configuration F exhibits irrealistically high values of suction near the triple contact point
and hence is considered as invalid.

Fig. 10. Radial component of shear (or viscous) stress along
the bridge boundary with the grain for configuration C, with
the advanced flow.

bridge. While our qualitative experimental attempts were
supporting that notion, a comprehensive quantitative ex-
perimental study is still missing, for the capillary bridges,
while abounds for drying droplets.

The obtained flow velocities are small, but reassuringly
of the same order of magnitude, about 0.002mm/s, as in
evaporating sessile drop in the classical result obtained by
Hu and Larson [30, 34]. Also the pattern of the flow is
similar, at least in the near-solid contact area, away from
the central evaporating area and toward and along the liq-
uid/solid interface and ending near the triple contact line
(fig. 12(a) and (b)). In our case the flow pattern seems
to confirm the pressure-driven mechanism. Our approach
is to consider the actual interface shape and position, of
which mean curvatures control the Laplace pressure. Then
the flow within the evaporating bridge can be seen as fol-
lows: away from the site of positive Laplace pressure at
the central part of the interface, parallel to the horizontal

plane of bridge symmetry toward the vertical axis of sym-
metry, turning vertically toward the grains through a near-
zero pressure segment of the bridge, and finally, turning
along the grain boundary toward the suction-dominated
interface segment near triple contact. Still in simpler
terms: the positive pressure caused by the faster shrinking
gorge pumps the liquid through the bridge center toward
the triple contact perimeter held back by suction.

The above seems also to confirm the leading hypothe-
ses of our numerical approach: that evaporation flux does
not directly or strongly affect the flow (as in hypothe-
ses discussed by Sobac and Brutin [58] for sessile drops),
which is dominated by pressure at the interface. That hy-
pothesis in other terms is equivalent to considering the
entire process through a series of snapshots taken for sub-
sequent configurations of the interface taken as incipient
dynamic process, without allowing for reaching any steady
state. Notably, the simulations conducted this way were
convergent until less than half of the liquid evaporated.
However, that is quite close to the situation when capillary
bridges actually undergo spontaneous rupture [18,19,40].

Clearly, all the flow is a result of non-uniform pres-
sure within the bridge, and thus a departure of the bridge
shape from the Laplace-Young equilibrium, i.e. constant
mean curvature interface surface. We did measure as rig-
orously as possible the mean curvatures and found them
ranging from positive to negative, the latter ones are pre-
dominant in the triple contact area (especially for larger
separations and taller bridges). The gorge principal curva-
ture and circumferential curvatures above (and below) are
always positive. The negative component of the curvature
necessarily comes from the external (profile) curvature.

Apart from other intricacies and singularities of the
FE modeling of flow with a moving liquid/gas interface,
including the moving triple contact point, the introduc-
tion of a straight (or actually conical, in 3D) segment of
the interface near the contact makes it impossible to re-



Fig. 11. Pattern of flow of both liquid within the bridge and gas obtained in simulations at configurations C and E. It can be
seen that at configuration C the axial flow in the central part of the bridge is much smaller than in configuration E. This can be
related to the fact that in the simulations in configuration E, both pressure near the gorge and suction near the triple contact
reach higher values than in configuration C. However, flow velocities for both configurations are of comparable magnitudes near
the triple contact, and as a matter of fact, near the entire interface.

Fig. 12. (a) Schematic of flow in an evaporating capillary bridge, summarized as follows: away from the positive Laplace
pressure interface segment at the gorge, parallel to symmetry plane at the bridge mid-height, toward bridge interior, turning
vertical to approach the grains, across a near-zero pressure segment of the liquid body, and finally, turning along the grain
boundaries toward the suction-dominated interface near the triple contact. In other terms: the faster shrinking gorge exerts the
positive pressure, which pushes the liquid through the bridge center toward the triple contact perimeter held back by suction.
(b) Schematic of flow in an evaporating sessile drop (from Hu and Larson [30, 34]). Similarly to the flow in a lower half of
the capillary bridge, the flow is central, downward followed by spreading along the solid/liquid interface toward the air/liquid
solid/interface.

produce a negative curvature at contact, and hence the
negative pressure at that point. This is what lead us to
adopt an approach through a sequence of snapshots of im-
posed interface shapes and positions, with an experiment
lead simulation of the negative profile curvature at the
contact line. An experiment lead simulation implies that
the shape and position of the interface are taken directly
from the experiment. This technique appeared to return
Laplace pressure values quite close to the experimental
values, in particular, realistic values of negative pressure
at the contact point. At the advancement of the process
quite close to the configuration corresponding to the ex-
perimentally observed first instability of the bridge (see
Mielniczuk et al. [19]) the numerically obtained suctions
became unrealistically high.

Our last comment refers to the role of internal flow in
pinning understood as an arrest in the translation of the
triple contact line. Despite the huge effort that has been
devoted to explaining mechanisms of anchoring of water at
the triple contact via solid surface effects in sessile drops,
there are no established analytical ways of expressing the
role of flow in the positioning of the interface. Hence, the
comment is essentially a speculation, hopefully a useful
one. In brief, we do observe in simulations a massive dis-
placement of liquid from the central area of the bridge to
the contact area. Liquid is being pushed out by a much
faster decrease of the gorge radius accompanied by an in-
creasing and accelerating positive pressure in the gorge
area. At the same time, water in the contact area is being
subject to a high negative pressure.



Notably, in our calculations the pressures in our cal-
culations result from an (as close as possible) approxima-
tion of the experimental interface line, in particular, its 
curvatures. Equally important is to remember that our 
results showing a high concentration of vapor flux near 
the contact area, are effectively decoupled from the calcu-
lations of flow, and come from a different boundary value 
problem (vapor diffusion), while still based on the same 
approximation of the experimental instantaneous position 
of the interface. In consequence, we are not in the posi-
tion to use the mass balance of water over an incremental 
time-elapse, as we do not know what an instantaneous dis-
placement of interface could be over the given amount of 
time. Nevertheless, we can calculate the total volume of 
liquid entering the outer ring of the bridge body across a 
vertical cross-section cut, say at 1/4 of the current con-
tact radius from the contact (which is a somewhat arbi-
trary measure of liquid flow) which yields for configuration 
B, an amount of 1.02 ∗ 10−11 m3/s, while the total corre-
sponding volume of water converted into vapor along the 
interface between the section cut and the entire contact 
perimeter is 1.19 ∗ 10−12 m3/s, which is almost ten times 
smaller volume than the entering fluid volume. Thus, the 
evaporated volume from the considered area is barely 10%
of the massive inflow of water pushed into that area due 
to configuration changes. In other terms, it is concluded 
that the mass displacements and flow due to Laplace pres-
sure changes are by far the dominant effect. However, at a 
smaller scale of the tip of the contact, say at 0.0007 mm, 
that is 0.088% of the current contact radius away from the 
contact, it is the other way round, i.e. the total inflow of 
8.71 ∗ 10−16 m3/s, is smaller than the evaporated volume, 
which is 3.46 ∗ 10−14 m3/s. At this scale we are near the 
singularity of the evaporation flux from practically a film. 
These findings are in agreement with the differences at 
different scales discussed by Snoeijer and Andreotti [50] 
for drops. It is useful to realize that the motion of water 
particles near contact is consistently in the opposite di-
rection of the displacement of the triple contact line. For 
all practical purposes, at the macroscale, the substantial 
influx of water into the contact zone may to a large de-
gree contributing to what is perceived as the pinning of 
the perimeter.

In summary, on the basis of approximate simulation 
results we propose the following assessment of the under-
standing of the mechanics of evaporating capillary bridges:

– experimental observations indicate that evaporating
water in the capillary bridge is subject to highly dif-
ferentiated Laplace pressure (calculated from curva-
tures): with a suction near the contact and positive
pressure near the gorge;

– the gorge radius decreases much faster than the triple
contact radius, the latter one occasionally being so
slow, that it appears as pinned;

– an accurate simulation of the dynamics of evaporating
bridge with a moving evaporating interface requires a
precise representation of the (negative) interface cur-
vature near the contact, which is not available in com-

mercial numerical codes that use the piecewise linear
interface representation;

– an approximate approach based on the simulation of
a series of patterns of an incipient flow induced by
placing the interface using an experimentally observed
configuration allows us to calculate a well-predicted
Laplace pressure, pressure in the liquid, and liquid
flow, as follows:

– the observed geometrical disparity between tightening
of the gorge, and low mobility of the contact is con-
comitant with a displacement of mass of water from
the central part of the bridge toward the perimeter of
the contact. This flow pattern appears to be affiliated
with the pinning (or at least substantial slowing) of
the contact during drying;

– the above is in agreement with the highly non-uniform
distribution of the evaporation flux estimated from a
vapor diffusion problem along the liquid/gas interface,
with a high evaporation flux near the contact and much
smaller flux near the center;

– the simulations of the evaporation flux on the one
hand, and pressures and flow on the other are decou-
pled; however, both take into account the experimental
position of the interface;

– the simulations were not possible for advanced states
of evaporation known from experiments to approach
unstable behavior.

A final conclusion is that to arrive at the ability to
predict the flow process induced in a capillary bridge, the
computational capability is needed to conduct a rigorous
dynamic simulation of the flow linked to the evaporation
flux across the freely moving interface, with a better un-
derstood pinning kinematics criterion, sensitive to the flow
velocity near (or) at the triple point.
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