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Abstract We consider a walker on the line that at each step keeps the same direction with a probability which
depends on the discrete time already spent in the direction the walker is currently moving. More precisely, the
associated left-infinite sequence of jumps is supposed to be a Variable Length Markov Chain (VLMC) built from
a probabilized context tree given by a double-infinite comb. These walks with memories of variable length can
be seen as generalizations of Directionally Reinforced Random Walks (DRRW) introduced in [1, Mauldin & al.,
Adv. Math., 1996] in the sense that the persistence times are anisotropic. We give a complete characterization
of the recurrence and the transience in terms of the probabilities to persist in the same direction or to switch.
We point out that the underlying VLMC is not supposed to admit any stationary probability. Actually, the most
fruitful situations emerge precisely when there is no such invariant distribution. In that case, the recurrent and the
transient property are related to the behaviour of some embedded random walk with an undefined drift so that the
asymptotic behaviour depends merely on the asymptotics of the probabilities of change of directions unlike the
other case in which the criterion reduces to a drift condition. Finally, taking advantage of this flexibility, we treat
the case of more general probabilized context trees built by grafting subtrees onto the double-infinite comb.

Key words Persistent random walk . Directionally reinforced random walk . Variable length Markov chain .
Variable length memory . Probabilized context tree . Recurrence . Transience . Random walk with undefined
mean or drift
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1 Introduction

Classical random walks are usually defined from a sequence of independent and identically distributed
(i.i.d.) increments tXkukě1 by

S0 :“ 0 and Sn :“
n
ÿ

k“1

Xk for all integers ně 1. (1.1)

When the jumps are defined as a (finite-order) Markov chain, a short memory in the dynamics of the
stochastic paths is introduced and the random walk tSnuně0 itself is no longer Markovian. Such a process
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is called in the literature a persistent random walk, a Goldstein-Kac random walk or also a correlated
random walk. Concerning the genesis of the theory, we allude to [2–7] as regards the discrete-time
situation but also its connections with the continuous-time telegraph process.

In this paper, we aim at investigating the asymptotic behavior of one-dimensional random walks for
which the increments are driven by a Variable Length Markov Chain (VLMC). The use of VLMCs is
motivated by the fact that it furnishes an extented model for the dependence of the increments of the
persistent random walk (compared to the finite-order Markov dependency).

Let us recall briefly the probabilistic presentation of the Variable Length Markov Chains (VLMC)
given in this paper comes from [8] (c.f. [9] for the seminal paper and [10, pp. 117-134] for an overview
on VLMC). Introduce the set L “A ´N of left-infinite words on the alphabet A :“ td,uu and consider
a complete tree on this alphabet, i.e. a tree such that each node has 0 or 2 children, whose leaves C are
words (possibly infinite) on A . To each leaf c PC , called a context, is attached a probability distribution
qc on A . Endowed with this probabilistic structure, such a tree is named a probabilized context tree.
The related VLMC is defined as the Markov Chain on L whose transitions are given by

PpUn`1 “Un`|Unq “ qÐÝpref pUnqp`q, (1.2)

where
ÐÝ
pref pwq PC is defined as the shortest prefix of w PL , when w is read from right to left, appearing

as a leaf of the context tree. Then the increments tXkukě1 of the persistent random walks are defined as
an observable of the VLMC, namely, Xk :“`1 if Uk “Uk´1u whereas Xk :“´1 if Uk “Uk´1d.

Different context trees lead to different probabilistic impacts on the asymptotic behavior of the re-
sulting persistent random walk. Besides, the characterization of the recurrent versus transient behavior,
the so-called type problem, is difficult for general context trees. In this paper, a criterion characterizing
the type of the persistent random walk defined from the VLMC build from the double-comb probabilized
context tree introduced in [11]. This persistent random walk can be seen as the anisotropic extension of
the model of Directionally Reinforced Random Walks introduced in [1]. Surely, the considered DDRW
are not restricted to the dimension one, still, persistent random walks can be easily extented to higher
dimensions.

In Section 2, we introduce the persistent random walk built from the double-comb VLMC. Under
mild conditions on the double-comb probabilazed context tree, a renewal pattern for the resulting VLMC
is stated in [11]. This renewal property materializes for the persistent random walk to make infinitely
many U-turns almost-surely. As a result, one may define the walk more directly and forget the underlying
VLMC structure. However, in Section 4, we make use of comparaison Lemma 3.2 and ?? to derive a
recurrence/transience criteria and SLLN for a large class of probabilized context trees motivating the use
of VLMC. The preceding Section 3 is devoted to the statement related to the recurrence or transience
of the double-comb persistent random walk. In addition, a extension of the SLLN shown in [11] is also
given.

2 Settings and assumptions

Foremost, we refer to Figure 2.1 that illustrates our notations and assumptions by a realization of a linear
interpolation of our persistent random walk tSnuně0, built from a double infinite comb.

2.1 Renewal hypothesis
B: raccourcir
l’hypothèse
principale ?

In order to avoid trivial cases, we assume the persistent random walk S can not be frozen in one of the
two directions with a positive probability whatever the initial state U0 is. In other words, the persistent
random walk makes infinitely many U-turns almost-surely. In the sequel, we denote by tBnuně0 the
ordered sequence of positive random times around which S makes such a U-turn (note that B0 ě 1
necessarily).
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Figure 2.1: Persistent random walk

For the sake of simplicity, throughout this paper, we deal implicitely with the conditional probability
Pp¨|pX1,X2q “ p1,´1qq. In particular, B0 “ 1 with probability one. Intuitively, it corresponds to suitable
time change so that at time one, S admits a local maximum. Obviously, there is no loss of generality
supposing this and the long time behavior of S is not affected as well.

With these notations, the renewal property of the double-comb VLMC implies that, for any k ě 1,
the conditional probabilities

PpXn`k`1 “ 1|Xn` j “´1,1ď j ď k,Xn “ 1q and PpXn`k`1 “´1|Xn` j “ 1,1ď j ď k,Xn “´1q

are independent of n ě 1 and shall be denoted by αd
k and αu

k respectively. Intuitively, αu
k (resp. αd

k )
stands for the probability of changing direction after k rises (resp. k descents). In order to be consistent
with the renewal property of the VLMC, one have to assume the following

Assumption 2.1. 1. For any ` P tu,du and r ě 1, α`
8 ‰ 0 and

8
ź

k“r

p1´α
`
kq “ 0. (2.1)

2. For any ` P tu,du and r ě 1, α`
8 ‰ 0 and, either there exists ně r such that α`

n “ 1, or

8
ÿ

k“r

α
`
k “8. (2.2)

This assumption disallows a too strong reinforcement, that is a too fast decreasing rate for the prob-
abilities of change of directions. Sequences of transition satisfying this assumption are said to be admis-
sible. Below are given typical examples for which the assumption holds or fails.

2.2 Persistence times and embedded random walk

Defining the length of rises pτun q and of descents pτdn q for all n ě 1 by τdn :“ B2n´1´B2n´2 and τun :“
B2n´B2n´1 respectively, the renewal property implies that pτdn q and pτun q are independent sequences of
i.i.d. random variables whose distribution tails are given by T`pnq :“ T`pnq :“ Ppτ`

1 ě nq “
śn´1

k“1p1´
α`

kq, ` P tu,du.
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At this stage, we exclude for simplicity the situation of almost surely constant length of runs which
trivializes the analysis of the underlying persistent random walk.

In order to deal with a more tractable random walk built with possibly unbounded but i.i.d. incre-
ments, we define the underlying skeleton random walk tMnuně0 associated with the even breaking times
(up-down breaking times) and its almost-sure drift dM by

Mn :“ SB2n “

n
ÿ

k“1

pτuk ´ τ
d
k q, ně 0, dM :“ Erτu1 s´Erτd1 s,

the latter being meaningful whenever Erτu1 s or Erτd1 s is finite. Also, we can set (extended by continuity
whenever necessary)

dS :“
Erτu1 s´Erτd1 s
Erτu1 s`Erτd1 s

P r´1,1s. (2.3)

In regards to the convergence (3.3), the latter quantity is naturally termed the (almost sure) drift of S.

3 Recurrence and transience
B: réc/trans
connu

3.1 Equivalent criteria and comparison lemma

As stated by [12, Theorem 1., Chap. XII and Theorem 4., Chap. VI], any non constant Z-valued random
walk M is either oscillating, its limit point set is ZYt˘8u, or drifting toward `8 (resp. t´8u), and
its limit point set is t`8u (resp. ´8). Moreover, whenever M admits a SLLN, the different cases are
characterized with the help of a standard condition on the drift dM.

B: résumé en
une phrase :
trois cas pour
l’ensemble
des points
limites
ZYt˘8u,
t`8u ou
t´8u ;
SLLN
connue

The recurrence versus transience behavior of the persistent random walk S reduces to the oscillating
versus drifting behavior of M as shown in the following lemma.

Lemma 3.1. The persistent random walk S is either recurrent or transient accordingly as skeleton
random walk M is oscillating or drifting. More precisely, one has:

1) S is recurrent if and only if M is oscillating.

2) S is transient to8 (resp. ´8) if and only if M is drifting to8 (resp. ´8).

Proof of Lemma 3.1. First, when M is oscillating, S is recurrent. Next if M is drifting to ´8, then S is
transient to ´8 since the trajectory of S is always under the broken line formed by the Mn’s. Finally,
with Theorem [12, Theorem 1., Chap. XII and Theorem 4., Chap. VI], the oscillating and drifting to
˘8 behaviour form, up to a null set, a partition of the universe. Therefore, it only remains to prove that
if M is drifting to8, then S is transient to8. It is worth to note that we assume the initial time to be an
up-down breaking time as in Figure 2.1 so that the geometric argument considered above does not apply
straightforwardly. Nonetheless, the expected assertion follows by remarking that, up to an independent
random variable, the skeleton random walk at odd breaking times (down-up breaking times) is equal in
distribution to M which ends the proof of the lemma.

Let us end this part with a comparison lemma which is necessary to prove the extended SLLN in
Proposition 3.1 but also very useful in practice.

Lemma 3.2 (comparison lemma). Let S and rS be two persistent random walks such that the associated
distribution tails of their length of runs satisfy for all ně 1,

Tupnq ď ĂTupnq and Tdpnq ě ĂTdpnq. (3.1)

Then there exists a coupling, still denoted by pS, rSq up to a slight abuse, such that for all ně 1,

Sn ď rSn a.s.. (3.2)
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Proof of Lemma 3.2. Let pτ`
nq and prτ`

nq be the associated lengths of runs and G` and rG` be the left
continuous inverse of their cumulative distribution functions. Then inequalities in (3.1) yield that for all
x P r0,1s,

Gupxq ď rGupxq and Gdpxq ě rGdpxq.

Then we can construct a coupling (see for instance the book [13, Chap. 1.3.]) of the lengths of runs such
that, with probability one, for all ně 1,

τ
u
n ď rτ

u
n and τ

d
n ě rτ

d
n .

To be more specific, considering two independent sequences pV `
n q of uniform random variables on r0,1s,

we can set
τ
`
n :“ G`pV `

n q and τ̃
`
n :“ rG`pV `

n q.

Consequently, there exists a coupling of the persistent random walks S and rS satisfying inequality (3.2)
since they are entirely determined by these lengths of runs.

With respect to the considerations above, it seems natural to distinguish two cases providing whether
one of the mean length of runs between Erτu1 s or Erτd1 s is finite or both are infinite. The former case
correspond to the situation in which the drift of M is well-defined and is considered in the next section.
The latter case, when the definition of the drift in (2.3) is meaningless, is considered apart in Section
3.3.

3.2 Well-defined Drift case

In this part, assume that the drift is well defined, that is Θup8q or Θdp8q is finite so that dS given
in (2.3) is well-defined. We will highlight a Strong Law of Large Number (SLLN) for the persistent
random walk and we shall prove a null drift recurrence criterion similarly to the classical context of
random walks with integrable jumps.

Proposition 3.1 (recurence criterium and SLLN). The persistent random walk S is recurrent if and only
if dS “ 0 and transient otherwise. Furthermore, one has

lim
tÑ8

Sn

n
“ dS P r´1,1s a.s.. (3.3)

B: si on ne
supprime pas
la preuve,
peut-être
résumer en 1
ou 2 phrases
l’idée

Proof. First remark that, in this setting, the recurrence criterion is a straightforward consequence of [12,
Theorem 1., Chap. XII and Theorem 4., Chap. VI] and Lemma 3.1. Besides, the law of large numbers
(3.3) when Erτu1 s and Erτd1 s are both finite is already proved in [11, Proposition 4.5, p. 33] under the
assumption that dS P p´1,1q. Then it only remains to prove the SLLN when Erτu1 s “ 8 and Erτd1 s ă 8
(and thus dS “ 1). Note that it is sufficient to prove the minoration in (3.3) since Sn ď n for all ně 0. To
this end, let ε P p0,1q and set

α
u,ε
n :“

"

αu
n , when 1ď nď N´1,

1, when ně N,
and α

d,ε
n :“ α

d
n . (3.4)

This defines a persistent random Sε satifying dSε ě 1´ ε as soon as N is chosen sufficiently large in
(3.4). The comparison Lemma 3.2, giving a coupling such that Sε ď S alsmost-surely, together with the
latter SLLN applied to Sε end the proof.
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3.3 Undefined drift case

In this section we consider the remaining case in which both Θup8q and Θdp8q are infinite. In this case,
the information given by the expectation of one increment of M is no longer sufficient to discriminate
between transience and recurrence.

In fact, following Erickson [14, Theorem 2., p. 372], the oscillating or drifting behaviour of the
skeleton random walk M is characterized through the cumulative distribution function of its increments
pYnq :“ pτun ´ τdn q, especially if the mean is undefined. Roughly speaking, the criterion of Erickson
together with the lemma 3.1 imply that the persistent random walk S is recurrent if the distribution tails
of the positive and negative parts of an increment are comparable, transient otherwise.

However, Erickson’s criterion does not suit to our context since the distribution of an increment
is not explicitly given by the parameters of the model, but merely by the convolution of two a priori
known distributions. To circumvent these difficulties, we consider a sequence pξnq of non-degenerate
i.i.d. Bernoulli random variables with parameter p P p0,1q, independent of the sequences of length of
runs pτun q and pτdn q. Then we introduce the following classical random walk defined for all ně 0 by

Mξ

n :“
n
ÿ

k“1

Y ξ

k , with Y ξ

k :“ ξkτ
u
k ´p1´ξkqτ

d
k . (3.5)

The proof of the following lemma is postponed to the end of this part.

Lemma 3.3 (randomized random walk). The random walks M and Mξ are simultaneously oscillating
or drifting (towards ˘8).

Therefore, in order to obtain the oscillating or drifting property of M we can apply the criterion of
Erickson to Mξ . It is then not difficult to see that the criterion consists of determining the convergence
or divergence of the more tractable series (compare to (??)) given, for any `1, `2 in tu,du, by

J`1|`2 :“
8
ÿ

n“1

nPpτ`1 “ nq
řn

k“1Ppτ`2 ě kq
“

8
ÿ

n“1

np´∆T`1pnqq
řn

k“1 T`2pkq
, (3.6)

where ∆V pnq denotes the forward discrete derivative at point n of the real sequence pVnq, i.e.

∆V pnq “V pn`1q´V pnq. (3.7)

B: la forme
alternative est
sans intérêt
sans les
perturbations

Theorem 3.1 (recurrence criterium and a.s. asymptotics). The persistent random walk S is recurrent if
and only if

Ju|d “8 and Jd|u “8, (3.8)

and transient to8 (resp. transient to ´8) if and only if

Ju|d “8 and Jd|u ă8 presp. Ju|d ă8 and Jd|u “8q. (3.9)

Moreover, when Ju|d “8 (resp. Jd|u “8),

limsup
tÑ8

Sn

n
“ 1

ˆ

resp. liminf
tÑ8

Sn

n
“´1

˙

a.s.. (3.10)

Alternatively, the quantities Ju|d and Jd|u can be substituted with Ku|d and Kd|u respectively.

This theorem ends the characterization of the type of persistent random walks. In Table 3.1 the
conditions for the recurrence and the transience are summarized and we give some applications of these
criteria below.
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Θup8q ă8 Θup8q “8

Θdp8q ă8

Transient to `8
Transient to `8

Recurrent dS P p0,1q

dS “ 1
dS “ 0 Transient to ´8

dS P p´1,0q

Θdp8q “8

Transient to ´8
Transient to `8

dS “´1

Recurrent 8“ Ju|d ą Jd|u
Ju|d “ Ju|d “8 Transient to ´8

8“ Jd|u ą Ju|d

Table 3.1: Recurrence and transience criteria.

Corollary 3.1. In the setting of Theorem 3.1, the criterion can be alternatively stated in terms of quan-
tities

K`1|`2 :“
8
ÿ

n“1

ˆ

1´
nT`2pnq

řn
k“1 T`2pkq

˙

T`1pnq
řn

k“1 T`2pkq
(3.11)

in place of the quantities Ju|d and Jd|u.

These alternative quantities only involves distribution tails making the criterion more transparent.

Proof. For the alternative form of the theorem, it remains to prove that Ju|d “8 if and only if Ku|d “8.
Summing by parts (the so called Abel transformation) we can write for any r ě 1,

r
ÿ

n“1

np´∆Tupnqq
řn

k“1 Tdpkq
“

«

1´
pr`1qTupr`1q
řr`1

k“1 Tdpkq

ff

`

r
ÿ

n“1

∆
ˆ

n
řn

k“1 Tdpkq

˙

Tupn`1q. (3.12)

Besides, a simple computation gives

∆
ˆ

n
řn

k“1 Tdpkq

˙

“

řn
k“1 Tdpkq´nTdpn`1q

řn`1
k“1 Tdpkq

řn
k“1 Tdpkq

“
Erτd1τdďns

řn`1
k“1 Tdpkq

řn
k“1 Tdpkq

ě 0. (3.13)

It follows that

r
ÿ

n“1

np´∆Tupnqq
řn

k“1 Tdpkq
“

«

1´
pr`1qTupr`1q
řr`1

k“1 Tdpkq

ff

`

r
ÿ

n“1

ˆ

1´
nTdpn`1q
řn

k“1 Tdpkq

˙

Tupn`1q
řn`1

k“1 Tdpkq
. (3.14)

Due to the non-negativeness of the forward discrete time derivative (3.13) and due to our assumption
for Θup8q and Θdp8q to be infinite, the general term of the series in the right-hand side of the latter
equation is non-negative and (up to a shift) equivalent to that of Ku|d. Moreover, we get again from
(3.13) that

rTuprq
řr

k“1 Tdpkq
“

8
ÿ

m“r`1

rp´∆Tupmqq
řr

k“1 Tdpkq
ď

8
ÿ

m“r`1

mp´∆Tupmqq
řm

k“1 Tdpkq
. (3.15)

Thus, if Ju|d is infinite then so is Ku|d. Conversely, the finiteness of Ju|d together with the estimate (3.15)
implies the first term on the right-hand side in (3.14) remains bounded achieving the proof.

7



Proof of Theorem 3.1. First, the statements (3.8) and (3.9) related to the recurrence and transience prop-
erties are direct consequences of Erickson’s criteria [14] and of lemma 3.3 since the two-sided distribu-
tion tails of the increments of the random walk Mξ given in (3.5) satisfies for all ně 1,

PpY ξ

1 ě nq “ Ppξ1 “ 1qPpτu ě nq and PpY ξ ď´nq “ Ppξ1 “ 0qPpτd ě nq.

Besides, from the equalities

Tn “

n
ÿ

k“1

τ
u
k `

n
ÿ

k“1

τ
d
k and STn “

n
ÿ

k“1

τ
u
k ´

n
ÿ

k“1

τ
d
k

we can see that (3.10) is satisfied if for all cą 0,

P

˜

τ
u
n ě c

n
ÿ

k“1

τ
d
k i.o.

¸

“ 1. (3.16)

In fact, using the Kolmogorov’s zero–one law, we only need to prove that this probability is not zero. To
this end, we can see that [15, Theorem 5., p. 1190] applies and it follows that

limsup
nÑ8

pY ξ

n q
`

řn
k“1pY

ξ

n q´
“ limsup

nÑ8

ξnτun
řn

k“1p1´ξkqτ
d
k
“8 a.s.. (3.17)

Roughly speaking, this theorem states that the position of a one-dimensional random walk with an
undefined mean is essentially given by the last big jump. Introducing the counting process given for all
ně 1 by

Nn :“ #t1ď k ď n : ξk “ 0u, (3.18)

we shall prove that
#

n
ÿ

k“1

p1´ξkqτ
d
k

+

ně1

L
“

#

Nn
ÿ

k“1

τ
d
k

+

ně1

. (3.19)

For this purpose, we will see that the sequences of increments consists of independent random variables
and are equal in distribution in the following sense

 

p1´ξnqτ
d
n
(

ně1
L
“
 

p1´ξnqτ
d
Nn

(

ně1 . (3.20)

First note that for any ně 1,

Ppp1´ξnqτ
d
Nn
“ 0q “ Ppξ1 “ 1q “ Ppp1´ξnqτ

d
n “ 0q. (3.21)

Moreover, up to a null set, we have tξn “ 0u “ tNn “ Nn´1`1u and Nn´1 is independent of ξn and of
the lengths of runs. We deduce that for any k ě 1,

Ppp1´ξnqτ
d
Nn
“ kq “ Ppξ1 “ 0,τd1 “ kq “ Ppp1´ξnqτ

d
n “ kq. (3.22)

Hence the increments of the random walks in (3.19) are identically distributed. Since the increments
on left-hand side in (3.20) are independent, it only remains to prove the independence of those on the
right-hand side in (3.20) to obtain the equality in distribution in (3.19). Let us fix ně 1 and set for any
non-negative integers k1, ¨ ¨ ¨ ,kn ě 0,

In :“ t1ď j ď n : k j ‰ 0u and mn :“ cardpInq.
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Remark that ` ÞÝÑ m` is increasing on In and up to a null set,
č

`RIn

tξ` “ 1uX
č

`PIn

tξ` “ 0u Ă tNn “ mnu.

Then using (3.21) and (3.22) together with the independence properties we can see that

P

˜

n
č

j“1

tp1´ξ jqτ
d
N j
“ k ju

¸

“ P

˜

č

`RIn

tξ` “ 1uX
č

`PIn

tξ` “ 0,τdm`
“ k`u

¸

“

n
ź

j“1

Ppp1´ξ jqτ
d
N j
“ k jq,

which ends the proof of (3.19).
Next, by the standard LLN for i.i.d. sequences, we obtain that for any integer q greater than 1{p,

with probability one, the events tNn ě tn{quu hold for all sufficiently large n. We deduce by (3.19) and
(3.17) that

P

¨

˝τ
u
n ě c

tn{qu
ÿ

k“1

τ
d
k i.o.

˛

‚“ 1.

As a consequence,

P

˜

q´1
ď

`“0

#

τ
u
qn`` ě c

n
ÿ

k“1

τ
d
k

+

i.o.

¸

“ 1. (3.23)

Again, applying the Kolmogorov’s zero-one law, we get that the q sequences of events (having the same
distribution) in the latter equation occur infinitely often with probability one. We deduce that (3.16) is
satisfied and this achieves the proof of (3.10).

Proof Lemma 3.3. Deeply exploiting the Theorem ?? stating that any non-constant random walk is, with
probability one, either (trichotomy) oscillating or drifting to ˘8, the proof is organized as follows:

1) At first, we shall prove the result in the symmetric case p“ 1{2.

2) Secondly, we shall deduce the statement for any arbitrary p P p0,1q from the latter particular case.

To this end, assume that the supremum limit of Mξ is a.s. infinite. Following exactly the same lines as
in the proof of (3.16), we obtain that M is non-negative infinitely often with probability one. Applying
Theorem ?? we deduce that the supremum limit of M is also a.s. infinite. Thereafter, again from the
latter theorem and by symmetry, we only need to prove that if Mξ is drifting, then so is M. When the
i.i.d. Bernoulli random variables pξnq are symmetric, that is p “ 1{2, it is a simple consequence of the
equalities

Mξ L
“M1´ξ and M “Mξ `M1´ξ . (3.24)

At this stage it is worth noting that the lemma is proved in the symmetric situation.
B: en fait,
pour la
réc/trans,
p“ 1{2 est
suffisant dans
ts les cas

Remark 3.1. Contrary to the well-defined drift case for which a small perturbation on the parameters of
a recurrent persistent random walk leads in general to a transient behaviour, in the case of an undefined
drift the persistent random walk may stay recurrent as long as the perturbation remains asymptotically
controlled. To put it in a nutshell, the criterion is global in the former case and asymptotic in the latter
case.

4 Perturbations results
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