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GRADIENT GIBBS MEASURES FOR THE SOS MODEL WITH

COUNTABLE VALUES ON A CAYLEY TREE

F. HENNING, C. KÜLSKE, A. LE NY, U. A. ROZIKOV

Abstract. We consider an SOS (solid-on-solid) model, with spin values from the set of
all integers, on a Cayley tree of order k ≥ 2 and are interested in translation-invariant
gradient Gibbs measures (GGMs) of the model. Such a measure corresponds to a
boundary law (a function defined on vertices of the Cayley tree) satisfying a functional
equation. In the ferromagnetic SOS case on the binary tree we find up to five solutions
to a class of 4-periodic boundary law equations (in particular, some two periodic ones).
We show that these boundary laws define up to four distinct GGMs. Moreover, we
construct some 3-periodic boundary laws on the Cayley tree of arbitrary order k ≥ 2,
which define GGMs different from the 4-periodic ones.

Mathematics Subject Classifications (2010). 82B26 (primary); 60K35 (sec-
ondary)

Key words. SOS model, Cayley tree, Gibbs measure, tree-indexed Markov chain,
gradient Gibbs measures, boundary law.

1. Introduction

We consider models where an infinite-volume spin-configuration ω is a function from
the vertices of the tree Cayley to the local configuration space E ⊆ Z.

A solid-on-solid (SOS) model is a spin system with spins taking values in (a subset
of) the integers, and formal Hamiltonian

H(σ) = −J
∑

〈x,y〉
|ω(x)− ω(y)|,

where J ∈ R is a coupling constant. As usual, 〈x, y〉 denotes a pair of nearest neighbour
vertices.

For the local configuration space we consider in the present paper the full set E := Z.
The model can be considered as a generalization of the Ising model, which corresponds
to E = {−1, 1}, or a less symmetric variant of the Potts model with non-compact state
space. SOS-models on the cubic lattice were analyzed in [14] where an analogue of the so-
called Dinaburg–Mazel–Sinai theory was developed. Besides interesting phase transitions
in these models, the attention to them is motivated by applications, in particular in the
theory of communication networks; see, e.g., [11], [16]. SOS models with E = Z have
also been used as simplified discrete interface models which should approximate the
behaviour of a Dobrushin-state in an Ising model when the underlying graph is Zd, and
d ≥ 2. There is the issue of possible non-existence of any Gibbs measure in the case
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of such unbounded spins, in particular in the additional presence of disorder (see [3]
and [4]). In this paper we show that on the Cayley tree there are several translation
invariant gradient Gibbs measures. For more background on Gradient Gibbs measures
on the lattice, also in the case of real valued state space, we refer to [9], [1], [8], [5], [6]
and [2].

Compared to the Potts model, the m-state SOS model has less symmetry: The full
symmetry of the Hamiltonian under joint permutation of the spin values is reduced to
the mirror symmetry, which is the invariance of the model under the map ωi 7→ m− ωi

on the local spin space. Therefore one expects a more diverse structure of phases.
To the best of our knowledge, the first paper devoted to the SOS model on the Cayley

tree is [17]. In [17] the case of arbitrary m ≥ 1 is treated and a vector-valued functional
equation for possible boundary laws of the model is obtained. Recall that each solution
to this functional equation determines a splitting Gibbs measure (SGM), in other words a
tree-indexed Markov chain which is also a Gibbs measure. Such measures can be obtained
by propagating spin values along the edges of the tree, from any site singled out to be the
root to the outside, with a transition matrix depending on initial Hamiltonian and the
boundary law solution. In particular the homogeneous (site-independent) boundary laws
then define translation-invariant (TI) SGMs. For a recent investigation of the influence
of weakly non-local perturbations in the interaction to the structure of Gibbs measures,
see [2] in the context of the Ising model.

Also the symmetry (or absence of symmetry) of the Gibbs measures under spin reflec-
tion is seen in terms of the corresponding boundary law. For SOS models some TISGMs
which are symmetric have already been studied in the particular case m = 2 in [17],
and m = 3 in [18]. In [12], for m = 2, a detailed description of TISGMs (symmetric
and non-symmetric ones) is given: it is shown the uniqueness in the case of antiferro-
magnetic interactions, and existence of up to seven TISGMs in the case of ferromagnetic
interactions. See also [19] for more details about SOS models on trees.

In the situation of an unbounded local spin space the normalisability condition given
in [21] (which is needed to construct a SGM, in other words a tree indexed Markov chain,
from a given boundary law solution) is not automatically satisfied anymore. In this
paper we are interested in the class of (spatially homogeneous/ tree-automorphism in-
variant) height-periodic boundary laws to tree-automorphism invariant potentials whose
elements violate this normalisability condition. Here, a spatially homogeneous height-
periodic boundary law with period q is a q-periodic function on the local state space Z.
Although the procedure of constructing a Gibbs measures from boundary laws described
in [21] can not be applied to elements of that class, we are still able to assign a transla-
tional invariant gradient Gibbs measure (GGM) on the space of gradient configurations
to each such spatially homogeneous height-periodic boundary law, compare [13]. This
motivates the study of spatially homogeneous height-periodic boundary laws as useful
finite-dimensional objects which are are easier to handle than the non-periodic ones re-
quired to fulfill the normalisability condition. Gradient Gibbs measures describe height
differences, Gibbs measures describe absolute heights. Each Gibbs measure defines a
gradient Gibbs measures, but the converse in not true, which is a phenomenon that is
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well-known from the lattice. Some more explanation will be given in the following sec-
tions. The main goal of this paper then consists in the description of a class of boundary
solutions which have periods of 2, 3 and 4 with respect to shift in the height direction
on the local state space Z, and their associated GGMs.

The paper is organized as follows. In Section 2 we first present the preliminaries of our
model. Section 3 then contains a summary on the notion of GGMs on trees and their
construction from homogeneous periodic boundary laws. For further details see [13].
The main part, section 4, is devoted to the description of a set of homogeneous 2, 3
and 4-periodic boundary laws. Solving the associated boundary law equations for the
2-periodic and the 4-periodic case on the binary tree we prove that depending on the
system parameters this set contains one up to five elements, yet the number of distinct
GGMs assigned to them will turn out to be at most four. In the last subsection we
construct GGMs for 3-periodic boundary laws on the k-regular tree for arbitrary k ≥ 2.

2. Preliminaries

Cayley tree. The Cayley tree Γk of order k ≥ 1 (or k-regular tree) is an infinite
tree, i.e. a locally finite connected graph without cycles, such that exactly k + 1 edges
originate from each vertex. Let Γk = (V,L) where V is the set of vertices and L the set
of edges. Two vertices x, y ∈ V are called nearest neighbours if there exists an edge l ∈ L
connecting them. We will use the notation l = 〈x, y〉. A collection of nearest neighbour
pairs 〈x, x1〉, 〈x1, x2〉, ..., 〈xd−1, y〉 is called a path from x to y. The distance d(x, y) on
the Cayley tree is the number of edges of the shortest path from x to y.

Furthermore, for any Λ ⊂ V we define its outer boundary as

∂Λ := {x /∈ Λ : d(x, y) = 1 for some y ∈ Λ}.
SOS model. We consider a model where the spin takes values in the set of all integer

numbers Z := {. . . ,−1, 0, 1, . . . }, and is assigned to the vertices of the tree. A (height)
configuration ω on V is then defined as a function x ∈ V 7→ ωx ∈ Z; the set of all height
configurations is Ω := Z

V . Take the power set 2Z as measurable structure on Z and then
endow Ω with the product σ-algebra F := σ{ωi | i ∈ V } where ωi : Ω → Z denotes the
projection on the ith coordinate. We also sometimes consider more general finite subsets
Λ of the tree and we write S for the set of all those finite subtrees.
Recall here that the (formal) Hamiltonian of the SOS model is

H(σ) = −J
∑

〈x,y〉∈L
|ωx − ωy|, (2.1)

where J ∈ R is a constant which we will set to 1 (incorporated in the inverse temperature
β) in the following. As defined above, 〈x, y〉 denotes nearest neighbour vertices.

Note that the above Hamiltonian depends only on the height difference between neigh-
bouring vertices but not on absolute heights (it is given by a gradient interaction poten-
tial in the terminology of [13]). This suggests reducing complexity of the configuration
space by considering gradient configurations instead of height configurations as it will
be explained in the following section.
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3. Gradient Gibbs measures and an infinite system of functional

equations

Gradient configurations: Let the Cayley tree be called Γk. We may induce an orienta-
tion on Γk relative to an arbitrary site ρ (which we may call the root) by calling an edge
〈x, y〉 oriented iff it points away from the ρ. More precisely, the set of oriented edges is
defined by

~L := ~Lρ := {〈x, y〉 ∈ L : d(ρ, y) = d(ρ, x) + 1}.

Note that the oriented graph (V, ~L) also possesses all tree-properties, namely connect-
edness and absence of loops.

For any height configuration ω = (ω(x))x∈V ∈ Z
V and b = 〈x, y〉 ∈ ~L the height differ-

ence along the edge b is given by ∇ωb = ωy − ωx and we also call ∇ω the gradient field

of ω. The gradient spin variables are now defined by η〈x,y〉 = ωy −ωx for each 〈x, y〉 ∈ ~L.

Let us denote the space of gradient configurations by Ω∇ = Z
~L. Equip the integers Z

with the power set as measurable structure. Having done this, the measurable struc-

ture on the space Ω∇ is given by the product σ-algebra F∇ := σ({ηb | b ∈ ~L}). Clearly
∇ : (Ω,F) → (Ω∇,F∇) then becomes a measurable map.

For any fixed site x ∈ V and given spin value ωx ∈ Z, each gradient configuration
ζ ∈ Ω∇ (uniquely) determines a height configuration by the measurable map

ϕx,ωx :

{

Ω∇ → Ω

(ϕx,ωx(ζ))y = ωx +
∑

b∈Γ(x,y) ζb,
(3.1)

where Γ(x, y) is the unique path from x to y. From this we get the following two
statements:

(1) The linear map ∇ : ZV → Z
~L is surjective and

(2) The kernel of ∇ is given by the spatially homogeneous configurations.

Therefore we have the identification

Ω∇ = Z
~L = Z

V /Z. (3.2)

Here, = is meant in the sense of isomorphy between Abelian groups. Endowing Z
V /Z

with the final σ-algebra generated by the respective coset projection we can also regard
this isomorphy as an isomorphy between measurable spaces due to measurability of the
maps ϕx,ωx and ∇.

Note that statement (1) above relies on the absence of loops in trees. For gradient
configurations on lattices in more than one dimension a further plaquette condition is
needed (see [9]). In contrast to this, its following statement (2) is based on connected-
ness of the tree. Therefore for any finite subtree Λ ∈ S the isomorphy (3.2) between

measurable spaces restricts to an isomorphy between Z
Λ/Z and Z

{b∈~L|b⊂Λ} and Z
Λ/Z,

where the sets are endowed with the respective final and product σ-algebra.
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Further note that for any w ∈ V the bijection
{

Z
V → Z

~L × Z

ω = (ωx)x∈V 7→ (∇ω, ωw)
(3.3)

is an isomorphism with respect to the product σ-algebra on Z
~L × Z, where the inverse

map is given by (3.1). In the following, this will allow us to easily identify any measure

on Z
V with its push forward on the space Z

~L × Z.
Gibbs measure: Recall that the set of height configurations Ω := Z

V was endowed
with the product σ-algebra ⊗i∈V 2Z, where 2Z denotes the power set of Z. Then for
any Λ ⊂ V consider the coordinate projection map σΛ : ZV → Z

Λ and the σ-algebra
FΛ := σ(ωΛ) of cylinder sets on Z

V generated by the map ωΛ.
Now we are ready to define Gibbs measures on the space of height-configurations for

the model (2.1) on a Cayley tree. Let ν = {ν(i) > 0, i ∈ Z} be a σ-finite positive fixed a-
priori measure, which in the following we will always assume to be the counting measure.

Gibbs measures are built within the DLR framework by describing conditional prob-
abilities w.r.t. the outside of finite sets, where a boundary condition is frozen. One
introduces a so-called Gibbsian specification γ so that any Gibbs measure µ ∈ G(γ)
specified by γ verifies

µ(A|FΛc) = γΛ(A|·) µ− a.s. (3.4)

for all Λ ∈ S and A ∈ F . The Gibbsian specification associated to a potential Φ is given
at any inverse temperature β > 0, for any boundary condition ω ∈ Ω as

γΛ(A|ω) =
1

Zβ,Φ
Λ

∫

e−βHΦ
Λ
(σΛωΛc)1A(σΛωΛc)ν⊗Λ(dσΛ), (3.5)

where the partition function Zβ,Φ
Λ – that has to be non-null and convergent in this count-

able infinite state-space context (this means that Φ is ν-admissible in the terminology
of [10])– is the standard normalization whose logarithm is often related to pressure or
free energy.

In our SOS-model on the Cayley tree Φ is the unbounded nearest neighbour potential
with
Φ{x,y}(ωx, ωy) = |ωx − ωy| and Φ{x} ≡ 0, so γ is a Markov specification in the sense that

γΛ(ωΛ = ζ|·) is F∂Λ-measurable for all Λ ⊂ V and ζ ∈ Z
Λ. (3.6)

In order to build up gradient specifications from the Gibbsian specifications defined
above, we need to consider the following: Due to the absence of loops in trees, for
any finite Λ ⊂ Z the complement Λc is not connected but consists of at least two
connected components where each of these contains at least one element of ∂Λ. This
means that the gradient field outside Λ does not contain any information on the relative
height of the boundary ∂Λ (which is to be understood as an element of Z∂Λ/Z). More
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precisely, let cc(Λc) denote the number of connected components in Λc and note that
2 ≤ cc(Λc) ≤ |∂Λ|.

Applying (3.1) to each connected component, an analogue to (3.2) becomes

Z
{b∈~L | b⊂Λc} × (Z∂Λ/Z) ⊃ Z

{b∈~L | b⊂Λc} × (Zcc(Λc)/Z) = Z
Λc

/Z ⊂ Z
V /Z. (3.7)

where ”=” is in the sense of isomorphy between measurable spaces. For any η ∈
Ω∇ = Z

V /Z let ⌊η⌋∂Λ ∈ Z
∂Λ/Z denote the image of η under the coordinate projec-

tion Z
V /Z → Z

∂Λ/Z with the latter set endowed with the final σ-algebra generated by
the coset projection. Set

F∇
Λ := σ((ηb)b⊂Λc) ⊂ T ∇

Λ := σ((ηb)b⊂Λc , [η]∂Λ). (3.8)

Then T ∇
Λ contains all information on the gradient spin variables outside Λ and also

information on the relative height of the boundary ∂Λ. By (3.7) we have that for any
event A ∈ F∇ the FΛc-measurable function γΛ(A|·) is also measurable with respect to
T ∇
Λ , but in general not with respect to F∇

Λ . These observations lead to the following:

Definition 1. The gradient Gibbs specification is defined as the family of probability
kernels (γ′Λ)Λ⊂⊂V from (Ω∇,T ∇

Λ ) to (Ω∇,F∇) such that
∫

F (ρ)γ′Λ(dρ | ζ) =
∫

F (∇ϕ)γΛ(dϕ | ω) (3.9)

for all bounded F∇-measurable functions F , where ω ∈ Ω is any height-configuration
with ∇ω = ζ.

Using the sigma-algebra T ∇
Λ , this is now a proper and consistent family of probability

kernels, i.e.

γ′Λ(A | ζ) = 1A(ζ) (3.10)

for every A ∈ T ∇
Λ and γ′∆γ

′
Λ = γ′∆ for any finite volumes Λ,∆ ⊂ V with Λ ⊂ ∆. The

proof is similar to the situation of regular (local) Gibbs specifications [10, Proposition
2.5].

Let Cb(Ω∇) be the set of bounded functions on Ω∇. Gradient Gibbs measures will
now be defined in the usual way by having their conditional probabilities outside finite
regions prescribed by the gradient Gibbs specification:

Definition 2. A measure ν ∈ M1(Ω
∇) is called a gradient Gibbs measure (GGM) if it

satisfies the DLR equation
∫

ν(dζ)F (ζ) =

∫

ν(dζ)

∫

γ′Λ(dζ̃ | ζ)F (ζ̃) (3.11)

for every finite Λ ⊂ V and for all F ∈ Cb(Ω∇). The set of gradient Gibbs measures will
be denoted by G∇(γ).

Construction of GGMs via boundary laws:
In what follows we may assume the a-priori measure ν on Z to be the counting measure.

On trees with nearest-neighbours potentials Φ such as the one we consider here, it is
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possible to use the natural orientations of edges to introduce tree-indexed Markov chains.
These are probability measures µ having the property that for µ-a.e. oriented edges 〈xy〉
and any ωy ∈ E,

µ(σy = ωy|F(−∞,xy)) = µ(σy = ωy|Fx),

where

(−∞, xy) := {w ∈ V | 〈x, y〉 ∈ ~Lw},
denotes the past of the edge 〈x, y〉. One can associate to µ a transition matrix defined
to be any stochastic matrix P = (Pxy)〈xy〉 satisfying for all ωy ∈ E

µ(σy = ωy|Fx) = Pxy(σx, ωy) µ− a.s.

For n.n. interaction potential Φ = (Φb)b, where bonds are denoted b = 〈x, y〉, one
first defines symmetric transfer matrices Qb following the terminology of Cox [7] or
Zachary [21,22] (see also [10]). Setting

Qb(ωb) = e−
(

Φb(ωb)+|∂x|−1Φ{x}(ωx)+|∂y|−1Φ{y}(ωy)
)

one can rewrite the Gibbsian specification as

γΦΛ (σΛ = ωΛ|ω) = (ZΦ
Λ )(ω)

−1
∏

b∩Λ 6=∅
Qb(ωb).

If for any bond b = 〈x, y〉 the transfer operator Qb(ωb) is a function of gradient spin
variable ζb = ωy −ωx we call the underlying potential Φ a gradient interaction potential.
Now we note the following: On the one hand, each extreme Gibbs measure on a tree
with respect to a Markov specification is a tree-indexed Markov chain (Theorem 12.6
in [10]). On the other hand (Lemma 3.1 in [21]), a measure µ is a Gibbs measure with
respect to a nearest neighbour potential Φ with associated family of transfer matrices
(Qb)b∈L iff its marginals at any finite volume Λ ⊂ V are of the form

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = cΛ(ω∂Λ)
∏

b∩Λ 6=∅
Qb(ωb) (3.12)

for some function cΛ : ∂Λ → R+. Taking this into account leads to the concept of
boundary laws that allows to describe the Gibbs measures that are Markov chains on
trees.

Definition 3. A family of vectors {lxy}〈x,y〉∈ ~E
with lxy ∈ (0,∞)Z is called a boundary

law for the transfer operators {Qb}b∈L if for each 〈x, y〉 ∈ ~L there exists a constant
cxy > 0 such that the consistency equation

lxy(ωx) = cxy
∏

z∈∂x\{y}

∑

ωz∈Z
Qzx(ωx, ωz)lzx(ωz) (3.13)

holds for every ωx ∈ Z. A boundary law is called to be q-periodic if lxy(ωx+ q) = lxy(ωx)

for every oriented edge 〈x, y〉 ∈ ~L and each ωx ∈ Z.
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In our unbounded discrete context, there is as in the finite-state space context, a one-
to-one correspondence between boundary laws and tree-indexed Markov chains, but for
some boundary laws only, the ones that are normalisable in the sense of Zachary [21,22].

Definition 4 (Normalisable boundary laws). A boundary law l is said to be normalisable
if and only if

∑

ωx∈Z

(

∏

z∈∂x

∑

ωz∈Z
Qzx(ωx, ωz)lzx(ωz)

)

<∞ (3.14)

at any x ∈ V .

The correspondence now reads the following:

Theorem 1 (Theorem 3.2 in [21]). For any Markov specification γ with associated family
of transfer matrices (Qb)b∈L we have

(1) Each normalisable boundary law (lxy)x,y for (Qb)b∈L defines a unique tree-
indexed Markov chain µ ∈ G(γ) via the equation given for any connected set
Λ ∈ S

µ(σΛ∪∂Λ = ωΛ∪∂Λ) = (ZΛ)
−1
∏

y∈∂Λ
lyyΛ(ωy)

∏

b∩Λ 6=∅
Qb(ωb), (3.15)

where for any y ∈ ∂Λ, yΛ denotes the unique n.n. of y in Λ.
(2) Conversely, every tree-indexed Markov chains µ ∈ G(γ) admits a representation

of the form (3.15) in terms of a normalisable boundary law (unique up to a
constant positive factor).

Remark 1. The Markov chain µ defined in (3.15) has the transition probabilities

Pij(ωi, x) = µ(σj = x | σi = ωi) =
lji(x)Qji(x, ωi)

∑

y lji(y)Qji(y, ωi)
. (3.16)

The expressions (3.16) may exist even in situations where the underlying boundary law
(lxy)x,y is not normalisable in the sense of Definition 4. However, the Markov chain
given by the so defined transition probabilities is in general not positively recurrent which
means that it does not possess an invariant probability measure. More precisely if the
Markov chain defined by (3.16) is of the form (3.15) (and hence of the form (3.12))
then its underlying boundary law must be necessarily normalisable as one can see by
considering (3.15) for Λ = {x}, x ∈ V . Thus, there is no obvious extension of Theorem
1 to non-normalisable boundary laws.

Let us now assume that Qb = Q for all b ∈ L (this holds obviously true for the SOS
model). We call a vector l ∈ (0,∞)Z a (spatially homogeneous) boundary law if there
exists a constant c > 0 such that the consistency equation

l(i) = c





∑

j∈Z
Q(i, j)l(j)





k

(3.17)
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is satisfied for every i ∈ Z.
Now assume that the elements of the family (Qb)b∈L do not depend on the bonds i.e.
Qb = Q for all b ∈ L, i.e. the underlying potential is tree-automorphism invariant.

In the case of spatially homogeneous boundary laws the expression (3.14) in the defi-
nition of normalisability reads

∑

i∈Z

(

∑

j∈Z
Q(i, j)l(j)

)k+1
=
∑

i∈Z
c−

k+1

k

(

c(
∑

j∈Z
Q(i, j)l(j))k

)
k+1

k

= c−
k+1

k

∑

i∈Z
(l(i))

k+1

k ,

which means that any spatially homogeneous normalisable boundary law is an element

of the space l1+
1
k . Thus periodic spatially homogeneous boundary laws are never nor-

malisable in the sense of Definition 4.
However, it is possible to assign (tree-automorphism invariant) Gradient Gibbs measures
to spatially homogeneous q-periodic boundary laws to tree-automorphism invariant gra-
dient interaction potentials. The main idea consists in considering for any boundary law
(lxy) to a gradient interaction potential and any finite connected subset Λ ⊂ V the (in

general only σ-finite) measure µΛ on (ZΛ∪∂Λ,⊗i∈Λ∪∂Λ2Z) given by the assignment (3.15),
i.e.

µ(σΛ∪∂Λ = ωΛ∪∂Λ) =
∏

y∈∂Λ
lyyΛ(ωy)

∏

b∩Λ 6=∅
Qb(ωb). (3.18)

Then fix any pinning site w ∈ Λ and identify µΛ with its pushforward measure on Z
~L×Z

under (3.3). This measure has the marginals

µΛ∪∂Λ(σw = i , ηΛ∪∂Λ = ζΛ∪∂Λ) = µΛ∪∂Λ(σw = i)µΛ∪∂Λ(ηΛ∪∂Λ = ζΛ∪∂Λ | σw = i)

= µΛ∪∂Λ(σw = i)
∏

y∈∂Λ
lyyΛ(i+

∑

b∈Γ(w,y)

ζb)
∏

b∩Λ 6=∅
Qb(ζb).

(3.19)

If the boundary law l is assumed to be q-periodic, then µΛ∪∂Λ(ηΛ∪∂Λ = · | σw = i)
will depend on i only modulo q. For any class label s ∈ Zq this allows us to obtain a

probability measure νw,s on Z
{b∈~L|b⊂Λ} by setting

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) := ZΛ
w,sµΛ∪∂Λ(ηΛ∪∂Λ = ζΛ∪∂Λ | σw = s)

= ZΛ
w,s

∏

y∈∂Λ
lyyΛ

(

Tq(s+
∑

b∈Γ(w,y)

ζb)
)

∏

b∩Λ 6=∅
Qb(ζb),

(3.20)

where ZΛ
w,s is a normalization constant and Tq : Z → Zq denotes the coset projection.

Then one can show the following:

Theorem 2 (Theorem 3.1 in [13]). Let (l<xy>)<x,y>∈~L
be any q-periodic boundary law

to some gradient interaction potential. Fix any site w ∈ V and any class label s ∈ Zq.
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Then the definition

νw,s(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ
w,s

∏

y∈∂Λ
lyyΛ

(

Tq(s+
∑

b∈Γ(w,y)

ζb)
)

∏

b∩Λ 6=∅
Qb(ζb), (3.21)

where Λ with w ∈ Λ ⊂ V is any finite connected set, ζΛ∪∂Λ ∈ Z
{b∈~L|b⊂(Λ∪∂Λ)} and

Z
Λ
w,s is a normalization constant, gives a consistent family of probability measures on the

gradient space Ω∇. The measures νw,s will be called pinned gradient measures.

By construction, the pinned gradient measures νw,s on Ω∇ have a restricted gradi-
ent (Gibbs) property in the sense that the DLR-equation (3.11) holds for any finite
Λ ⊂ V which does not contain the pinning site w (for details see [13]). If the q-periodic
boundary law is now additionally spatially homogeneous and the underlying potential is
tree-automorphism invariant then it is possible to obtain a tree-automorphism invariant
probability measure ν on the the gradient space by mixing the pinned gradient measures
over an appropriate distribution on Zq. In this case, the restricted gradient Gibbs prop-
erty of each of the pinned gradient measures leads to the Gibbs property of the measure
ν.

A useful representation of the finite-volume marginals of the resulting GGM is given
in the following theorem:

Theorem 3 (Theorem 4.1, Remark 4.2 in [13]). Let l be any spatially homogeneous
q-periodic boundary law to a tree-automorphism invariant gradient interaction potential
on the Cayley tree. Let Λ ⊂ V be any finite connected set and let w ∈ Λ be any vertex.
Then the measure ν with marginals given by

ν(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ





∑

s∈Zq

∏

y∈∂Λ
l
(

s+
∑

b∈Γ(w,y)

ζb
)





∏

b∩Λ 6=∅
Q(ζb), (3.22)

where ZΛ is a normalisation constant, defines a spatially homogeneous GGM on Ω∇.

Remark 2. Setting nwi (ζΛ∪∂Λ) := | {y ∈ ∂Λ | ∑b∈Γ(w,y) ζb ≡ i mod q} | the marginals

of the measure ν defined in Theorem 3 can be written in the form:

ν(ηΛ∪∂Λ = ζΛ∪∂Λ) = ZΛ(
∑

j∈Zq

∏

i∈Zq

l
nw
i+j(ζΛ∪∂Λ)

i )
∏

b∩Λ 6=∅
Q(ζb)

= ZΛ(
∑

j∈Zq

∏

i∈Zq

l
nw
i (ζΛ∪∂Λ)

i+j )
∏

b∩Λ 6=∅
Q(ζb).

(3.23)

This representation directly shows that two periodic boundary laws will lead to the same
GGM if one is obtained from the other by a cyclic permutation or multiplication with a
positive constant.

To obtain sufficient criteria for two GGM νl and ν l̃ associated to two distinct periodic

boundary laws l and l̃ with l0 = l̃0 = 1 being distinct we first observe that νl = ν l̃ if and
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only if

∑

j∈Zq

∏

i∈Zq
l
nw
i+j(ζΛ∪∂Λ)

i

∑

j∈Zq

∏

i∈Zq
l̃
nw
i+j(ζΛ∪∂Λ)

i

=
Z l̃
Λ

Z l
Λ

(3.24)

for all finite subtrees Λ and ζΛ∪∂Λ ∈ Z
{b∈L|b⊂Λ∩∂Λ}.

Thus νl = ν l̃ if and only if for any finite subtree Λ there is a constant c(Λ) > 0 such that
∑

j∈Zq

∏

i∈Zq

l
ni+j

i = c(Λ)
∑

j∈Zq

∏

i∈Zq

l̃
ni+j

i (3.25)

for all vectors (n0, n2, . . . , nq−1) ∈ N0 with
∑

i∈Zq
ni = |∂Λ|. If we take a single-bond

volume Λ = {b}, where b ∈ L, we obtain the marginal

ν(ηb = ζb) = Zb

∑

s∈Zq

l(s)l(s+ ζb)Q(ζb) = Zb(
∑

j∈Zq

∏

i∈Zq

l
ni+j(ζb)
i )Qb(ζb). (3.26)

From this we get that if νl = ν l̃ then condition (3.25) is fulfilled for all vectors
(n0, n1, . . . , nq−1) ∈ {0, 1, 2}q with

∑

i∈Zq
ni = 2.

We will now conclude some statements on identifiability of GGM with respect to the
class of boundary laws which we will describe in the following section.

Lemma 1. Let l and l̃ be two 2-periodic boundary laws with l0 = l̃0 = 1. Denote l1 = a1,
l̃1 = a2.
Then

νl = ν l̃ if and only if a1 = a2 or a1a2 = 1 (3.27)

Proof. Let us first prove that νl = ν l̃ if a1 = a2 or a1a2 = 1. Using the marginals

representation given in Remark 2 we have that νl = ν l̃ if and only if

∑

j∈{0,1}
∏

i∈{0,1} l
nw
i+j(ζΛ∪∂Λ)

i

∑

j∈{0,1}
∏

i∈{0,1} l̃
nw
i+j(ζΛ∪∂Λ)

i

= const(Λ ∪ ∂Λ) (3.28)

for any finite subtree Λ and ζΛ∪∂Λ ∈ Z
{b∈L|b⊂Λ∪∂Λ}. Let n = |∂Λ| ≥ 3 then the vectors

(n0, n1)(ζΛ∪∂Λ) are of the form (n −m,m) for some integer 0 ≤ m ≤ n. Inserting this

into (3.28) we conclude that νl = ν l̃ if and only if for all n ≥ 3 which can be realized
as the number of points in the boundary of a finite subtree and any 0 ≤ m1,m2 ≤ n we
have:

an−m1

1 + am1

1

an−m1

2 + am1

2

=
an−m2

1 + am1

1

an−m2

2 + am2

2

. (3.29)

We may further assume m1 = 0 and write m = m2. Then this equation reduces to

an1 + 1

an2 + 1
=
an−m
1 + am1
an−m
2 + am2

, (3.30)
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which holds true if a2 = (a1)
−1.

To prove the other direction we must show that a1 = a2 and a1a2 = 1 are the only
solutions to the system (3.30):
For any x > 0 set f(n,m)(x) := xn+1

xn−m+xm . Then (3.30) is equivalent to f(n,m)(a1) =

f(n,m)(a2). Consider any 0 < m < n. Clearly f(n,m) is continuous, strictly decreasing
on (0, 1) and strictly increasing on (1,∞), which means that for any x ∈ (0, 1] there is
at most one y ∈ [1,∞) with f(n,m)(x) = f(n,m)(y). Since f(n,m)(x) = f(n,m)(

1
x
) we have

that f(n,m)(a1) = f(n,m)(a2) if and only if a1 = a2 or a1a2 = 0.
�

Lemma 2. Consider any 4-periodic boundary law of the type

l
(a,b)
i =







1, if i ≡ 0 or 2 mod 4
a, if i ≡ 1 mod 4
b, if i ≡ 3 mod 4

and denote the associated GGM by ν(a,b). Let (a1, b1), (a2, b2) be two such boundary laws.

If ν(a1,b1) = ν(a2,b2) then necessarily

a1 + b1 = a2 + b2 or

(ai + bi)(aj + bj) = 4.

Proof. Consider the marginal on a set Λ := {b}, where b ∈ L is any edge. Inserting
the vectors (n0, n1, n2, n3) = (2, 0, 0, 0), (1, 1, 0, 0) and (1, 0, 1, 0) into (3.25) we conclude

that if ν(a1,b1) = ν(a2,b2) then there is some constant c > 0 with

(1) a21 + b21 + 2 = c(a22 + b22 + 2),
(2) a1 + b1 = c(a2 + b2) and
(3) 1 + a1b1 = c(1 + a2b2).

Adding twice the third equation to the first we obtain

(a1 + b1)
2 + 4 = c((a2 + b2)

2 + 4),

which in combination with (2) gives

(a1 + b1)
2 + 4

(a2 + b2)2 + 4
=
a1 + b1
a2 + b2

. (3.31)

Setting x := a1 + b1 and y := a2 + b2 leads to the equation x2+4
y2+4

= x
y
which is equivalent

to

(x− y)(xy − 4) = 0.

This completes the proof. �

Lemma 3. Consider the k-regular tree, k ≥ 2, and a 3-periodic boundary law of the type

l
(c)
i =

{

1, if i ≡ 0 mod 3
c, else.

Denote the associated GGM by ν(c). Then the following holds true:
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a) ν(c1) = ν(c2) if and only if for any n ∈ N we have f(m0,m1,m2)(c1) = f(m0,m1,m2)(c2)

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2)}3 with m0 +m1 +m2 = 2(n(k −
1) + 2), where

f(m0,m1,m2)(x) :=
xm0 + xm1 + xm2

1 + 2xn(k−1)+2
, x > 0.

b) ν(c1) = ν(c2) if and only if c1 = c2.
c) The GGMs associated to the nontrivial members of this family of solutions are

all different from the GGMs associated to the solutions given by the family of
boundary laws defined in Lemma 2.

Proof. The structure of the proof is similar to the proof of Lemma 2:

a) First note that for any subtree of the k-regular tree with n vertices we have
n(k + 1) − 2(n − 1) = n(k − 1) + 2 points in the outer boundary which follows
by induction on n (see [20]). Thus ν(c1) = ν(c2) if and only if for each n ∈ N the
equation (3.25) holds true for all (n0, n1, n2) ∈ N0

3 with n0+n1+n2 = n(k−1)+2.
This is equivalent to the existence of some λ > 0 depending only on k and n with

c
(n0+n1)
1 + c

(n0+n2)
1 + c

(n1+n2)
1 = λ(c

(n0+n1)
2 + c

(n0+n2)
2 + c

(n1+n2)
2 ).

for all such vectors (n0, n1, n2).

Setting





m0

m1

m2



 :=





1 1 0
1 0 1
0 1 1









n0
n1
n2



, i.e.





n0
n1
n2



 = 1
2





1 1 −1
1 −1 1
−1 1 1









m0

m1

m2





this is equivalent to

cm0

1 + cm1

1 + cm2

1 = λ(cm0

2 + cm1

2 + cm2

2 )

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2}3 with m0 + m1 + m2 = 2(n(k −
1) + 2). Hence we have ν(c1) = ν(c2) if and only if

cm0

1 + cm1

1 + cm2

1

cm0

2 + cm1

2 + cm2

2

=
cm̃0

1 + cm̃1

1 + cm̃2

1

cm̃0

2 + cm̃1

2 + cm̃2

2

for all vectors (m0,m1,m2), (m̃0, m̃1, m̃2). Fixing (m̃0, m̃1, m̃2) = (0, n(k − 1) +
2, n(k − 1) + 2) this is equivalent to

cm0

1 + cm1

1 + cm2

1

cm0

2 + cm1

2 + cm2

2

=
1 + 2c

n(k−1)+2
1

1 + 2c
n(k−1)+2
2

for all (m0,m1,m2) ∈ {0, 1, . . . , n(k − 1) + 2}3 with m0 + m1 + m2 = 2(n(k −
1) + 2) which proves the first statement.

b) Consider a single-bond marginal Λ = {b}, b ∈ L and insert the vectors (n0, n1, n2) =

(2, 0, 0) and (1, 1, 0) in (3.26). If ν(c1) = ν(c2) then there is a constant λ > 0 with
i) 1 + 2c21 = λ(1 + 2c22) and
ii) c21 + 2c1 = λ(c22 + 2c2).



14 F. HENNING, C. KÜLSKE, A. LE NY, U. A. ROZIKOV

From this we obtain the polynomial equation in c1:

c21(4c2 − 1)− 2c1(1 + 2c22) + c2(c2 + 2) = 0. (3.32)

Dividing out the linear term (c1 − c2) we arrive at

c1(4c2 − 1)− c2 − 2 = 0. (3.33)

In the second step we will show that the assumption ν(c1) = ν(c2) and c1 6= c2
leads to a contradiction. This will be done by considering a) for n → ∞. Take
any real numbers 0 < a0 < a1 < a2 < k− 1 where a0 + a1 + a2 = 2(k− 1). Then
there is a sequence (m0(n),m1(n),m2(n))n∈N such that for all n ∈ N we have

(m0(n),m1(n),m2(n)) ∈ {0, 1, . . . , n(k − 1) + 2)}3 andm0(n)+m1(n)+m2(n) =

2(n(k − 1) + 2) with the property that mi(n)
n

n→∞→ ai, i ∈ {0, 1, 2}.
If ν(c1) = ν(c2) and c1 6= c2 then by (3.33) we have c2 = c1+2

4c1−1 , so we may

assume 1
4 < c1 < 1 < c2. From a) we obtain

lim
n→∞

1

n
log f(m0(n),m1(n),m2(n))(c1) = lim

n→∞
1

n
log f(m0(n),m1(n),m2(n))(c2)

Hence, taking into account the assumption 0 < c1 < 1 < c2 this implies

a0 log(c1) = (a2 − (k − 1)) log(c2), (3.34)

where the limiting behaviour of the l.h.s can be seen by writing c
m0(n)
1 + c

m1(n)
1 +

c
m2(n)
1 = c

m0(n)
1 (1 + c

m1(n)−m0(n)
1 + c

m2(n)−m0(n)
1 ) and then inserting mi(n) =

ain+ εi,n where εi,n
n→∞→ 0. The r.h.s. follows similarly.

Now (3.34) is equivalent to

log(c2)

log(c1)
=

a0
a2 − (k − 1)

. (3.35)

As c2 is uniquely given by (3.33) and (3.35) holds true for all choices of (a0, a1, a2)
in the allowed range, the assumption ν(c1) = ν(c2) and c1 6= c2 leads to a contra-
diction.

c) Let l(a,b) denote any 4-periodic boundary law as defined in Lemma 2 and let

l(c) be any 3-periodic boundary law as defined above. We will consider each
of them as a 12-periodic boundary law. Take Λ = {b}, b ∈ L and insert the
vectors (n0, n1, . . . , n11) = (1, 1, 0, 0, . . . , 0) and (1, 0, 0, 1, 0, 0, . . . , 0) into (3.26).

If ν(a,b) = ν(c) then there is a constant λ > 0 with
i) 6(a+ b) = 4λ(2c + c2) and
ii) 6(a+ b) = 4λ(1 + 2c2)

From this we get c2 − 2c+ 1 = 0 which leads to c = 1.

�

Remark 3. Lemma 1 can also be concluded from Lemma 2 and the fact that two pe-
riodic boundary laws lead to the same GGM if one is obtained from the other by cyclic
permutations or multiplication with a positive constant.
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4. Translation-invariant solutions

In this section we calculate periodic solutions to the boundary law equation for the
SOS-model. First let β > 0 be any inverse temperature and set θ := exp(−β) < 1.

The transfer operator Q then reads Q(i − j) = θ|i−j| for any i, j ∈ Z and a spatially
homogeneous boundary law, now denoted by z, is any positive function on Z solving the
system (3.17), whose values we will denote by zi instead of z(i). Further notice that a
boundary law is only unique up to multiplication with any positive prefactor. Hence we
may choose this constant in a way such that we have z0 = 1. At last set Z0 := Z \ {0}.
Taking into account these prerequisites the boundary law equation (3.17) now reads

zi =

(

θ|i| +
∑

j∈Z0
θ|i−j|zj

1 +
∑

j∈Z0
θ|j|zj

)k

, i ∈ Z0. (4.1)

4.1. A simplification of the system (4.1). Let z(θ) = (zi = zi(θ), i ∈ Z0) be a
solution to (4.1). Denote

li ≡ li(θ) =
−1
∑

j=−∞
θ|i−j|zj , ri ≡ ri(θ) =

∞
∑

j=1

θ|i−j|zj, i ∈ Z0. (4.2)

It is clear that each li and ri can be a finite positive number or +∞.

Lemma 4. For each i ∈ Z0 we have

• li < +∞ if and only if l0 < +∞;
• ri < +∞ if and only if r0 < +∞.

Proof. The proof follows from the following equalities

li =

{

θil0 +
∑−1

j=i(θ
j−i − θi−j)zj , if i ≤ −1

θil0, if i ≥ 1.
(4.3)

ri =

{

θ−ir0 +
∑i

j=1(θ
i−j − θj−i)zj , if i ≥ 1

θ−ir0, if i ≤ −1.
(4.4)

�

In what follows, we will always assume that l0 < +∞ and r0 < +∞.
Denoting ui = u0 k

√
zi (for some u0 > 0) from (4.1) we get

ui = C · (· · · + θ2uki−2 + θuki−1 + uki + θuki+1 + θ2uki+2 + . . . ), i ∈ Z,

for some C > 0.
This system can be written as

ui = C





+∞
∑

j=1

θjuki−j + uki +

+∞
∑

j=1

θjuki+j



 , i ∈ Z. (4.5)
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Proposition 1. A vector u = (ui, i ∈ Z), with u0 = 1, is a solution to (4.5) if and only
if for ui (= k

√
zi) the following holds

uki =
ui−1 + ui+1 − τui
u−1 + u1 − τ

, i ∈ Z, (4.6)

where τ = θ−1 + θ = 2cosh(β).

Proof. Necessity. From (4.5) we get

ui−1 + ui+1 =

C





∞
∑

j=1

θjuki−1−j +

∞
∑

j=1

θjuki+1−j + uki−1 + uki+1 +

∞
∑

j=1

θjuki−1+j +

∞
∑

j=1

θjuki+1+j



 =

C






θ−1

∞
∑

m=1

m=j+1

θmuki−m − uki−1 + θ

∞
∑

j′=1

j′=j−1

θj
′
uki−j′ + θuki + uki−1+

uki+1 + θ
∞
∑

n=1

n=j−1

θnuki+n + θuki + θ−1
∞
∑

j̄=1

j̄=j+1

θj̄uk
i+j̄

− uki+1






=

C



(θ−1 + θ)
∞
∑

j=1

θjuki−j + 2θuki + (θ−1 + θ)
∞
∑

j=1

θjuki+j



 =

(θ−1 + θ)ui + C(θ − θ−1)uki .

Thus
ui−1 + ui+1 − (θ−1 + θ)ui = C(θ − θ−1)uki , i ∈ Z. (4.7)

Since u0 = 1 dividing both sides of (4.7) to the equality of the case i = 0 we get (4.6).

Sufficiency. Assume (4.6) holds. Then we get (4.7) with some C = C̃. Write this
equality for i replaced by i+ 1− j, i.e.

ui−j + ui−j+2 − (θ−1 + θ)ui+1−j = C̃(θ − θ−1)uki+1−j , i, j ∈ Z. (4.8)

Multiply both sides of (4.8) by θj and sum over j = 1, 2, . . . . Here, absolute convergence
of all occurring infinite sums is guaranteed by the assumption l0 < +∞ and r0 < +∞
and the fact that θ < 1. Then after rearrangement/simplifications we get

θui+1 − ui = C̃(θ − θ−1)

∞
∑

j=1

θjuki+1−j .

Dividing both sides of this equality by θ we get

ui+1 − θ−1ui = C̃(θ − θ−1)
∞
∑

j=1

θj−1uki+1−j = C̃(θ − θ−1)







∞
∑

m=1

m=j−1

θmuki−m + uki






. (4.9)
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Now rewrite (4.7) for i replaced by i+ j, C is replaced by C̃ and multiply both sides
of the obtained equality by θj then sum over j = 1, 2, . . . . After simplifications we get

θui − ui+1 = C̃(θ − θ−1)
∞
∑

j=1

θjuki+j. (4.10)

Adding (4.9) and (4.10) we get the ith equation of (4.5) with C replaced by C̃. For

u0 = 1 we get C̃ = C.
�

Lemma 5. If l0 < +∞ and r0 < +∞ then we have

l0 =
θ − u−1

u−1 + u1 − τ
, r0 =

θ − u1
u−1 + u1 − τ

.

Proof. Using (4.6) we get

l0 =

−1
∑

j=−∞
θ−jzj =

−1
∑

j=−∞
θ−jukj =

−1
∑

j=−∞
θ−j uj−1 + uj+1 − τuj

u−1 + u1 − τ
.

Compute the following
−1
∑

j=−∞
θ−j(uj−1 + uj+1 − τuj) =

θ−1
−1
∑

j=−∞
θ−j+1uj−1 + θ

−1
∑

j=−∞
θ−j−1uj+1 − τ

−1
∑

j=−∞
θ−juj =

θ − u−1 + (θ−1 + θ − τ)

−1
∑

j=−∞
θ−juj .

Since θ−1 + θ − τ = 0 we get the formula of l0. The case r0 is similar. �

By this Lemma we have

1 + l0 + r0 =
θ − θ−1

u−1 + u1 − τ
. (4.11)

The equation (4.6) can be separated into the following independent recurrent equations

u−i−1 = (u−1 + u1 − τ)uk−i + τu−i − u−i+1, (4.12)

ui+1 = (u−1 + u1 − τ)uki + τui − ui−1, (4.13)

where i ≥ 0, u0 = 1 and u−1, u1 are some initial numbers. Note that for i = 0 the above
equations are trivially fulfilled for all values of u1 and u−1. Hence it suffices to consider
(4.12) and (4.13) for i ≥ 1.
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4.2. A class of 4-Periodic solutions to (4.6). In this subsection we shall describe
the two-parameter family of solutions to (4.6) which have the form

un =











1, if n = 0 or 2 mod 4,

a, if n = 1 mod 4

b, if n = 3 mod 4,

(4.14)

where a and b some positive numbers. Such a solution defines a periodic two-side infinite
sequence, i.e.

..., a, 1, b, 1, a, 1, b, 1, a, 1, b, ... (4.15)

The equations (4.12) and (4.13) give the following system of equations

(a+ b− τ)bk + τb− 2 = 0

(a+ b− τ)ak + τa− 2 = 0.
(4.16)

For simplicity we consider the case k = 2 and give full analysis of the system (4.16).

In case k = 2 subtracting from the first equation of the system the second one we get

(b− a)[(a+ b)2 − τ(a+ b) + τ ] = 0.

Which gives three possibilities:

a = b, and a =
1

2
(τ ±

√

τ2 − 4τ)− b for τ ≥ 4. (4.17)

Case a = b. In this case from the first equation of (4.16) we get

2a3 − τa2 + τa− 2 = 0. (4.18)

One easily gets the following solutions to this equation (recall that τ > 2):

• If τ ≤ 6 then the equation (4.18) has unique solution a0 = 1.
• If τ > 6 then there are three solutions (see Fig. 1)

a0 = 1, a1 =
1

4
(τ − 2−

√

(τ − 2)2 − 16), a2 =
1

4
(τ − 2 +

√

(τ − 2)2 − 16).

Note that these 2-periodic solutions can be already found in [13] (recall that τ =
2cosh(β)).

Case a+ b = 1
2(τ +

√
τ2 − 4τ). In this case from the second equation of (4.16) we get

(τ −
√

τ2 − 4τ)a2 − 2τa+ 4 = 0.

Which for τ ≥ 4 has the solutions

a3 =
τ −

√

τ2 − 4τ + 4
√
τ2 − 4τ

τ −
√
τ2 − 4τ

, a4 =
τ +

√

τ2 − 4τ + 4
√
τ2 − 4τ

τ −
√
τ2 − 4τ

.

Using (4.17) we get b3 = a4 and b4 = a3.

Case a+ b = 1
2(τ −

√
τ2 − 4τ). In this case similarly as in previous case we obtain

(τ +
√

τ2 − 4τ )a2 − 2τa+ 4 = 0
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Figure 1. The graphs of the functions a1, a2 giving 2-periodic boundary
laws. The graphs of the functions b1, b2 giving 3-periodic boundary laws.
As a2 = a−1

1 , both 2-periodic boundary laws lead to the same GGM.

which for τ ≥ 2 + 2
√
5 has the following solutions

a5 =
τ −

√

τ2 − 4τ − 4
√
τ2 − 4τ

τ +
√
τ2 − 4τ

, a6 =
τ +

√

τ2 − 4τ − 4
√
τ2 − 4τ

τ +
√
τ2 − 4τ

.

Using (4.17) we get b5 = a6 and b6 = a5. Clearly all of these solutions are positive (see
Fig. 2).

Taking into account the freedom of cyclic permutations of boundary laws we thus
proved the following:

Proposition 2. The periodic solutions of the form (4.15) depend on the parameter
τ = 2cosh(β) in the following way.

1. If τ ≤ 4 then there is a unique solution with a = b = 1.
2. If 4 < τ ≤ 6 then there are exactly two solutions with a = b = 1 and a = a3,
b = b3.

3. If 6 < τ < 2 + 2
√
5 then there are exactly four solutions with a = b = 1,

a = b = a1, a = b = a2 and (a, b) = (a3, b3).

4. If τ ≥ 2 + 2
√
5 then there are exactly five solutions with a = b = 1, a = b = a1,

a = b = a2, (a, b) = (a3, b3) and (a, b) = (a5, b5),
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Figure 2. The graphs of the functions (a3, a4) and (a5, a6) giving 4-
periodic boundary laws.

where the values ai and bi are defined above.

4.3. Gradient Gibbs measures described by 4-periodic boundary laws: Iden-
tifiability. In this subsection we will apply the Lemmas 1 and 2 on identifiability to the
gradient Gibbs measures which correspond to the periodic solutions given in Proposition
2. Note that a solution described by the parameters (a, b) corresponds to the boundary
law

z(a
2,b2)

n =











1, if n = 0 or 2 mod 4,

a2, if n = 1 mod 4,

b2, if n = 3 mod 3.

(4.19)

We will denote the GGM assigned by Theorem 3 to a boundary law z
(a2,b2)
n by ν(a

2,b2).

Case 4 < τ ≤ 6: We have a23 + b23 ≥ 2(12 (a3 + b3))
2 = 2( τ

τ−
√
τ2−4τ

)2 > 2 = 12 + 12,

so a23 + b23 6= 12 + 12 and (12 + 12)(a23 + b23) 6= 4. Thus ν(a
2
3,b

2
3) 6= ν(1,1) by Lemma 2.

Case 6 < τ < 2 + 2
√
5 : We have a1 < 1 < a2 and a23 + b23 > 2( 1

16 (τ +
√
τ2 − 4τ )2) ≥

2a22. Further, as a1a2 ≡ 1, by Lemma 1 we have that ν(a
2
1,a

2
1) ≡ ν(a

2
2,a

2
2). At last

(a23 + b23)(a
2
2 + a22) > (a23 + b23)(a

2
1 + a21) > 4(a1a2)

2 = 4. Thus we have three different
GGMs associated to boundary laws of the type (4.19) via Theorem 3.
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Case τ ≥ 2 + 2
√
5 : We still have: a21 < 1 < a22 < a23 + b23 and a1a2 ≡ 1, so again

ν(a
2
1,a

2
1) ≡ ν(a

2
2,a

2
2). Further a25 + b25 ≤ 2b25 < 2. As a1(τ) is monotonically decreasing in τ

and a5(τ)
2 + b5(τ)

2 is monotonically increasing in τ it suffices to numerically calculate

2a1(2 + 2
√
5)6 = (12(

√
5 − 1))2 < 0.4 < 0.76 < a5(2 + 2

√
5)2 + b5(2 + 2

√
5)2 to obtain:

2a21 < a25 + b25 < 2 < 2a22 < a23 + b23. Thus we have four different GGMs associated to
boundary laws of the type (4.19) via Theorem 3.

Hence we have proven the following

Theorem 4. For the SOS model (2.1) on the binary tree with parameter τ = 2cosh(β)
the following assertions hold

1. If τ ≤ 4 then there is precisely one GGM associated to a boundary law of the type
(4.19) via Theorem 3.

2. If 4 < τ ≤ 6 then there are precisely two such GGMs.
3. If 6 < τ < 2 + 2

√
5 then there are precisely three such GGMs.

4. If τ ≥ 2 + 2
√
5 then there are precisely four such measures.

4.4. 3-periodic boundary laws on the k-regular tree. To also describe gradient
Gibbs measures on the k-regular tree for arbitrary k ≥ 2, we consider a 1-parameter
family of 3-periodic boundary laws which can be examined easily. Assume un, n ∈ Z
has the form

un =

{

1, n = 0 mod 3
a, n 6= 0 mod 3,

(4.20)

where a > 0. Then, by (4.13) and (4.12), a should satisfy

2ak+1 − τak + (τ − 1)a− 1 = 0. (4.21)

This equation has the solution a = 1 independently on the parameters (τ, k). Dividing
both sides by a− 1 we get

2ak + (2− τ)(ak−1 + ak−2 + · · ·+ a) + 1 = 0. (4.22)

The equation (4.22) has again the solution a = 1 iff τ = τ0, where

τ0 :=
2k + 1

k − 1
.

It is well known (see [15], p.28) that the number of positive roots of the polynomial
(4.22) does not exceed the number of sign changes of its coefficients. It is obvious that
2− τ < 0. Thus the number of positive roots of the polynomial (4.22) is at most 2.

The following lemma gives the full analysis of the equation (4.22):

Lemma 6. For each k ≥ 2, there is exactly one critical value of τ = 2cosh(β), called
τc = τc(k), such that

1. τc < τ0;
2. if τ < τc then (4.22) has no positive solution;
3. if τ = τc then the equation has a unique positive solution;
4. if τ > τc, τ 6= τ0 then it has exactly two solutions;
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Figure 3. The graphs of the function ψ3(a).

5. if τ = τ0, then the equation has two solutions, one of which is a = 1.

Proof. Solving (4.22) with respect to τ we get

τ = ψk(a) := 2 +
2ak + 1

ak−1 + ak−2 + · · ·+ a
.

We have ψk(a) > 2, a > 0 and ψ′
k(a) = 0 is equivalent to

2

k−1
∑

j=1

(k − j)ak+j−1 −
k−1
∑

j=1

jaj−1 = 0. (4.23)

The last polynomial equation has exactly one positive solution, because signs of its
coefficients changed only one time, and at a = 0 it is negative, i.e. -1 and at a = +∞
it is positive. Denote this unique solution by a∗. Then ψk(a) has unique minimum at
a = a∗, and lima→0 ψk(a) = lima→+∞ ψk(a) = +∞ (see Fig.3). Thus

τc = τc(k) = min
a>0

ψk(a) = ψk(a
∗).

Note that a∗ 6= 1, i.e. a = 1 does not satisfy (4.23). Therefore

τ0 = ψk(1) > τc = min
a>0

ψk(a) = ψk(a
∗).

These properties of ψk(a) completes the proof. �

Thus taking into account Lemma 3 and Lemma 6 we obtain the following:
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Theorem 5. For the SOS-model on the k-regular tree, k ≥ 2, with parameter τ =
2cosh(β) there are numbers 0 < τc < τ0 such that the following holds:

1. If τ < τc then there are no GGM corresponding to nontrivial 3-periodic boundary
laws of the type (4.20) via Theorem 3.

2. At τ = τc there is a unique GGM corresponding to a nontrivial 3-periodic bound-
ary law of the type (4.20) via Theorem 3.

3. For τ > τc, τ 6= τ0 (resp. τ = τ0) there are exactly two such (resp. one) GGMs.

The GGMs described above are all different from the GGMs mentioned in Theorem 4.

Remark 4. In case k = 2 one easily finds τc(2) = 2(1 +
√
2) ≈ 4.83 and τ0 = 5. Two

positive solutions are (see Fig. 1):

a = b1,2 :=
1

4
(τ − 2±

√

(τ − 2)2 − 8)

Remark 5. It was shown in Section 5 of [13] that the equations for 3-periodic boundary
laws of the general form

zi =







1, i = 0 mod 3
a, i = 1 mod 3
b, i = 2 mod 3,

(4.24)

can be identified with the boundary law equations of a Potts model on the same regular
tree at a different effective inverse temperature. An explicit discussion of the transition
temperature was given only on the binary tree. This correspondence however explains
that all 3-periodic boundary law solutions are of the type (4.20).
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LAMA UMR CNRS 8050, UPEC, 91 Avenue du Général de Gaulle, 94010 Créteil cedex,
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