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European options in a non-linear incomplete market
model with default

Miryana Grigorova ∗ Marie-Claire Quenez † Agnès Sulem ‡

February 19, 2019

Abstract

This paper studies the superhedging prices and the associated superhedging strate-
gies for European options in a non-linear incomplete market model with default. We
present the seller’s and the buyer’s point of view. The underlying market model con-
sists of a risk-free asset and a risky asset driven by a Brownian motion and a com-
pensated default martingale. The portfolio processes follow non-linear dynamics with
a non-linear driver f . By using a dynamic programming approach, we first provide a
dual formulation of the seller’s (superhedging) price for the European option as the
supremum, over a suitable set of equivalent probability measures Q ∈ Q, of the f -
evaluation/expectation under Q of the payoff. We also provide a characterization of
the seller’s (superhedging) price process as the minimal supersolution of a constrained
BSDE with default and a characterization in terms of the minimal weak supersolution
of a BSDE with default. By a form of symmetry, we derive corresponding results for
the buyer. Our results rely on first establishing a non-linear optional and a non-linear
predictable decomposition for processes which are Ef -strong supermartingales under
Q, for all Q ∈ Q.

Key-words: European options, incomplete market, superhedging, non-linear pricing,
BSDEs with constraints, f -expectation, control problems with non-linear expectation, non-
linear optional decomposition, pricing-hedging duality

1 Introduction

We consider a financial market with a default time ϑ. The market contains one risky asset
whose price dynamics are driven by a one-dimensional Brownian motion and a compensated
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default martingale. The market exhibits imperfections which are encoded in the non-linearity
of the portfolio dynamics. An important feature of this market is that it is incomplete, in
the sense that not every European contingent claim can be replicated by a portfolio. In this
framework, we are interested in the problem of pricing and hedging of European options,
from the point of view of the seller, and of the buyer.

We recall that in the case of a non-linear complete market model, the seller’s (hedging)
price of the European option with payoff η and maturity T is given by the non-linear f -
evaluation (expectation) of η, where f is the non-linear driver of the replicating portfolio
(cf. [13] and [17] in the Brownian case, and the recent works [12], [10] and [11] in the default
case).

In our framework, since contingent claims are not necessarily replicable, we define the
seller’s (superhedging) price of the European option at time 0, denoted by v0, as the minimal
initial capital which allows him/her to build a (non-linear) portfolio whose terminal value
dominates the payoff η of the option. We provide a dual formulation of this price as the
supremum, over a suitable set of equivalent probability measures Q ∈ Q, of the (f,Q)-
evaluation1 of the payoff η, that is,

v0 = sup
Q∈Q
EfQ,0,T (η).

The set Q is related to the set of the so-called martingale probability measures. In the case
when f is linear, our result reduces to the well-known dual representation from the literature
on linear incomplete markets (cf. [16] and [18]). We characterize the (superhedging) price
process of the European option for the seller in terms of the minimal weak supersolution
of a BSDE with default. We also provide another characterization of this price process as
the minimal supersolution of a constrained BSDE with default. By a form of symmetry, we
derive corresponding results for the buyer’s superhedging price.

A crucial step in the proof of these results is to establish a non-linear optional decom-
position for processes which are (f,Q)-supermartingales for all Q ∈ Q. This decomposition
is the analogue in our framework of the well-known optional decomposition from the linear
case (cf. [16] and [18]). We also show that the above non-linear optional decomposition is
equivalent to a non-linear predictable decomposition (with constraints).

The paper is organized as follows: in Section 2, we introduce some notation and defini-
tions. In Section 3, we first present our market model (Subsection 3.1); in Subsection 3.2,
we define the buyer’s and seller’s superhedging prices of the European option and we discuss
no-arbitrage issues; in Subsection 3.3, we introduce the set Q of f -martingale probability
measures and give some properties. In Section 4, we present some of the main results of the
paper and in Section 5 we give the proofs of these results. The appendices contain results
which are interesting in their own right, besides being useful in the proofs from Section 5. In
Appendix A, we give some useful results on strong E-supermartingale families and processes.
Appendix B is devoted to the important non-linear optional and non-linear predictable de-
compositions. Appendix C contains some complements on BSDEs with a non-positive jump
at the default time and Appendix D gathers three useful lemmas.

1or, in other terms, the f -evaluation/expectation under the probability measure Q.
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2 Notation and definitions

Let (Ω,G, P ) be a complete probability space equipped with two stochastic processes: a
unidimensional standard Brownian motion W and a jump process N defined by Nt = 1ϑ≤t
for all t ∈ [0, T ], where ϑ is a random variable which models a default time. We assume
that this default can appear after any fixed time, that is P (ϑ ≥ t) > 0 for all t ≥ 0. We
denote by G = {Gt, t ≥ 0} the augmented filtration generated by W and N . We denote by
P the predictable σ-algebra. We suppose that W is a G-Brownian motion. Let (Λt) be the
predictable compensator of the nondecreasing process (Nt). Note that (Λt∧ϑ) is then the
predictable compensator of (Nt∧ϑ) = (Nt). By uniqueness of the predictable compensator,
Λt∧ϑ = Λt, t ≥ 0 a.s. We assume that Λ is absolutely continuous w.r.t. Lebesgue’s measure,
so that there exists a nonnegative process λ, called the intensity process, such that Λt =∫ t
0
λsds, t ≥ 0. To simplify the presentation, we suppose that λ is bounded. Since Λt∧ϑ = Λt,

λ vanishes after ϑ. Let M be the compensated martingale given by

Mt := Nt −
∫ t

0

λsds .

Let T > 0 be the terminal time. We define the following sets:

• S2 is the set of G-adapted RCLL processes ϕ such that E[sup0≤t≤T |ϕt|2] < +∞.

• A2 is the set of real-valued non decreasing RCLL G-predictable processes A with A0 = 0
and E(A2

T ) <∞.

• H2 is the set of G-predictable processes Z such that ‖Z‖2 := E
[ ∫ T

0
|Zt|2dt

]
<∞ .

• H2
λ := L2(Ω×[0, T ],P , λt dP⊗dt), equipped with the norm ‖U‖2λ := E

[ ∫ T
0
|Ut|2λtdt

]
<

∞ .

Note that, without loss of generality, we may assume that if U ∈ H2
λ, it vanishes after ϑ.

• We denote by T0 the set of stopping times τ such that τ ∈ [0, T ] a.s.

• For S in T0, we denote by TS the set of stopping times τ such that S ≤ τ ≤ T a.s.

As in [21], the notation S2 stands for the vector space of R-valued optional (not necessarily
cadlag) processes φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |

2] <∞. By Proposition 2.1 in [21],
the space S2 endowed with the norm |||·|||S2 is a Banach space. We note that the space S2 is
the sub-space of RCLL processes of S2.

Recall that in this setup, we have a martingale representation theorem with respect to
W and M (see [25], [30]).

We give the definition of a λ-admissible driver:
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Definition 2.1 (Driver, λ-admissible driver). A function g is said to be a driver if
g : Ω× [0, T ]× R3 → R; (ω, t, y, z, k) 7→ g(ω, t, y, z, k) is P ⊗ B(R3)− measurable, and such
that g(., 0, 0, 0) ∈ H2. A driver g is called a λ-admissible driver if moreover there exists a
constant C ≥ 0 such that dP ⊗ dt-a.s. , for each (y1, z1, k1), (y2, z2, k2),

|g(t, y1, z1, k1)− g(t, y2, z2, k2)| ≤ C(|y1 − y2|+ |z1 − z2|+
√
λt|k1 − k2|). (2.1)

A nonnegative constant C which satisfies this inequality is called a λ-constant associated
with driver g.

By condition (2.1) and since λt = 0 on ]ϑ, T ], g does not depend on k on ]ϑ, T ].
Let g be a λ-admissible driver. For all η ∈ L2(GT ), there exists a unique solution

(X(T, η), Z(T, η), K(T, η)) (denoted simply by (X,Z,K)) in S2 × H2 × H2
λ of the follow-

ing BSDE (see [10]):

−dXt = g(t,Xt, Zt, Kt)dt− ZtdWt −KtdMt; XT = η. (2.2)

We call g-conditional expectation, denoted by Eg, the operator defined for each T ′ ∈ [0, T ]
and for each η ∈ L2(GT ′) by Egt,T ′(η) := Xt(T

′, η) a.s. for all t ∈ [0, T ′].
We introduce the following assumption :

Assumption 2.2. Assume that there exists a bounded map

γ : Ω× [0, T ]× R4 → R ; (ω, t, y, z, k1, k2) 7→ γy,z,k1,k2t (ω)

P ⊗ B(R4)-measurable and satisfying dP ⊗ dt-a.s. , for all (y, z, k1, k2) ∈ R4,

g(t, y, z, k1)− g(t, y, z, k2) ≥ γy,z,k1,k2t (k1 − k2)λt, (2.3)

and
γy,z,k1,k2t > −1. (2.4)

Assumption 2.2 ensures the strict monotonicity of the operator Eg with respect to terminal
condition (see [10, Section 3.3]).

Definition 2.3. Let Y ∈ S2. The process (Yt) is said to be a strong Eg-supermartingale 2

(resp. martingale) if Egσ,τ (Yτ ) ≤ Yσ (resp. = Yσ) a.s. on σ ≤ τ , for all σ, τ ∈ T0.

Note that, by the flow property of BSDEs, for each η ∈ L2(GT ), the process Eg·,T (η) is an
Eg-martingale. The converse also holds since, if (Yt) is an Eg-martingale, then Yt = Egt,T (YT )
for all t ∈ [0, T ] a.s.

2In the case where Y is moreover RCLL (that is, Y ∈ S2), we often omit the term ”strong”.
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3 The market model and the superhedging prices

3.1 The market model Mf

We now consider a financial market which consists of one risk-free asset, whose price process
S0 = (S0

t )0≤t≤T satisfies dS0
t = S0

t rtdt, and one risky asset with price process S which
admits a discontinuity at time ϑ. Throughout the sequel, we consider that the price process
S = (St)0≤t≤T evolves according to the equation

dSt = St−(µtdt+ σtdWt + βtdMt). (3.1)

All the processes σ r, µ, β are supposed to be predictable (that is P-measurable), satis-
fying σt > 0 dP ⊗ dt a.s. and βϑ > −1 a.s., and such that σ, λ, σ−1, β are bounded.

We consider an investor, endowed with an initial wealth equal to x, who can invest his/her
wealth in the two assets of the market. At each time t, the investor chooses the amount ϕt
of wealth invested in the risky asset. A process ϕ. = (ϕt)0≤t≤T is called a portfolio strategy
if it belongs to H2.

The value of the associated portfolio (also called wealth) at time t is denoted by V x,ϕ
t (or

simply Vt).
In the classical linear case, the wealth process satisfies the self financing condition:

dVt = (rtVt + ϕt(µt − rt))dt+ ϕtσtdWt + ϕtβtdMt. (3.2)

Setting Zt := ϕtσt, we get

dVt = (rtVt + Ztθt)dt+ ZtdWt + Ztσ
−1
t βtdMt, (3.3)

where θt :=
µt − rt
σt

.

We assume now that the dynamics of the wealth is nonlinear. More precisely, let x ∈ R
be an initial wealth and let ϕ in H2 be a portfolio strategy. We suppose that the associated
wealth process V x,ϕ

t (or simply Vt) satisfies the following (forward) dynamics:

−dVt = f(t, Vt, ϕtσt)dt− ϕtσtdWt − ϕtβtdMt, (3.4)

with V0 = x, where f is a nonlinear λ-admissible driver which does not depend on k, such
that f(t, 0, 0) = 0. 3 In the classical linear case (see (3.3)), we have f(t, y, z) = −rty − zθt
(which is a λ-admissible driver).

We have the following lemma.

Lemma 3.1. For each x ∈ R and each ϕ in H2, the associated wealth process (V x,ϕ
t ) is an

Ef -martingale.

3so that Ef·,T ′(0) = 0 for all T ′ ∈ [0, T ].
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Proof. Let x ∈ R and ϕ in H2 be given. We note that the process (V x,ϕ
t , ϕtσt, ϕtβt) is the

solution of the BSDE with default jump associated with driver f and the terminal condition
η := V x,ϕ

T . The result then follows from the flow property of BSDEs.

Remark 3.2. We note that for an arbitrary random variable η ∈ L2, there does not nec-
essarily exist a pair of processes (X,ϕ) such that (Xt, ϕtσt, ϕtβt) is solution of the BSDE
with default jump associated with driver f and terminal condition η, that is, such that (X,ϕ)
satisfies the dynamics (3.4) with XT = η. In other terms, the market is incomplete.

In the sequel, we will often use the following change of variables which maps a process
ϕ ∈ H2 to Z ∈ H2 defined by Zt = ϕtσt. With this change of variables, the wealth process
V = V x,ϕ

t (for a given x ∈ R) is the unique process satisfying

−dVt = f(t, Vt, Zt)dt− ZtdWt − Ztσ−1t βtdMt, V0 = x. (3.5)

In the sequel, our non-linear incomplete market model is denoted by Mf .

3.2 Superhedging prices and no-arbitrage

Let η in L2(GT ) be the payoff of the European option (with maturity T ). It is called replicable
if there exists x ∈ R and ϕ ∈ H2 such that η = V x,ϕ

T a.s. This is equivalent to the existence
of (X,Z) ∈ S2 ×H2 such that

−dXt = f(t,Xt, Zt)dt− ZtdWt − Ztσ−1t βtdMt, XT = η a.s.

It is clear that all European contingent claims are not necessarily replicable and so the market
is incomplete (cf. also Remark 3.2). We introduce the superhedging price for the seller of
the claim with payoff η defined as the minimal initial capital which allows the seller to build
a superhedging strategy for the claim, that is 4

v0 := inf{x ∈ R : ∃ϕ ∈ H2 s.t. V x,ϕ
T ≥ η a.s.}. (3.6)

We introduce the superhedging price for the buyer of the claim with payoff η (cf. [29], also
[6]) defined as the maximal initial price which allows the buyer to build a superhedging
strategy for the claim, that is

ṽ0 := sup{x ∈ R : ∃ϕ ∈ H2 s.t. V −x,ϕT + η ≥ 0 a.s.}. (3.7)

Note that ṽ0 is equal to the opposite of the superhedging price for the seller of the option
with payoff −η. 5

4Note that v0 ∈ R. We shall see below that, under the assumption that |η| is smaller than or equal to
the value of a portfolio sufficiently integrable (cf. (4.1)), v0 is finite (cf. Theorem 4.1).

5Recall that when β = 0 and when the filtration is the natural filtration associated with the Brownian
motion, the market is complete and we have v0 = Ef0,T (η) (cf. [13]) and ṽ0 = −Ef0,T (−η).
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Definition 3.3. Let x ∈ R. Let y ∈ R and ϕ in H2. We say that (y, ϕ) is an arbitrage
opportunity for the seller6 (resp. for the buyer 7) of the European option with initial price
x if

y < x and V y,ϕ
T − η ≥ 0 a.s. ( resp. y > x and V −y,ϕT + η ≥ 0) a .s. (3.8)

Proposition 3.4. Let x ∈ R. There exists an arbitrage opportunity for the seller (resp. for
the buyer) of the European option with price x if and only if x > v0 (resp. x < ṽ0)

Proof. The idea of the proof is similar to that of [27]. Suppose that there exists an arbitrage
opportunity (y, ϕ) for the seller of the European option with price x. Then y < x and
V y,ϕ
T −η ≥ 0 a.s. Hence, ϕ is a superhedging strategy for the seller associated with the initial

wealth y. By definition of v0 as an infimum (cf. (3.6)), we have y ≥ v0. Since x > y, it
follows that x > v0. For the converse statement, suppose that x > v0. Then, by definition
of v0 as an infimum, we derive that there exists y with x > y ≥ u0 and ϕ ∈ H2 such that
V y,ϕ
T ≥ η a.s. Since y < x, it follows that (y, ϕ) is an arbitrage opportunity for the seller of

the European option with price x. The result for the buyer can be shown by using similar
arguments.

Definition 3.5. A real number x is called an arbitrage-free price for the European option
if there exists no arbitrage opportunity, neither for the seller nor for the buyer.

By Propositions 3.4, we get

Proposition 3.6. If v0 < ṽ0, there does not exist any arbitrage-free price for the European
option. If v0 ≥ ṽ0, the interval [ṽ0, v0] is the set of all arbitrage-free prices. We call it the
arbitrage-free interval for the European option.

3.3 The set Q of f-martingale probability measures

As mentioned before, the market Mf is incomplete. We recall that in the linear case, that
is, when f(t, y, z) = −rty − θtz, a dual representation of v0 and ṽ0 can be achieved via a
martingale approach which is based on the notion of martingale probability measures defined
as follows: a probability measure R equivalent to P is called a martingale probability measure
if the discounted risky-asset price (e−

∫ t
0 rsdsSt) is a martingale under R. It is well known that

this is equivalent (still in the linear case) to the following definition given, for example, in
[35]: a probability measure R is a martingale probability measure if the discounted (linear)

wealth processes are R-martingales, that is, for all x ∈ R, ϕ ∈ H2, the process (e−
∫ t
0 rsdsV̄ x,ϕ

t )

6This means that the seller sells the European option at the price x strictly greater than the amount y
which is enough to be hedged (by using the strategy ϕ). He/she thus makes the profit x− y > 0 at time 0.

7This means that the buyer buys the European option at the price x, stricly smaller than the amount
y, which, borrowed at time 0, allows him/her to recover his/her debt at time T (by using the strategy ϕ).
He/she thus makes the profit y − x > 0 at time 0.
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(where V̄ x,ϕ follows the linear dynamics (3.2)) is a martingale under R. For example, the
probability R0 which admits ζ0T as density with respect to P on GT , where (ζ0t ) satisfies

dζ0t = −ζ0t θtdWt; ζ00 = 1, (3.9)

is a martingale probability measure. However, there exists more than one martingale prob-
ability measure (cf. also the discussion in the sequel (3.13)).

In our non linear framework, by analogy with the linear case, we are thus naturally led
to introduce the notion of Ef -martingale property under a given probability measure Q. To
this aim, we first introduce the notion of f -evaluation under Q.

Let Q be a probability measure, equivalent to P . From the G-martingale representation
theorem (cf. [30], [26]), its density process (ζt) satisfies

dζt = ζt−(αtdWt + νtdMt); ζ0 = 1, (3.10)

where (αt) and (νt) are predictable processes with νϑ∧T > −1 a.s. By Girsanov’s theorem,
the process WQ

t := Wt −
∫ t
0
αsds is a Brownian motion under Q, and the process MQ

t :=

Mt −
∫ t
0
νsλsds is a martingale under Q.

We define the spaces S2
Q, H2

Q and H2
Q,λ similarly to S2,H2 and H2

λ, but under probability
Q instead of P .

Definition 3.7. We call f -evaluation under Q, or (f,Q)-evaluation in short, denoted by
EfQ, the operator defined for each T ′ ∈ [0, T ] and for each η ∈ L2

Q(GT ′) by EfQ,t,T ′(η) := Xt

for all t ∈ [0, T ′], where (X,Z,K) is the solution in S2
Q ×H2

Q ×H2
Q,λ of the BSDE under Q

associated with driver f , terminal time T ′ and terminal condition η, and driven by WQ and
MQ, that is 8

−dXt = f(t,Xt, Zt)dt− ZtdWQ
t −KtdM

Q
t ; XT ′ = η.

We note that EfP = Ef .

Definition 3.8. Let Y ∈ S2
Q. The process (Yt) is said to be a (strong) EfQ-martingale, or an

(f,Q)-martingale, if EfQ,σ,τ (Yτ ) = Yσ a.s. on σ ≤ τ , for all σ, τ ∈ T0.

We now introduce the concept of f -martingale probability measure.

Definition 3.9. A probability measure Q equivalent to P is called an f -martingale proba-
bility measure if for all x ∈ R and for all ϕ ∈ H2 ∩H2

Q, the wealth process V x,ϕ is a strong

EfQ-martingale, or in other terms an (f,Q)-martingale.

We note that P is an f -martingale probability measure (cf. Lemma 3.1).

8We note that since we have a representation theorem for (Q,G)-martingales with respect to WQ and
MQ (see e.g. Proposition 6 in the appendix of [10]), this BSDE admits a unique solution (X,Z,K) in
S2
Q ×H2

Q ×H2
Q,λ.
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Remark 3.10. (linear case) Let R0 be the martingale probability measure, with density ζ0

defined by (3.9). Suppose f(t, y, z) = −rty − θtz. We note that, in this case, the (f, P )-
martingale property of the (linear) wealth processes (cf. Lemma 3.1) is equivalent to the
well-known R0-martingale property of the discounted wealth processes. In other terms, the
f -martingale probability property of P corresponds to the (well-known) martingale probability
property of R0 (see also Remark 3.14 concerning this correspondance between P and R0).

Notation: We denote by Q the set of f -martingale probability measures Q such that the
coefficients (αt) and (νt) associated with its density with respect to P (see equation (3.10))
are bounded. We note that P ∈ Q.

Let V be the set of bounded predictable processes ν such that νϑ∧T > −1 a.s., which is
equivalent to νt > −1 for all t ∈ [0, T ] λtdP ⊗ dt-a.s. (cf. Remark 9 in [10]).

Proposition 3.11. (Characterization of Q) Let Q be a probability measure equivalent to P ,
such that the coefficients α and ν of its density (3.10) with respect to P are bounded. The
two following assertions are equivalent:
(i) Q ∈ Q, that is, Q is an f -martingale probability measure.
(ii) there exists ν ∈ V such that Q = Qν, where Qν is the probability measure which admits
ζνT as density with respect to P on GT , where ζν satisfies

dζνt = ζνt−(−νtλtβtσ−1t dWt + νtdMt); ζ
ν
0 = 1. (3.11)

Remark 3.12. We note that the mapping ν 7→ Qν is a one-to-one mapping that carries V
onto Q. So we have Q = {Qν , ν ∈ V}.
For ν = 0, we have Qν = Q0 = P . We also note that the set Q does not depend on the
driver f .

Proof. Let Q be a probability measure equivalent to P , such that the coefficients α and ν
of its density (3.10) with respect to P are bounded. Note that (νt) belongs to V . Let x ∈ R
and let ϕ ∈ H2 ∩H2

Q. The associated wealth process V = V x,ϕ satisfies (3.5). Expressing W
and M in terms of WQ and MQ, we get

−dV x,ϕ
t = f(t, V x,ϕ

t , ϕtσt)dt− ϕtσt(αt + νtλtβtσ
−1
t )dt− ϕtσtdWQ

t − ϕtβtdM
Q
t . (3.12)

Proof. Suppose that αt = −νtλtβtσ−1t dP ⊗ dt-a.e. Then, the process (V x,ϕ
t , ϕtσt, ϕtβt)

is the solution of the BSDE under Q associated with driver f and terminal condition V x,ϕ
T .

Hence, V x,ϕ is an EfQ-martingale. Conversely, suppose that for all x ∈ R and ϕ ∈ H2 ∩H2
Q,

the process V x,ϕ is an EfQ-martingale. By Lemma D.1 in the Appendix, the finite variational

process
∫ ·
0
ϕtσt(αt+νtλtβtσ

−1
t )dt is thus equal to 0, which implies that ϕtσt(αt+νtλtβtσ

−1
t ) =

0 dP ⊗ dt-a.e. Since this holds for all ϕ ∈ H2 ∩ H2
Q and since, by assumption, σt > 0, we

derive that αt = −νtλtβtσ−1t dP ⊗ dt-a.e. �

We now provide a connection between f -martingale probabilities and martingale prob-
abilities. Let R be a probability measure, equivalent to P such that the coefficients α and
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ν of its density with respect to P (cf. (3.10)) are bounded. By similar arguments as in the
proof of Proposition 3.11, we derive that R is a martingale probability measure if and only
if there exists ν ∈ V such that R = Rν , where Rν is the probability measure with density
process ζ̃ν (with respect to P ) satisfying

dζ̃νt = ζ̃νt−((−θt − νtλtβtσ−1t )dWt + νtdMt); ζ̃
ν
0 = 1. (3.13)

We denote by P the set of all such probability measures.
By this observation together with Proposition 3.11, we derive the following result.

Proposition 3.13. There exists a one to one mapping from Q on P. More precisely, the
mapping Tθ, which, for each ν ∈ V, maps the f -martingale probability Qν (with density ζν

given by (3.11)) onto the martingale probability measure Rν (with density ζ̃ν) is a one to one
correspondance from Q on P.

Remark 3.14. Loosely speaking, the mapping Tθ translates the ”Brownian coefficient” (of
the density) by −θ. We note that Tθ(P ) = R0 (which completes the observation made in
Remark 3.10 on P and R0).

4 Main results

We now consider a European option with maturity T and payoff η ∈ L2(GT ) such that there
exist x ∈ R and ψ ∈ H2 satisfying

|η| ≤ V x,ψ
T = x−

∫ T

0

f(s, V x,ψ
s , σsψs)ds+

∫ T

0

ψsσsdWs +

∫ T

0

βsψsdMs a.s. (4.1)

One of the main results of this paper is the following pricing-hedging duality formula.

Theorem 4.1 (Pricing-hedging duality). Let η be a GT -random variable satisfying Assump-
tion (4.1) with ψ ∈ ∩ν∈VH2

Qν . The superhedging price for the seller v0 of the European option
with payoff η and maturity T satisfies the equality

v0 = sup
ν∈V
EfQν ,0,T (η).

Remark 4.2. Note that, under the assumption ψ ∈ ∩ν∈VH2
Qν , we have: for all ν ∈ V, the

wealth process V x,ψ is an EfQν -martingale since (V x,ψ, σψ, βψ) is the solution of the BSDE

under Qν (driven by WQν and MQν) associated with driver f , terminal time T and terminal
condition V x,ψ

T (cf. the proof of Proposition 3.11). Now, by Assumption (4.1), we have
|η| ≤ V x,ψ

T a.s. It follows that for all ν ∈ V, EfQν ,0,T (|η|) ≤ EfQν ,0,T (V x,ψ
T ) = x.

For each ν ∈ V , the (f,Qν)-evaluation can be seen as a nonlinear pricing system:

EfQν : η 7→ EfQν ,·,T (η)

which, to each European option with maturity T and payoff η ∈ L2
Qν (GT ), associates the

price EfQν ,0,T (η).
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Remark 4.3. (linear case) When f(t, y, z) = −rty−θtz, we have for each ν in V , EfQν ,0,T (η) =

ERν (e
−

∫ T
0 rsdsη). In this case, the operator EfQν thus reduces to the linear price system asso-

ciated by duality with the martingale probability measure Qν (for more details see [24], [16]
section 1.7). Hence, Theorem 4.1 reduces to the well-known dual representation of the su-
perhedging price for the seller of the European option in an incomplete (linear) market (cf.
[16] for the case when β = 0).

For the proof of the above pricing-hedging duality formula, we refer to Section 5.
Since the superhedging price of the option for the buyer ṽ0 is equal to the opposite of the

superhedging price for the seller of the option with payoff −η, we derive from Theorem 4.1
the following dual representation result for ṽ0:

ṽ0 = − sup
ν∈V
EfQν ,0,T (−η).

Remark 4.4. Note that it is possible that v0 < ṽ0, and hence, that there does not exist an
arbitrage-free price for the European option with payoff η. A simple example is given by
f(t, y, z) = −|y| and η = 1. In this case, we have v0 = e−T and ṽ0 = eT .

Remark 4.5. If f(t, y, z) ≥ −f(t,−y,−z) (which is satisfied for example when f is convex
with respect to (y, z)) then, for all ν ∈ V, we have EfQν ,0,T (η) ≥ −EfQν ,0,T (−η). By taking the
supremum over ν ∈ V, using the above dual representations of v0 and ṽ0, we get v0 ≥ ṽ0.

Moreover, if f(t, y, z) = −f(t,−y,−z) (which is satisfied for example when f is linear),
then v0 = ṽ0, and this constant is the unique arbitrage-free price for the European option
with payoff η.

Theorem 4.1 is based on another important result of the present paper, which extends
the well-known optional decomposition theorem from the linear case to the non-linear case.
More precisely, we show that every RCLL process which is a (strong) Ef -supermartingale
under all f -martingale probability measures admits an optional Ef -decomposition, as stated
in the following theorem.

Theorem 4.6 (Optional Ef -decomposition). Let (Yt) be an RCLL optional process belonging
to ∩ν∈VS2

Qν . Suppose that it is a strong (f,Qν)-supermartingale for each ν ∈ V. Then, there
exists a unique Z ∈ H2, and a unique nondecreasing optional RCLL process, with h0 = 0
and E(h2T ) <∞ such that

−dYt = f(t, Yt, Zt)dt− Ztσ−1t (σtdWt + βtdMt) + dht. (4.2)

Remark 4.7. In fact we have Z ∈ ∩ν∈VH2
Qν and h ∈ ∩ν∈VS2

Qν .

In fact, we prove an even more general decomposition, which holds without the assump-
tion Y RCLL.

Remark 4.8. In the classical linear case when f is given by f(t, y, z) = −rty−zθt, the above
Ef -decomposition corresponds to the well known optional decomposition of an RCLL process,
which is a supermartingale under each martingale probability measure, up to a discounting
and a change of probability measure (see [16], [18] and [31]).
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We now define the seller’s (superhedging) price of the European option at each stopping
time S ∈ T0. To this aim, we first define, for each initial wealth X ∈ L2(GS), a superhedging
strategy as a portfolio strategy ϕ ∈ H2 such that V S,X,ϕ

T ≥ η a.s. , where V S,X,ϕ denotes the
wealth process associated with initial time S and initial condition X. Let AS(X) be the
set of all superhedging strategies associated with initial time S and initial wealth X. The
seller’s (superhedging) price at time S is defined by the random variable

v(S) := ess inf{X ∈ L2(GS), ∃ϕ ∈ AS(X)}.

Proposition 4.9. (Seller’s superhedging price process) We suppose that Assumption (4.1)
holds with ψ ∈ ∩ν∈VH2

Qν . For each S ∈ T0, we have

v(S) = ess sup
ν∈VS
EfQν ,S,T (η) a.s. (4.3)

Moreover, there exists a unique process (Xt) ∈ S2 such that for each S ∈ T0, v(S) = XS a.s.
We call (Xt) the seller’s (superhedging) price process of the European option.

Remark 4.10. When there is no default in the market, the filtration G is the one associated
with the Brownian motion W , and in the dynamics of the price process (St) and of the wealth
process (Vt), M = 0 and β = 0. Hence, the market is complete, and we have V = {0} and
Q = {P}. We derive that the seller’s price process satisfies Xt = Eft,T (η) for all t ∈ [0, T ] a.s.

By symmetry, the buyer’s price process corresponds to the process −Eft,T (−η), 0 ≤ t ≤ T .

We now introduce the notion of weak supersolution of the BSDE with driver f and
terminal condition η.

Definition 4.11. Let η ∈ L2(GT ). A process X ′ ∈ S2 is said to be a weak supersolution of
the BSDE with driver f and terminal condition η if there exist Z ′ ∈ H2, and a nondecreasing
optional RCLL process h′, with h′0 = 0 and E[(h′T )2] <∞ such that

−dX ′t = f(t,X ′t, Z
′
t)dt+ dh′t − σ−1s Z ′s(σsdWs + βsdMs); X ′T = η a.s. (4.4)

Remark 4.12. We call the above solution a weak supersolution of the BSDE because the
associated non decreasing right-continuous process is optional but not necessarily predictable
contrary to classical supersolutions of BSDEs.

We have the following infinitesimal characterization of the seller’s superhedging price
process:

Theorem 4.13. (Infinitesimal characterization I) Let η be a GT -random variable satisfying
Assumption (4.1). The seller’s superhedging price (Xt) is a weak supersolution of the BSDE
with driver f and terminal condition η from Definition 4.11, that is, there exists a unique
process Z ∈ H2 and a unique nondecreasing optional RCLL process h, with h0 = 0 and
E[(hT )2] <∞ satisfying the equation (4.4). Moreover, it is the minimal one, that is, if (X ′t)
is another weak supersolution, then X ′t ≥ Xt for all t ∈ [0, T ] a.s.

Furthermore, the portfolio strategy ϕ∗ := σ−1Z is a superhedging strategy for the seller,
that is, ϕ∗ ∈ A(v0).
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We now introduce the notion of a supersolution of the constrained BSDE with driver f
and terminal condition η.

Definition 4.14. Let η ∈ L2(GT ). A process X ′ ∈ S2 is said to be a supersolution of
the constrained BSDE with driver f and terminal condition η if there exists a process
(Z ′, K ′, A′) ∈ H2 ×H2

λ ×A2 such that

− dX ′t = f(t,X ′t, Z
′
t)dt+ dA′t − Z ′tdWt −K ′tdMt; X ′T = η a.s.; (4.5)

A′· +

∫ ·
0

(K ′s − βsσ−1s Z ′s)λsds ∈ A2 and (K ′t − βtσ−1t Z ′t)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. ;

(4.6)

Theorem 4.15. (Infinitesimal characterization II) The seller’s superhedging price process
(Xt) is a supersolution of the constrained BSDE associated with driver f and terminal con-
dition η from Definition 4.14, that is, there exists a unique process (Z,K,A) ∈ H2×H2

λ×A2

such that (X,Z,K,A) satisfies (4.5) and (4.6). Moreover, it is the minimal one.
Furthermore, the portfolio strategy ϕ∗ := σ−1Z is a superhedging strategy for the seller,

that is, ϕ∗ ∈ A(v0).

Remark 4.16. Recall that the buyer’s superhedging price ṽ0 for the European option with
payoff η is equal to the opposite of the seller’s superhedging price for the European option
with payoff −η (cf. Section 3.2). From this and from the results on the seller’s superhedging
price, we derive the corresponding results for the buyer’s superhedging price.

5 Proofs of the main results

In order to prove Theorem 4.1, we will work under the primitive probability P , which will
allow us to solve the problems under weaker integrability conditions.

To this aim, we introduce a family of drivers (f ν , ν ∈ V).

Definition 5.1 (Driver f ν and Eν-expectation). For ν ∈ V, we define

f ν(ω, t, y, z, k) := f(ω, t, y, z) + νt(ω)λt(ω)
(
k − βt(ω)σ−1t (ω)z

)
.

The mapping f ν is a λ-admissible driver 9.
The associated non-linear family of operators, denoted by Efν or, simply, Eν, is defined as
follows: for each T ′ ≤ T and each η ∈ L2(GT ′), we have Eν·,T ′(η) := Xν

· , where (Xν , Zν , Kν)
is the unique solution in S2 ×H2 ×H2

λ of the BSDE

−dXν
t =

(
f(t,Xν

t , Z
ν
t ) + νtλt(K

ν
t − βtσ−1t Zν

t )
)
dt− Zν

t dWt −Kν
t dMt; X

ν
T ′ = η. (5.1)

9Since ν is a predictable process, fν is P ⊗ B(R3)− measurable. As, moreover, ν is bounded, fν is a
λ-admissible driver.
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Remark 5.2. By Proposition 3.11, for each ν ∈ V, for all T ′ ≤ T and η ∈ L2(GT ′) ∩
L2
Qν (GT ′), we derive that the (f ν , P )-evaluation of η is equal to its (f,Qν)-evaluation, that

is,
Eν·,T ′(η) = EfQν ,·,T ′(η).

We place ourselves under the assumption (4.1).
For each S ∈ T , we define the FS-measurable random variable:

X(S) := ess sup
ν∈VS
EνS,T (η). (5.2)

Let us recall the definition of an admissible family of random variables indexed by stop-
ping times in T0 (or T0-system in the vocabulary of Dellacherie and Lenglart [8]).

Definition 5.3. We say that a family Y = (Y (S), S ∈ T ) is admissible if it satisfies the
following conditions

1. For all S ∈ T , Y (S) is a real-valued GS-measurable random variable.
2. For all S, S ′ ∈ T , Y (S) = Y (S ′) a.s. on {S = S ′}.
Moreover, we say that an admissible family Y is uniformly square-integrable if

E[ess supS∈T (Y (S))2] <∞.

Lemma 5.4. The family of random variables (X(S), S ∈ T ) is an admissible family.
Moreover, for each S ∈ T , there exists a sequence of controls (νn)n∈N with νn ∈ VS for all
n, such that the sequence (EνnS,T (η))n∈N is nondecreasing and satisfies:

X(S) = lim
n→∞

EνnS,T (η) a.s. (5.3)

Proof. By definition (5.2), for each S ∈ T , X(S) is GS-measurable as the essential supremum
of GS-measurable random variables. Let S, S ′ ∈ T such that S = S ′ a.s. We have EνS,T (η) =
EνS′,T (η) a.s. for all ν ∈ V . Hence, ess supν∈V EνS,T (η) = ess supν∈V EνS′,T (η) a.s. From this,
together with (5.2), we get X(S) = X(S ′) a.s. The admissibility of the value family is thus
proven.

Let us show the second assertion. By a classical result on essential suprema, it is suf-
ficient to prove that, for each S ∈ T , the set {EνS,T (η), ν ∈ VS} is stable under pairwise

maximization. Indeed, let ν, ν ′ ∈ VS. Set A := { Eν′S,T (η) ≤ EνS,T (η) }. We have A ∈ FS. Set

ν̃ := ν1A+ν ′1Ac . Then ν̃ ∈ VS. We have E ν̃S,T (η)1A = Ef
ν̃1A

S,T (η1A) = Ef
ν1A

S,T (η1A) = EνS,T (η)1A
a.s. and similarly on Ac. It follows that EνS,T (η) = EνS,T (η)1A+Eν′S,T (η)1Ac = EνS,T (η)∨ Eν′S,T (η)
a.s. The proof is thus complete.

Let g be a λ-admissible driver satisfying Assumption 2.2.
We give the definition of an Eg-supermartingale (resp. Eg- submartingale, Eg-martingale)
family. 10.

10When g = 0, it reduces to the notion of supermartingale family, or supermartingale T -system in the
terminology of Dellacherie-Lenglart [8]
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Definition 5.5. A uniformly square integrable admissible family (Y (S), S ∈ T ) is said to
be an Eg-supermartingale (resp. Eg- submartingale, Eg-martingale) family if for all S, S

′ ∈
T such that S ≥ S

′
a.s., EgS′,S(Y (S)) ≤ (resp. ≥, =) Y (S

′
) a.s.

Lemma 5.6. The family (X(S), S ∈ T ) is the smallest admissible family such that for each
ν ∈ V, it is an Eν-supermartingale family 11 satisfying for all S ∈ T0, X(T ) = η a.s.

Proof. We first note that, by definition of X(T ), we have X(T ) = η a.s.
Fix S ∈ TS′ a.s. There exists an optimizing sequence of controls (νn)n∈N with (νn)

in VS such that equality (5.3) holds. Let ν ∈ V . By the continuity of Eν , we have
EνS′,S(X(S)) = lim

n→∞
EνS′,S(EνnS,T (η)) a.s.

We define for each n the control ν̃nt := νt1[S′,S](t) + νnt 1[S,T ](t), which belongs to VS′ .
Notice that f ν̃

n
= f ν1[S′,S] + f ν

n
1[S,T ], which implies that EνS′,S(EνnS,T (η)) = E ν̃nS′,S(E ν̃nS,T (η)) =

E ν̃nS′,T (η) a.s. Hence, we obtain EνS′,S(X(S)) = lim
n→∞

E ν̃nS′,T (η) ≤ X(S ′) a.s. , where the last

equality follows from the definition of X(S ′). We now show the minimality property. Let
(X ′(S), S ∈ T ) be an admissible family such that for each ν ∈ V , it is an Eν-supermartingale
family satisfying X ′(T ) = η a.s. By the properties of X ′, for all S ∈ T , and all ν ∈ V , we
have X ′(S) ≥ EνS,T (X ′(T )) = EνS,T (η) a.s. Taking the essential supremum over ν ∈ VS, we
deduce X ′(S) ≥ X(S) a.s.

Using the above Lemma, we get the following result.

Proposition 5.7. There exists an RCLL adapted process (Xt) ∈ S2 which aggregates the
value family (X(S)). The process (Xt) is a strong Eν-supermartingale for all ν ∈ V and XT =
η a.s. Moreover, the process (Xt) is the smallest process in S2 satisfying these properties.

Proof. Since V is nonempty (in particular 0 ∈ V), Lemma 5.6 implies that the value family
(X(S)) is a strong E0-supermartingale family. By Lemma A.1 in the Appendix, there exists
a r.u.s.c. optional process (Xt) such that E[ess supS∈T X

2
S] <∞ which aggregates the family

(X(S), S ∈ T ) with XT = η a.s. Moreover, by Lemma 5.6, (Xt) is the minimal optional
process which is a strong Eν-supermartingale for all ν ∈ V , with terminal value greater than
or equal to η.

By Proposition A.6 in the Appendix, we derive that (Xt) is a right-continuous (left-
limited) process and belongs to S2.

From this lemma together with Theorem B.4 applied to the right-continuous process
(Xt), we get the following result.

Lemma 5.8 (Optional Ef -decomposition of the value process). There exists a unique Z ∈ H2

and a unique nondecreasing optional RCLL process h, with h0 = 0 and E[h2T ] <∞ such that

Xt = X0 −
∫ t

0

f(s,Xs, Zs)ds+

∫ t

0

σ−1s Zs(σsdWs + βsdMs)− ht, 0 ≤ t ≤ T a.s. (5.4)

11that is an Efν

-supermartingale family
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Remark 5.9. Suppose that ψ ∈ ∩ν∈VH2
Qν in Assumption (4.1). Then, Z ∈ ∩ν∈VH2

Qν and
h ∈ ∩ν∈VS2

Qν .

Using this lemma, we provide a dual representation for the seller’s superhedging price v0
in terms of the value process (Xt) (at time 0) .

Theorem 5.10 (Dual representation). The seller’s superhedging price v0 of the European
option is equal to the value function at time 0 (cf. (5.2)) of the non-linear control problem,
that is

v0 = sup
ν∈V
Eν0,T (η). (5.5)

Moreover, the portfolio strategy ϕ∗ := σ−1Z, where the process Z is the one from the Ef -
optional decomposition of the value process X from Theorem B.4, is a superhedging strategy
for the seller, that is, V v0,ϕ∗

T ≥ η a.s.

Proof. For each x ∈ R, let A(x) := {ϕ ∈ H2 s.t. V x,ϕ
T ≥ η a.s.}. Let H be the set of initial

capitals which allow the seller to be “super-hedged”, that is H = {x ∈ R : ∃ϕ ∈ A(x)}.
From the definition of v0 (see (3.6)), we have v0 = infH. We first show that

v0 ≥ sup
ν∈V
Eν0,T (η). (5.6)

Let x ∈ H. There exists ϕ ∈ H2 such that V x,ϕ
T ≥ η a.s. Let ν ∈ V . By taking the

Eν-evaluation in the above inequality, using the monotonicity of Eν and the Eν-martingale
property of the wealth process V x,ϕ, we obtain x = Eν0,T (V x,ϕ

T ) ≥ Eν0,T (η). By arbitrariness
of ν ∈ V , we get x ≥ supν∈V Eν0,T (η), which holds for all x ∈ H. By taking the infimum
over x ∈ H, we derive the desired inequality (5.6). Since, by definition of X0, we have
X0 = supν∈V Eν0,T (η), the inequality (5.6) can be written as v0 ≥ X0.

We now show the converse inequality, that is, X0 ≥ v0. Since v0 = infH, it is sufficient
to show that the portfolio strategy ϕ∗ := σ−1Z is a superhedging strategy for the seller
associated with the initial capital X0, that is,

ϕ∗ ∈ A(X0). (5.7)

We consider the portfolio associated with the initial capital X0 and the strategy ϕ∗. By
(3.4)-(3.5), the value of this portfolio (V X0,ϕ∗

t ) satisfies the following forward equation:

V X0,ϕ∗

t = X0 −
∫ t

0

f(s, V X0,ϕ∗

s , Zs)ds+

∫ t

0

σ−1s Zs(σsdWs + βsdMs), 0 ≤ t ≤ T a.s. (5.8)

Moreover, by the optional Ef -decomposition of the value process (Xt) (cf. Lemma 5.8), the
process (Xt) satisfies the forward SDE (5.4). Now, (ht) is nondecreasing. Hence, by the
comparison result for forward differential equations, we get V X0,ϕ∗

T ≥ XT a.s. Since XT = η

a.s. , we get V X0,ϕ∗

T ≥ η a.s. , which implies the desired property (5.7). We thus derive that
X0 ∈ H, and hence that X0 ≥ v0. Since X0 ≤ v0, we deduce the equality X0 = v0. Moreover,
by (5.7), we derive that ϕ∗ ∈ A(v0), which completes the proof.
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Remark 5.11. Some related results are given in [2] for European options in a Brownian
framework.

From this result, we deduce the pricing-hedging duality formula (in terms of the f -
martingale probability measures) stated in Theorem 4.1.

Proof of Theorem 4.1 (Pricing-hedging duality): The proof follows from the previous
Theorem 5.10 and from Remark 5.2. Indeed, under an additional integrability condition
ψ ∈ ∩ν∈VH2

Qν on the process ψ from Assumption (4.1), by Remark 5.2, the above dual rep-
resentation of the superhedging price can be written in terms of the f -martingale probability
measures, that is

v0 = sup
ν∈V
EfQν ,0,T (η),

which ends the proof of Theorem 4.1. �

Proof of Proposition 4.9 (Seller’s superhedging price process): Using Lemma 5.8
and similar arguments to those used in the proof of Theorem 5.10, one can show that for
each S ∈ T , we have v(S) = XS a.s. , which gives the desired result. �

Proof of Theorem 4.13 (Infinitesimal characterization I): The proof relies on Lemma
5.8 and Proposition 5.7. We have XT = η a.s. By Lemma 5.8, we derive that the process X
is a weak supersolution. It remains to show that it is the minimal one. Let X ′ be another
weak supersolution. Hence, there exists Z ′ ∈ H2 and a nondecreasing optional RCLL process
h′, with h′0 = 0 and E[(h′T )2] <∞ such that (4.4) holds. Let ν ∈ V . We show that X ′ is an
Eν-strong supermartingale. Let σ ∈ T0 and let τ ∈ Tσ. We have to show that Eνσ,τ (X ′τ ) ≤ X ′σ
a.s. By definition, the process Eν·,τ (X ′τ ) is the solution of the BSDE associated with driver
f , terminal time τ and terminal condition X ′τ . Now, the process (X ′t∧τ ) is the solution of
the BSDE associated with generalized (optional) driver f(t, y, z)dt + dht, terminal time τ
and terminal condition X ′τ . By the comparison theorem for BSDEs with default jump and
generalized drivers provided in [10] (cf. Theorem 3 in [10]), we derive that Eνσ,τ (X ′τ ) ≤ X ′σ
a.s. It follows that X ′ is an Eν-strong supermartingale for all ν ∈ V . By the minimality
property of the process X from Proposition 5.7, we derive that X ≤ X ′. The proof is thus
complete. �

Proof of Theorem 4.15 (Infinitesimal characterization II): The result immediately
follows from Theorem 4.13 together with Proposition B.5. �

Proof of Theorem 4.6 (Optional Ef -decomposition): The result follows from Theorem
B.4 together with Remark 5.2. Moreover, since Y is supposed to be right-continuous, we
have C = 0.
Proof of Remark 4.7: Since Zν = Z, Kν = K and C = Cν = 0, the decomposition (B.3)
from the proof of Proposition B.1 can be written:

−dYt = f(t, Yt, Zt)dt− ZtdW ν
t −KtdM

ν
t + dAνt . (5.9)
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where W ν and Mν stand for WQν and MQν respectively. Hence, for each ν ∈ V , the
processes Z, K, Aν and C = 0 correspond to the EfQν -Mertens decomposition coefficients

of the Qν-square integrable strong EfQν -supermartingale Y . We derive that Z ∈ ∩ν∈VH2
Qν ,

K ∈ ∩ν∈VH2
Qν ,λ and Aν ∈ ∩ν∈VS2

Qν . By (B.4), we get A ∈ ∩ν∈VS2
Qν . The result follows from

Theorem B.4 and the equality (B.6) from the proof of Theorem B.4.

A Some results on Eg-supermartingale families and pro-

cesses

Let g be a λ-admissible driver. We provide some results on Eg-supermartingale families and
Eg-supermartingale processes, which are useful in the paper.

Lemma A.1. Let (X(S), S ∈ T ) be an Eg-supermartingale family. Then, there exists a
r.u.s.c. optional process (Xt) such that E[ess supS∈T X

2
S] < ∞ which aggregates the family

(X(S), S ∈ T ), that is, such that X(S) = XS a.s. for all S ∈ T . Moreover, the process (Xt)
is a strong Eg-supermartingale, that is, for all S, S

′ ∈ T such that S ≥ S
′

a.s., EgS′,S(XS) ≤
XS′ a.s.

Proof. By Lemma 4.6 in [21], the Eg-supermartingale family (X(S), S ∈ T ) is right-upper
semicontinuous (along stopping times).

It follows from Theorem 4 in [8] that there exists an r.u.s.c. optional process (Xt)
which aggregates the family (X(S), S ∈ T ). The process (Xt) is clearly a strong Eg-
supermartingale. �

Remark A.2. Note that, as a consequence of the above lemma, we recover a result of [20]
(Lemma 5.1 in [20]), namely, a strong Eg-supermartingale is necessarily r.u.s.c.

We now recall the Eg-Mertens decomposition of Eg- supermartingales proved in [20], and
then provide some useful results.

Theorem A.3 (Eg-Mertens decomposition of Eg-supermartingales). Let (Yt) be an optional
process in S2. Then (Yt) is a Eg-submartingale if and only if there exists a non decreasing
right continuous and predictable processes A in A2, a non decreasing adapted right continuous
and purely discontinuous processes C in C2 and (Z,K) ∈ H2 ×H2

ν such that

− dYs = g(s, Ys, Zs, Ks)ds− ZsdWs −KtdMt + dAs + dCs− . (A.1)

Moreover, this decomposition is unique.

Remark A.4. Using the above decomposition, we deduce that a Eg-supermartingale admits
left and right limits.

Lemma A.5. If (Xt)t∈[0,T ] be a strong Eg-supermartingale, then the process of right-limits
(Xt+)t∈[0,T ] (where, by convention, XT+ := XT ) is a strong Eg-supermartingale.
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Proof. Since (Xt) is a strong Eg-supermartingale, (Xt) has right limits (cf. Remark A.4).
Let us show that the process (Xt+) is a strong Eg-supermartingale. Let S, θ be two stopping
times belonging to T with S ≤ θ a.s. There exist two nondecreasing sequences of stopping
times (Sn) and (θn) such that for each n, Sn > S a.s. on {S < T}, and θn > θ a.s. on
{θ < T}. Replacing if necessary Sn by Sn ∧ θn, we can suppose that for each n, Sn ≤ θn a.s.
Let ν ∈ V . Since the process (Xt) is a strong Eg-supermartingale, it follows that for each
n, EgSn,θn(Xθn) ≤ XSn a.s. By the monotonicity property of Eg, we derive that, for each n,
EgS,Sn(EgSn,θn(Xθn)) ≤ EgS,Sn(XSn) a.s. , which, by the consistency property of Eg implies

EgS,θn(Xθn) ≤ EgS,Sn(XSn)a.s.

By letting n tend to ∞ in the above inequality and by applying the continuity property
(with respect to terminal time and terminal condition) of BSDEs with default (cf. [10]), we
obtain

EgS,θ(Xθ+) ≤ EgS,S(XS+) = XS+ a.s.

Hence, the process (Xt+) is a strong Eg-supermartingale. �

Let V be a non-empty set. Let (f ν , ν ∈ V) be a family of λ-admissible drivers satisfying
Assumption 2.2.

Proposition A.6. Let η be a given random variable belonging to L2(GT ). Let (Xt)t∈[0,T ] be
an optional process such that (Xt) is a strong Efν -supermartingale for all ν ∈ V and such that
XT ≥ η a.s. Assume moreover that (Xt) is minimal, that is, (Xt) is the smallest optional
process satisfying these properties. Then, the process (Xt) is right-continuous.

Proof. Since (Xt) is a strong Efν -supermartingale, it is r.u.s.c. (cf. Remark A.2) and has
right limits (cf. Remark A.4). We thus have Xt+ ≤ Xt, for all t ∈ [0, T ] a.s. Let us prove
the converse inequality. Since (Xt) is a strong Efν -supermartingale for all ν ∈ V , it follows
by Lemma A.5 that (Xt+) is a strong Efν -supermartingale for all ν ∈ V . We also note that
XT+ = XT ≥ η a.s. Hence, using the minimality property of (Xt), we derive that Xt ≤ Xt+ ,
for all t ∈ [0, T ] a.s. We conclude that Xt+ = Xt, for all t ∈ [0, T ] a.s. The proof is thus
complete. �

Remark A.7. This property still holds in the case when the (terminal) constraint XT ≥ η
a.s. is replaced by the constraint Xt ≥ ξt for all t ∈ [0, T ] a.s., where (ξt) is a given right
lower-semicontinuous process belonging to S2.12

B Non-linear predictable and optional decompositions

We provide a non-linear optional and a non-linear predictable decomposition for processes
(Yt) which are strong Eν-supermartingales for all ν ∈ V . In the present paper, we apply the

12The proof is analogous to the proof of the above Proposition A.6. The inequality XT+ ≥ η in the proof
of Proposition A.6 is to be replaced by Xt+ ≥ ξt for all t ∈ [0, T ] a.s., which holds due to the assumption of
right lower-semicontinuity of (ξt).
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decompositions of this section to the superhedging price processes of the European options.
The decompositions prove useful also in our subsequent work on superhedging prices of
American options (cf. [23]).
We denote by C2 the set of adapted non-decreasing RCLL purely discontinuous processes
(Ct) such that C0− = 0 and E[C2

T ] < +∞.

Proposition B.1 (Predictable Ef -decomposition). Let (Yt) ∈ S2 be a strong Eν-supermartingale
for all ν ∈ V. There exists a unique process (Z,K,A,C) ∈ H2 ×H2

λ ×A2 × C2 such that

−dYt = f(t, Yt, Zt)dt− ZtdWt −KtdMt + dAt + dCt− (B.1)

and

A· +

∫ ·
0

(Ks − βsσ−1s Zs)λsds ∈ A2 and (Kt − βtσ−1t Zt)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e.

(B.2)

Remark B.2. Recall that by Remark 5 in [10], the condition (Kt − βtσ
−1
t Zt)λt ≤ 0, t ∈

[0, T ], dP ⊗ dt− a.e. is equivalent to Kϑ − βϑσ−1ϑ Zϑ ≤ 0, P -a.s.

Remark B.3. Note that excepting the default time ϑ, the left-side jumps of Y are predictable
and correspond to the ones of the predictable non decreasing process A.

Proof. As (Yt) is a strong E0-supermartingale, by the E0-Mertens decomposition (see
Theorem A.3 in Appendix), there exists a unique process (Z,K,A,C) in H2×H2

λ×A2×C2

such that equation (B.1) holds. Let ν ∈ V . Since (Yt) is a strong Eν- supermartingale, by
the Eν-Mertens decomposition (see A.3), there exists a unique process (Zν , Kν , Aν , Cν) in
H2 ×H2

λ ×A2 × C2 such that

−dYt =
(
f(t, Yt, Z

ν
t ) + (Kν

t − βtσ−1t Zν
t )νtλt

)
dt− Zν

t dWt −Kν
t dMt + dAνt + dCν

t−. (B.3)

By applying the uniqueness of the canonical decomposition of a special optional semimartin-
gale (cf. Lemma D.2 in the Appendix), together with the uniqueness of the representation
of the martingale part as the sum of two stochastic integrals (with respect to W and M),
we have Zt = Zν

t dP ⊗ dt-a.e. and Kt = Kν
t dP ⊗ dt-a.e., Ct− = Cν

t−, for all t a.s. and
f(t, Yt, Zt)dt+ dAt = f(t, Yt, Z

ν
t )dt+ (Kν

t − βtσ−1t Zν
t )νtλtdt+ dAνt for all t a.s.

Using the above equalities, we derive that

dAνt = dAt − (Kt − βtσ−1t Zt)νtλtdt. (B.4)

Let us show that this implies that (Kt − βtσ−1t Zt)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. Suppose
by contradiction that there exists a predictable set A ⊂ [0, T ]×Ω such that (dP ⊗dt)(A) > 0
and (Kt − βtσ−1t Zt)λt > 0, t ∈ [0, T ], dP ⊗ dt− a.e. on A. For each n ∈ N, set νnt := n1A.
Note that (νnt ) is a bounded predictable process with νnt > −1. Hence, νn ∈ V . Using

equality (B.4), we derive that for n sufficiently large, we have E[Aν
n

T ] = E[AT − n
∫ T
0

(Kt −
βtσ

−1
t Zt)λt1Adt] < 0. We thus get a contradiction with the non decreasing property of Aν

n
.

Hence, (Kt − βtσ−1t Zt)λt ≤ 0 dP ⊗ dt-a.s.
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Let us show that condition (B.4) implies that the process A· +
∫ ·
0
(Ks − βsσ−1s Zs)λsds is

nondecreasing. Suppose by contradiction that there exist B ∈ GT with P (B) > 0, as well
as ε > 0 and (t, s) ∈ [0, T ]2 with t < s, such that

∫ s
t

(dAr + (Kr − βrσ−1r Zr)λrdr) ≤ −ε a.s.

on B. For each n ∈ N∗, set νn := −1 +
1

n
. Note that νn ∈ V . From (B.4), we derive that∫ s

t
(dAr + (Kr − βrσ−1r Zr)(−1 +

1

n
)λrdr) ≥ 0 a.s. We thus get that for all n ∈ N∗,

−ε ≥
∫ s

t

(dAr + (Kr − βrσ−1r Zr)λrdr) ≥
1

n

∫ s

t

(Kr − βrσ−1r Zr)λrdr a.s. on B.

By letting n tend to +∞ in this inequality, we obtain a contradiction. Hence, the process
A· +

∫ ·
0
(Ks − βsσ−1s Zs)λsds is nondecreasing.

Moreover, the uniqueness of the decomposition follows by Lemma D.2.
�

Theorem B.4 (Optional Ef -decomposition). Let (Yt) be an optional process belonging to
S2. Suppose that it is an Eν-strong supermartingale for each ν ∈ V.
Then, there exists a unique Z ∈ H2, a unique C ∈ C2 and a unique nondecreasing optional
RCLL process h, with h0 = 0 and E[h2T ] <∞ such that

−dYt = f(t, Yt, Zt)dt− Ztσ−1t (σtdWt + βtdMt) + dCt− + dht. (B.5)

Proof. By Proposition B.1, there exists (Z,K,A,C) ∈ H2×H2
λ×A2×C2 such that (B.1)

and (B.2) hold. Set ht := At −
∫ t
0
(Ks − βsσ−1s Zs)dMs. Since dMt = dNt − λtdt, we have

ht = At +

∫ t

0

(Ks − βsσ−1s Zs)λsds−
∫ t

0

(Ks − βsσ−1s Zs)dNs. (B.6)

Now, by property (B.2), the process A· +
∫ ·
0
(Ks − βsσ−1s Zs)λsds is non decreasing.

Moroever, the process
∫ ·
0
(Ks − βsσ−1s Zs)dNs is a purely discontinuous process which admits

a unique jump, given by Kϑ − βϑσ−1ϑ Zϑ (at time ϑ). Now by Remark B.2, we have Kϑ −
βϑσ

−1
ϑ Zϑ ≤ 0 a.s. We thus derive that the process

∫ ·
0
(Ks − βsσ−1s Zs)dNs is non increasing.

Hence, by the equality (B.6), we derive that the process (ht) is non decreasing. Using (B.1),
we thus get the equation (B.5).

It remains to show the uniqueness of the processes Z, C, and h in (B.5). To show
this, we first show that if Y is decomposable as in (B.5), then the process Y ′ defined by
Y ′t = Yt −∆YϑIt≥ϑ is a special optional semimartingale (cf. Appendix). By equation (B.5),
we have

∆Yϑ = Zϑσ
−1
ϑ βϑ −∆hϑ. (B.7)

Subtracting ∆YϑIt≥ϑ on both sides of the equation (B.5), we get

Yt−∆YϑIt≥ϑ = Y0−
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

Zsσ
−1
s (σsdWs+βsdMs)−Ct−−ht−∆YϑIt≥ϑ. (B.8)
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Using this and the expression (B.7) for ∆Yϑ, we get

Yt−∆YϑIt≥ϑ = Y0−
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

Zsσ
−1
s (σsdWs+βsdMs)−Ct−−ht−Zϑσ−1ϑ βϑIt≥ϑ+∆hϑIt≥ϑ.

(B.9)
We set Bt := ht − ∆hϑIt≥ϑ. By Lemma D.3, the process B is a (predictable) process

in A2. Recall that we have also set Y ′t = Yt −∆YϑIt≥ϑ. With this notation, equation (B.9)
becomes

Y ′t = Y ′0 −
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

Zsσ
−1
s (σsdWs +βsdMs)−Ct− −Bt−Zϑσ−1ϑ βϑIt≥ϑ. (B.10)

Since dMt = dNt − λtdt, we get

Y ′t = Y ′0 −
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

ZsdWs − Ct− −Bt −
∫ t

0

Zsσ
−1
s βsλsds. (B.11)

We conclude that Y ′ is a special optional semimartingale.
Let now Z̃, C̃, and h̃ be such that Z̃ ∈ H2, C̃ ∈ C2 and h̃ is a nondecreasing optional RCLL
process with h̃0 = 0 and E[h̃2T ] < ∞, and such that the decomposition (B.5) holds with Z̃,
C̃, and h̃ (in place of Z, C, h). We show that Z̃ = Z in H2, C̃t = Ct, for all t a.s. and
h̃t = ht, for all t a.s. By the same reasoning as above, we have that (B.11) holds also with Z,
C, and B replaced by Z̃, C̃, and B̃, where B̃ is defined by B̃t := h̃t−∆h̃ϑIt≥ϑ. We note that,
due to (B.7), ∆h̃ϑ = ∆hϑ. Hence, showing the equality h̃t = ht, for all t a.s. is equivalent to
showing that B̃t = Bt, for all t a.s.
Now, as Y ′ is a special optional semimartingale admitting the decomposition (B.11) with Z,
C, and B, on one hand, and with Z̃, C̃, and B̃, on the other hand, we have, by the uniqueness
of the special optional semimartingale decomposition (cf. Lemma D.1 in the Appendix), that
C = C̃, f(t, Yt, Zt)dt+ dBt +Ztσ

−1
t βtλtdt = f(t, Yt, Z̃t)dt+ dB̃t + Z̃tσ

−1
t βtλtdt, and ZtdWt =

Z̃tdWt. From the last equality, using the uniqueness of the martingale representation, we get
Z = Z̃ in H2. This, together with the second equality, gives the equality of B and B̃. The
proof is thus complete. �

Proposition B.5. Let (Yt) ∈ S2. The process (Yt) admits an optional decomposition of the
form (B.5) if and only if it admits a decomposition of the form (B.1) with the conditions
(B.2).

Proof. By the same arguments as those used in the proof of Theorem B.4, we derive that
if (Yt) admits a decomposition of the form (B.1) with conditions (B.2), then it admits an
optional decomposition of the form (B.5).

It remains to show the converse. Suppose that there exists (Z,C) ∈ H2 × C2 and a
nondecreasing optional RCLL process h, with h0 = 0 and E[h2T ] <∞ such that the equation
(B.5) holds. By Lemma D.3, h has the following decomposition ht = Bt +

∫ t
0
ψsdNs, where
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B is a (predictable ) process in A2 and ψ ∈ H2
λ with ψtλt ≥ 0 dP ⊗ dt-a.s. Let (At) be the

process defined for all t ∈ [0, T ] by

At := Bt +

∫ t

0

ψsλsds. (B.12)

We have A ∈ A2. Let (Kt) be the process defined for all t ∈ [0, T ] by

Kt := βtσ
−1
t Zt − ψt. (B.13)

Note that K ∈ H2
λ. Now, since ψtλt ≥ 0 dP ⊗ dt-a.s. , we have (Kt − βtσ

−1
t Zt)λt ≤ 0

dP ⊗ dt-a.s. Moreover, by (B.12) and (B.13), we have Bt = At +
∫ t
0
(Ks − βsσ

−1
s Zs)λsds.

Since B ∈ A2, we derive that the conditions (B.2) hold.
Moreover, since Nt = Mt +

∫ t
0
λsds, by (B.12), we get ht = Bt +

∫ t
0
ψsdNs = At +

∫ t
0
ψsdMs

a.s. Hence, using (B.5) and (B.13), we derive that the process (Z,K,A,C) satisfies the
equation (B.1). The proof is thus complete.

C A result on BSDEs with a non positive jump at the

default time ϑ

Let V ′ be the set of bounded predictable processes ν such that νt ≥ 0 dP ⊗ dt-a.e.
Let g be a λ-admissible driver and let (δt) be a bounded predictable process.
Let η be a GT -measurable random variable satisfying Assumption (4.1). For each ν ∈ V ′, we
define

gν(ω, t, y, z, k) := g(ω, t, y, z, k) + νt(ω)λt(ω)
(
k − δt(ω)z

)
Note that gν is a λ-admissible driver. Let η be a For each S ∈ T , the value X(S) at time S
is defined by

X(S) := ess sup
ν∈V ′
EνS,T (η), (C.1)

where Eν = Egν . Note that XT = η a.s. By Proposition A.6 and similar arguments as in
the previous case (cf. the proof of Proposition 5.7), there exists an RCLL process (Xt) ∈ S2

which aggregates the value family (X(S)), which is a strong Eν-supermartingale for all ν ∈ V ′
and XT ≥ η a.s. Moreover, the process (Xt) is the smallest process in S2 satisfying these
properties.

Now, by similar arguments as those used in the proof of Proposition B.1, it can be shown
that

Proposition C.1. Let (Yt) ∈ S2. If the process (Yt) is a strong Eν-supermartingale for all
ν ∈ V ′, then there exists a unique process (Z,K,A,C) ∈ H2 ×H2

λ ×A2 × C2 such that

−dYt = g(t, Yt, Zt, Kt)dt− ZtdWt −KtdMt + dAt + dCt− (C.2)
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and

(Kt − δtZt)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. (C.3)

Moreover, the converse statement holds.

Note that when δ = 0, the constraint (C.3) means that the jump of the process (Yt) at
the default time ϑ is non positive.

Remark C.2. The constraint (C.3) is equivalent to Kϑ ≤ δϑZϑ a.s. Note that this constraint
corresponds to the second constraint from (B.2). There is here only one constraint (C.3)
while in the previous case, we had two constraints (see (B.2)). This comes from the fact that
here V ′ is the set of bounded predictable processes ν with νt ≥ 0 dP ⊗ dt-a.e. , while in the
(previous) case of V, we had νt > −1 dP ⊗ dt-a.e.

By similar arguments as those used in the proof of Theorem 4.15, it can be shown that
the value process (Xt) is a supersolution of the constrained reflected BSDE from Definition
4.14 with f replaced by g and the constraints (B.2) replaced by the constraint (C.3). We
thus have the following result.

Proposition C.3. Let (Xt) ∈ S2 be the RCLL process which aggregates the value family
(X(S)) defined by (C.1). There exists a unique process (Z,K,A) ∈ H2 ×H2

λ ×A2 such that

− dXt = g(t,Xt, Zt, Kt)dt+ dAt − ZtdWt −KtdMt; XT = η; (C.4)

(Kt − δtZt)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. (C.5)

In other words, the value process (Xt) is a supersolution of the above constrained BSDE.
Moreover, it is the minimal one, that is, if (X ′t) is another supersolution, then X ′t ≥ Xt for
all t ∈ [0, T ] a.s.

Note that when δ = 0, our result gives the existence of a minimal supersolution of the
BSDE with driver g, terminal condition η and with non positive jumps, which corresponds
to a result shown in [4] by using a penalization approach. Moreover, our result provides a
dual representation (with non linear expectation) of this minimal supersolution.

D Three useful lemmas

Lemma D.1. Let g be a λ-admissible driver. Let (At) be a RCLL predictable process with
square integrable total variation and A0 = 0. Suppose X is the first component of the solution
of both the BSDE with generalized driver g(·, y, z, k)dt + dAt and the BSDE with driver g
(with the same terminal time T and the same terminal condition η ∈ L2(GT )). We then have
At = 0 for all t ∈ [0, T ] a.s.

Sketch of the proof : By assumption, there exists a unique process (Z,K) in H2 × H2
λ such

that (X,Z,K) satisfies (2.2). Also, there exists 13 a unique (Z ′, K ′) in H2 × H2
λ such that

13cf. [10] for the existence and the uniqueness of the solution of the BSDE with default and generalized
driver.
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(X,Z ′, K ′) satisfies −dXt = g(t,Xt, Z
′
t, K

′
t)dt + dAt − Z ′tdWt −K ′tdMt. By the uniqueness

of the decomposition of a special semi-martingale together with the uniqueness in the mar-
tingale representation, we derive that Z = Z ′ in H2 and K = K ′ in H2

λ, and dAt = 0. The
proof is thus complete.

Lemma D.2. (Uniqueness of the canonical decomposition of a special optional semimartin-
gale) Let X be an optional semimartingale with decomposition14

Xt = X0 +mt − at − bt, for all t ∈ [0, T ] a.s. (D.1)

with (mt) a (right-continuous) local martingale, (at) a predictable right-continuous process of
finite variation, such that a0 = 0, (bt) a predictable left-continuous process of finite variation,
purely discontinuous and such that b0− = 0. Then, the decomposition (D.1) is unique and
will be called the canonical decomposition of a special optional semimartingale.

Proof. Let Xt = X0 +m′t− a′t− b′t, for all t ∈ [0, T ] a.s., be (another) decomposition with
(m′t), (a′t) and (b′t) as in the lemma. From this decomposition, it follows that Xt+ − Xt =
−(b′t+ − b′t) for all t a.s. From (D.1), it follows that Xt+ − Xt = −(bt+ − bt) for all t a.s.
Hence, b′t+ − b′t = bt+ − bt for all t a.s. As b and b′ are purely discontinuous with the same
initial value, we get b′t = bt, for all t a.s. and the uniqueness of b is proven. We now note
that (Xt + bt)t is a special right-continuous semimartingale (this follows from (D.1)). Hence,
by Theorem 30, Chapter III in [34] the processes (mt) and (at) are unique. �

Lemma D.3. Let h be a nondecreasing optional RCLL process h, with h0 = 0 and E[h2T ] <
∞. Then, h has at most one totally inaccessible jump and this jump is at ϑ. All the other
jumps of h are predictable. Moreover, h can be uniquely decomposed as follows:

ht = Bt + ∆hϑIt≥ϑ = Bt +

∫ t

0

ψsdNs,

where B is a (predictable) process in A2 and ψ is a process in H2
λ such that ψθ ≥ 0 a.s. on

{θ ≤ T}.
Proof. As h is a square-integrable nondecreasing optional RCLL process, h is a square-
integrable RCLL submartingale. So, by the classical Doob-Meyer decomposition, h can be
uniquely decomposed as ht = at + mt, with (at) a (predictable) process in A2 and (mt) a
square-integrable martingale such that m0 = 0. Now, by the martingale representation of
G-martingales and as dMs = dNs − λsds, we get mt =

∫ t
0
ϕsdWs −

∫ t
0
ψsλsds +

∫ t
0
ψsdNs,

where ϕ ∈ H2 and ψ ∈ H2
λ. Hence, ht = at + mt = Bt +

∫ t
0
ψsdNs = Bt + ψϑIt≥ϑ, where

we have set Bt := at +
∫ t
0
ϕsdWs −

∫ t
0
ψsλsds. The process (Bt) is clearly predictable (as

the sum of three predictable processes). The equality ht = Bt + ψϑIt≥ϑ, together with the
predictability of B and the non-decreasingness of h, implies that ∆hϑ = ψϑ ≥ 0 a.s. on
{θ ≤ T} and that B is non-decreasing. The proof is thus complete. �

14An optional semimartingale with a decomposition of this from (with (at) and (bt) predictable processes)
can be seen as a generalisation of the notion of special semimartingale from the right-continuous to the
general case.
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