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Abstract – We study the rheology of amorphous solids in the limit of negligible thermal fluc-
tuations. General arguments indicate that the shear-rate dependence of the stress results from
an interplay between the time scales of the macroscopic drive and the (cascades of) local particle
rearrangements. Such rearrangements are known to induce a redistribution of the elastic stress
in the system. Although mechanical noise, i.e., the local stress fluctuations arising from this re-
distribution, is widely believed to activate new particle rearrangements, we provide evidence that
casts severe doubt on the analogy with thermal fluctuations: mechanical and thermal fluctuations
lead to asymptotically different statistics for barrier crossing. These ideas are illustrated and sup-
ported by a simple elasto-plastic model whose ingredients are directly connected with the physical
processes relevant for the flow.

A disordered assembly of interacting particles, packed
densely enough for the system to be able to bear stress,
provides a realistic image of an amorphous solid - a heap
of sand, a foam, an emulsion, a colloidal glass, a molecular
glass, etc., depending on whether the particles are grains,
air bubbles, drops, colloids or molecules. If the particles
are not, or are hardly, affected by thermal fluctuations,
the material is said to be athermal. External drive is then
required to activate the dynamics of the system. When
the material is shear driven, the flow curve, that is, the
relation between the applied shear rate γ̇ and the macro-
scopic shear stress Σ, is often satisfactorily described by a
Herschel-Bulkley equation, Σ = Σ0 +Aγ̇n, with an expo-
nent n usually close to, or slightly lower than, 0.5 [1–6].
An unsettled question, however, regards the connection of
this dependence on the driving velocity with the widely
accepted picture for the spatial organisation of the flow of
disordered solids. The slow flow scenario for these mate-
rials [7–10] revolves around localised particle rearrange-
ments (plastic events) bursting in an essentially elasti-
cally deforming matrix. The “mechanical noise” generated
by these rearrangements, i.e., the fluctuating stress and
strain fields that they induce in the surrounding medium,
may then spark off new rearrangements, in an avalanche-

like process.

In the first part of this Letter, we clarify the physi-
cal processes leading to the shear-rate dependence of the
stress in this scenario. For all their success in captur-
ing various facets of the rheology [11–17], simple coarse-
grained models in the literature generally fail to reflect
these key processes consistently for athermal materials.
We remedy this deficiency by proposing a variant of such
models and show that it satisfactorily reproduces the flow
curve. In the second part of the Letter, we contemplate
whether the description can be simplified by interpreting
the fluctuating mechanical noise, which is explicitly com-
puted in our model, as an effective activation temperature,
following a popular approach in another line of modelling
[12]. We conclude on more general grounds that the anal-
ogy between mechanical noise and an activation tempera-
ture is flawed.

Consider a dense packing of particles confined between
parallel walls and subject to a (macroscopically) constant
shear rate γ̇, imposed through successive infinitesimal dis-
placements of one of the walls. We start our discussion
with an enumeration of the time scales that subsist in the
limit of vanishing shear rate. To do so, we focus on a
“mesoscopic” region of the typical size of a plastic event.
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First in line comes the time scale 1 for thermally-activated
structural relaxation, τT [18], which diverges in the ather-
mal limit. Secondly, the response of the region of interest
to a small displacement of the wall can take a finite time,
τpl. This time will then essentially combine the duration
of a local rearrangement, i.e., the time needed to dissipate
the elastic energy that was stored locally [18,19], with the
delay for shear signal transmission within one avalanche
[20]. τT and τpl are the only potentially relevant time
scales when γ̇ → 0. Within a potential energy landscape
(PEL) description, they are associated with thermally-
activated hops between energy (meta)basins, and descents
towards the local minimum, respectively.

The application of a finite shear rate introduces a new
time scale, γ̇−1γy, which is the duration of the elastic load-
ing phase prior to yield. In the PEL viewpoint, this is the
“refresh rate” of the PEL topology, owing to changes in
the boundary conditions.

As stated in [9], quasistatic simulations, which perform
an energy minimisation after each strain increment, rely
on the following separation of the material and driving
timescales:

τpl ≪ γ̇−1
≪ τT . (1)

As long as eq. 1 holds, the system will follow the very

same trajectory in phase space as a function of the strain

γ ≡ γ̇t, regardless of the shear rate, thereby yielding a
constant elastic stress σel. One should now recall that, for
a solid-like material at low shear rate, the elastic stress
dominates the total stress Σ to such an extent that the
dissipative contribution to the stress is often discarded in
computer simulations, Σ ≈ σel [21]. Accordingly, the only
way to recover a non constant flow curve Σ (γ̇) involves
a breakdown of the timescale separation, eq. 1, and thus,
for athermal materials, an interplay between the drive and
the (cascades of) localised rearrangements. In granular
media or suspensions of hard particles, this is quantified
by a dimensionless inertial or viscous number [22]. More
generally, the descent towards the energy minimum of the
system is disrupted by the external drive. The impossibil-
ity for the system to fully relax between strain increments
(see fig. 1(right) in ref. [23]) is reflected, for instance, by
the variations of the mean particle overlaps with the shear
rate. Near the jamming transition, these variations are
correlated to the flow curve [24]. Deeper in the solid phase,
where the simple flow scenario outlined above has proved
its consistency, strain accumulation during the propaga-
tion of shear waves sets a shear-rate dependent limit on
the spatial extent of the avalanches observed in athermal
particle-based simulations [3].

Surprisingly, when surveying existing coarse-grained
models, one realizes that they generally do not attempt
to describe the disruption of rearrangements by the drive.
For instance, in Hébraud-Lequeux’s model [25], or in the

1In reality, there is naturally a distribution of such time scales.
Writing, e.g., γ̇−1

≪ τT is just a convenient way to say that values
τT < γ̇−1 can be neglected in the distribution.

Kinetic Elastoplastic theory [14], as well as in Picard’s
model [13, 26], the increase of the stress as γ̇ increases
derives from the hypothesised conservation of an elastic
behaviour on a given site for a constant time (on average)
after the stress threshold has been reached locally, which
appears unphysical.

Therefore, we present a variant of these models which
reflects the physical processes at play. A 2D system is dis-
cretised into linear elastic blocks of uniform shear modulus
µ and of the size of a rearranging region. To condense no-
tations, the deviatoric stress 2 borne by each block (i, j)
is written σ(i, j) = [σxx(i, j), σxy(i, j)]

⊤. The onset of
a plastic event on a given block is determined by a von
Mises yield criterion: as soon as the maximal shear stress

‖σ(i, j)‖ ≡
√

σ2
xx(i, j) + σ2

xy(i, j) grows larger than the

local yield stress, defined below, the block yields. One
then has a stress-laden fluid-like inclusion in an elastic
medium. An unconstrained inclusion would deform at a
rate ǫ̇pl ≡ σ(i, j)/2ηeff , with ηeff the effective viscosity
of the inclusion, in the overdamped regime; a time scale
τ ≡ ηeff/µ for local energy dissipation thus arises [19].
However, this deformation is limited by the embedding
elastic medium, and part of the stress borne by the inclu-
sion is gradually redistributed to the latter. The stress re-
distribution is described by an elastic propagator (matrix)
G, which was derived in ref. [19] for a pointwise inclusion
in an incompressible, uniform, linear elastic medium, un-
der the assumption of infinite shear wave velocity. As the
pointwise limit of a 2D Eshelby inclusion problem [28], G
also features an r−2 decay in space and a four-fold angular
symmetry, in accordance with experimental and numerical
evidence [29, 30].

According to the above mechanism, the evolution of the
local stress tensor is governed by,

∂tσ(i, j) = µγ̇ + 2µ
∑

i′,j′

Gi−i′,j−j′ ǫ̇
pl(i′, j′), (2)

where ǫ̇pl(i′, j′) = σ(i′, j′)/2µτ if the block is plastic, 0

otherwise. The second term on the right hand side of
eq. 2, describes the effect of plastic events, i.e., both the
nonlocal stress redistribution and the local stress decay.
The eigenvalues of the local component G0,0 are of order
−0.5, so that the stress within a plastic element would
decay to zero on a time scale τ in the absence of external
loading or elastic recovery.

To fix the distribution of yield stresses σy, or, equiva-
lently, of energy barriers Ey ≡ σ2

y/4µ, and the duration
of a plastic event, we reason on the basis of a schematic
vision of the PEL of a rearranging region. This landscape
is composed of metabasins of exponentially distributed
depths Ey, as suggested by some experimental results on
colloidal glasses [31] and as in the Soft Glassy Rheology

2Although it provides a more realistic description, using a ten-
sorial description of stress, instead of only focusing on σxy , plays
virtually no role in the model. See ref. [27] for a discussion of these
aspects.
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(SGR) model [12]. For practical reasons, we neglect small
jumps between PEL basins and focus on the larger jumps
between metabasins, which correspond to the irreversible
jumps at low enough temperature [32, 33]; to this end,
we simply introduce a lower cut-off Emin

y = µγ2

c/4 in the
energy distribution, via a Heaviside function Θ, viz.,

P (Ey) = Θ
(

Ey − Emin
y

)

λeλ(E
min
y −Ey), (3)

where λ is chosen so that the average yield strain 〈γy〉
takes a realistic value, say, 10% for emulsions [8]. In order
to describe elastic recovery, we further assume that there
is some typical distance (measured in terms of strain) be-
tween metabasin minima. This distance is related to the
parameter γc used to define Emin

y ; for simplicity, it is set
to exactly γc. A block will then remain plastic until the
strain γc has been cumulated during plasticity, that is,
as long as

∫

dt ‖2ǫ̇(i, j) (t)‖ < γc, where the local rate
of deformation ǫ̇(i, j) is the sum of the plastic strain rate,
ǫ̇pl(i, j), and an elastic component, ∂tσ(i, j)/2µ, which in-
cludes the reaction of the medium and the external loading
(see eq. 2). Albeit somewhat arbitrary, this criterion for
elastic recovery is physically plausible in a PEL perspec-
tive, and it provides a convenient way to implement the
aforementioned disruption of plastic events by the drive.
At the end of the plastic event, the local energy barrier
is renewed. Apart from the time and stress units, τ and
µ, the only parameter left free in the model is the ratio
γc/〈γy〉, which we set to 0.7. (Changing this value brings
on but slight variations of the results).

The flow curve obtained from simulations of the model
is plotted in fig. 1. Quite interestingly, at reasonably low
shear rates γ̇ < 10−2, the curve is nicely fit by a Herschel-
Bulkley equation with exponent n = 0.56. It is notewor-
thy that the Herschel-Bulkley fit holds not only in the di-
rect vicinity of the yield stress, as in other coarse-grained
models [8, 12, 14], but over a reasonably large window of
shear rates, in accordance with experimental observations
[1, 2, 4]. At higher shear rates, for γ̇τ > 〈γy〉, one enters a
regime dominated by the dissipative stress during plastic
events, which was assumed linear in the strain rate here.

Note that the flow curve already rises at very low shear
rates in our model. Around γ̇−1 ∼ 103 the life time of
a plastic event (of order τ) is two orders of magnitude
shorter than γyγ̇

−1, and a stress increase is already seen.
This feature may be applicable to experimental systems
such as foams, for which the flow curve rises even when
the inverse strain rate is much longer than an elementary
rearrangement of bubbles (“T1 event”).

Our model cannot be solved analytically, mostly be-
cause of the explicit description of the mechanical noise,
i.e., the elastic interactions mediated by G. A popular
class of models, with SGR [12,34, 35] on the frontline but
also refs. [36–38], propose to identify such mechanical noise
with an effective activation temperature. The flow curve
is then explained in terms of activated yielding events in a
random PEL: Shear lowers the associated energy barriers,
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Fig. 1: Macroscopic shear stress Σ as a function of the applied
shear rate γ̇, for γc/〈γy〉 = 0.7. The solid line is the fitting curve
Σ = 0.071+0.19γ̇0.56 . (Inset) Same data, in linear-linear plot.

and activation is controlled by a temperature-like parame-
ter x which presumably accounts for the mechanical noise.
At higher shear rates activation has less time to take place,
so the system explores higher values of the stress. Let us
first assess the validity of the activation temperature anal-
ogy within the framework of our model, before turning to
more general arguments.

To start with, notice that the model reduces to a
spatially-resolved, athermal version of SGR if plastic
events are made instantaneous and allow a complete re-
laxation of the local stress. In this limit, varying the
shear rate simply comes down to rescaling time, t → γ̇t.
The macroscopic stress is then clearly independent of the
shear rate, consistently with the then-obeyed separation of
timescales: 0 = τpl ≪ γ̇−1

≪ τT = ∞, but contrary to
SGR’s predictions at any x > 0. This is a first hint that
mechanical noise is irreducible to an effective activation
temperature.

To explore the question more thoroughly, we keep track
of the mechanical noise fluctuations (per unit time) δσ̇

that a randomly selected block experiences, i.e., the fluc-
tuations of the nonlocal terms in eq. 2. We then study
the yielding time T (Ey) of a fictitious block subject only

to this mechanical noise, as a function of its energy bar-
rier Ey , by measuring how long one has to wait before its

elastic energy, 1
4µ

∥

∥

∥

∫ t

0
δσ̇(t′)dt′

∥

∥

∥

2

, grows larger than Ey.

Note that only the mechanical noise fluctuations can act
as “random kicks”; the average value, which is proportional
to γ̇, ought to be treated separately, as a drift term.

The two-time autocorrelation function of the steady-
state fluctuations δσ̇xy(i, j) of σxy(i, j), shown in fig. 2,
displays a fast initial decay, with a decay time similar to
the plastic event lifetime. A small fraction, however, re-
mains correlated over much longer times, which we tenta-
tively ascribe to long-lived correlations in the yield stresses
of nearby blocks, the latter being renewed only every
γyγ̇

−1. The magnitude of δσ̇xy naturally increases with
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Fig. 3: Schematic representation of the difference between thermal fluctuations and mechanical noise fluctuations in the PEL
perspective.

Fig. 2: Properties of the mechanical noise experienced by a
block. Two-time autocorrelation function of its xy-component,
C (∆t) ≡ 〈δσ̇xy (t) δσ̇xy (t+∆t)〉, at shear rates γ̇ = (solid blue
line) 10−4, (dashed red line) 10−3, and (dash-dotted green line)
6 ·10−3. (Inset) Hopping time vs. energy barrier Ey at γ̇ = (×)
10−4, (N) 10−3, and (•) 6 · 10−3. The dashed line has a slope
of 0.75. System size: 256x256. Note that the use of fictitious
blocks (see text) allows to test potential barriers Ey < Emin

y .

the number of simultaneous plastic events, and therefore
with γ̇. Turning to the escape time T (Ey), the data plot-
ted in fig. 2 rule out the Arrhenius law characteristic of
activated processes, i.e.,

T (Ey) ∝ e
Ey

x . (4)

Instead, they are in favour of a hyperdiffusive process, with
a power-law scaling T ∼ E0.75

y ∼ σ1.5
y .

How general are these findings? Let us recall that, in
the theory of activated processes, a transition is completed
when thermal fluctuations fth have pushed the system
all the way up a potential barrier, in a fixed PEL V (x)
[39]. Here, x is a high-dimensional vector containing the
positions of all particles. For concreteness, consider the
Langevin equation of motion in the overdamped regime,

0 = −ζ
dx

dt
(t)−∇xV (x) + fth(t), (5)

where ζ is a friction coefficient, 〈fth(t)〉 = 0, and 〈fth(t)⊗
fth(t

′)〉 = 2ζkBTδ(t−t′)I (where I is the identity matrix).

The exponential dependence in the Arrhenius law, eq. 4,
hinges on the presence of recoil forces −∇xV that con-
stantly oppose the uphill motion. In contrast, mechanical
noise fluctuations due to irreversible rearrangements cause
persistent changes to the boundary conditions of the re-
gion of interest, thereby durably altering its PEL and sta-
ble points. Of course, transient effects, such as temporary
dilation or inertial vibrations [40], may also occur during
plastic events, but, being temporary, they will be subdom-
inant, at least for large energy barriers.

The disparity between thermal fluctuations and me-
chanical noise is schematically illustrated in fig. 3, in
which x is substituted by a scalar reaction coordinate,
the shear strain γ. In this picture, mechanical noise acts
as a “random” external stress, which tilts the potential
V (γ) of the region (supposed of unit volume) [41] into
Ṽ (γ, t) ≡ V (γ)− γσ(t), where σ(t) = 〈σ̇〉t+ fmec(t), with

the shorthand fmec(t) ≡
∫ t

0
δσ̇(τ)dτ , is the stress applied

at the boundary of the region. We examine the effect of
fmec(t), i.e., the fluctuations around the drift term 〈σ̇〉t.
Under their influence, energy barriers wax and wane, and
their flattening out, signalling a plastic event, is therefore
similar to a first passage time problem in a simple diffu-
sion process over a flat landscape. More formally, after
inclusion of the mechanical noise, eq. 5 turns into

0 = −ζ
dγ

dt
(t)−

dV

dγ
[γ(t)] + 〈σ̇〉t+ fmec(t) + fth(t). (6)

Mechanical noise and thermal fluctuations differ in that

〈fth(t)fth(t
′)〉 ∝ δ(t− t′), (7)

whereas

〈fmec(t)fmec(t
′)〉 =

∫ t

0

dτ

∫ t′

0

dτ ′C(τ − τ ′). (8)

When the autocorrelation function C(∆t) ≡ 〈δσ̇(t)δσ̇(t+
∆t)〉 decays quickly to zero, then 〈fmec(t)fmec(t

′)〉 ∼
min(t, t′), and it follows that the energy barrier flattens
out under the sole influence of fmec, i.e., max dṼ /dγ → 0,

p-4



Rheology of athermal amorphous solids

after a time T ∼ (max dV/dγ)2 ≡ σ2
y . This purely dif-

fusive case is encountered in Picard’s model (data not

shown). For the model that we introduced previously, the
process was in fact hyperdiffusive, owing to the presence of
slowly decaying correlations of the noise. In any case, the
escape occurs much faster than in an activated process.

This result may seem at odds with the numerical ob-
servation of activated processes in similar situations in
ref. [42]. In this paper the inversion rate of a two-state sys-
tem weakly coupled to a simple shear flow was observed to
depend exponentially on the energy barrier V0 between the
two states, with an activation temperature x > Tbath, the
bath temperature. The apparent contradiction vanishes
as soon as one notices that in the specific protocol used in
ref. [42] the internal potential energy V (u) is not durably
altered by the mechanical noise. As a matter of fact, a
similar idea can be carried out within the framework of
our model3 and it also yields an exponential variation of
the hopping rate with V0.

At this stage, we must say that our conclusions con-
cerning the (non)existence of a mechanical noise temper-
ature have, a priori, no bearing on some other definitions
of an effective temperature, such as those based upon
fluctuation-dissipation theorems [43, 44], or the effective
temperature in the Shear Transformation Zone theory,
which gives a measure of “disorder” fluctuations in space,
regardless of their variations in time [45].

In conclusion, in the widely accepted scenario for the
flow of amorphous solids, a non constant flow curve in an
athermal system implies the existence of an interplay be-
tween the (cascades of) local particle rearrangements and
the driving velocity. This interplay leads to a stress in-
crease even when a large difference exists between the du-
ration of a single plastic event and the inverse shear rate.
The interplay mechanism differs from the widespread re-
liance on effective activation phenomena triggered by me-
chanical noise to explain the flow curve. If the onset of lo-
cal yield is controlled by a parameter akin to local stress or
strain, mechanical noise fluctuations due to distant plastic
events and thermal fluctuations lead to different barrier-
crossing statistics.

In the light of these findings, modifications of models
such as SGR or Hébraud-Lequeux could be considered.
Indeed, a simple fit of the flow curve does not establish
the validity of a model or the correct assessment of the
statistical properties of the mechanical noise. For a full
characterisation of these properties, microscopic models
or particle-resolved experiments may prove necessary.
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PACS –

Abstract –

Activation temperature measured with a two-

state system. – In the main text, we have shown that
the hopping statistics do not obey the Arrhenius depen-
dence characteristic of activated events, if the reaction co-
ordinate that describes a hopping event is coupled to the
mechanical noise. This is typically the case if the hop
is a plastic event that is governed by the local stress or
strain, presumably. On the other hand, an Arrhenius law
is recovered when the equation of motion of the reaction
coordinate, or equivalently the potential energy of the sys-
tem as a function of the reaction coordinate, is not durably
altered by mechanical noise fluctuations.

For instance, Ilg and Barrat [1] performed molecular dy-
namics simulations of the shear flow of a glassy system and
introduced bead-and-spring dumbbells in the flow. The
dumbbells were maintained aligned in the neutral direc-
tion. The inversion rate of the dumbbells was measured,
and it was shown to follow an Arrhenius law. To under-
stand this point, one can argue that the frequent realign-
ment of the dumbbells along the neutral direction erases
the memory of the effect of the mechanical noise on the re-
action coordinate, namely, the distance between the beads,
thereby turning it into a nonpersistent fluctuation.

As a matter of fact, a similar attempt can be carried
out in the framework of our coarse-grained model: In
every elastoplastic block, we dispose a two-state dumb-
bell in the crosswise direction. The potential energy of
the dumbbell only depends on the distance u between

the beads and reads, V (u) = V0

(

(u−u0)
2
−ǫ2

ǫ2

)2

, with

ǫ ≪ u0. Note that the dumbbell has two ground states,
at u = u0 − ǫ (L) and u = u0 + ǫ (R). During the simula-

tion, each of the beads are advected by the velocity field

v
(ext)
y (r, t) =

∫

P (r − r′) ǫ̇pl (r′, t) d2r created by plastic
events, so that,

ζ
(

u̇−∇v(ext)y (t) · u0

)

≃
dV

du
(u) , (1)

where ζ is a friction coefficient. To measure the dumb-
bell L-R inversion rate, we define the exclusive attraction
basins of the ground states L and R as u−u0 ∈]−∞,−δ ·ǫ]
and u − u0 ∈ [δ · ǫ,∞[, respectively with 0 < δ ≈ 0.5 < 1
(the precise value of δ hardly affects the results).

In Fig.1, we show the resulting hopping times between
the basins as a function of the potential V0, measured in
units of ζ, for a given ǫ. Note that the measured hopping
times actually depend on ǫ, which controls the curvature
of the potential. An Arrhenius law nicely fits their de-
pendence on V0, consistently with the findings of Ilg and
Barrat [1]. In Fig.2, the effective activation temperature
associated with the Arrhenius law is plotted as a func-
tion of the applied shear rate γ̇. As one would expect, it
increases with the shear rate.
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Fig. 1: Hopping time as a function of barrier height V0 for
γ̇ = 2 · 10−4, 5 · 10−4, 10−3, 4 · 10−3, fitted with exponential
functions Γ0exp

(

V0

x

)

.

Fig. 2: (Red dots) Effective activation temperature x and (blue
crosses) attempt frequency Γ0 as a function of the applied shear
rate γ̇.
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