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Abstract

This paper deals with optimal input design for parameter estimation in a bounded-error context. Uncertain controlled nonlinear dynamical
models, when the input can be parametrized by a finite number of parameters, are considered. The main contribution of this paper concerns
criteria for obtaining optimal inputs in this context. Two input design criteria are proposed and analysed. They involve sensitivity functions.
The first criterion requires the inversion of the Gram matrix of sensitivity functions. The second one does not require this inversion and is
then applied for parameter estimation of a model taken from the aeronautical domain. The estimation results obtained using an optimal
input are compared with those obtained with an input optimized in a more classical context (Gaussian measurement noise and parameters
a priori known to belong to some boxes). These results highlight the potential of optimal input design in a bounded-error context.
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1 Introduction

In this paper, we are interested in parameter estimation of
models describing industrial systems. Such systems are of-
ten prone to uncertainties that complicate the modeling task.
Usually, uncertainties are described as realizations of ran-
dom variables with known distributions, which is difficult
to justify in practice. In the presented work, perturbations
are only assumed to be bounded with known bounds. Thus,
the set-membership framework is considered. In this frame-
work, the set of all parameters consistent with the model
structure, the measurements and the bounds on the perturba-
tions can be defined as the set estimate for the parameters.
Various techniques are then available to characterize this set
estimate (see for example [7] or [11]).
Set-membership estimation is an interesting alternative to
classical least squares or maximum likelihood estimation.
These methods have received a lot of attention in the last
years, for example [10], [6], [21].
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qiaochu.li@utc.fr (Qiaochu Li), zohra.cherfi@utc.fr
(Zohra Cherfi).

Set-membership parameter estimation was first considered
for models which output is linear in their parameters, then
models nonlinear in their parameters were considered. Dur-
ing the last decade, models described by nonlinear state
equations have been considered in this context [9], [20].

Experiment design is important to identify more precisely
mathematical models of complex systems. The overall goal
is to design an experiment that produces data from which
model parameters can be estimated accurately. The conven-
tional approach for experiment design assumes stochastic
models for uncertain parameters and measurement errors
(see for example [23]). Several criteria for experiment design
have been proposed involving a scalar function of the Fisher
information matrix (FIM). For example the A-optimal exper-
iment minimizes the trace of inverse of the FIM, which min-
imizes, in linear case, the average variance of the estimates.
Another criterion widely used is the D-optimality. The D-
optimal experiment minimizes the volume of a confidence
ellipsoid. However, some sources of uncertainty are better
modeled as bounded uncertainty. This is the case of param-
eter uncertainties that generally arise from design tolerances
and from aging (see for example [24]). In a bounded-error
context, the experiment design is much less studied. First
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result consists in designing experiments which minimize the
volume of the estimate of parameter domain. Some works
such as [19] or [1] for models linear with respect to the in-
put, consist in optimizing the worst possible performance of
the experiment over the prior domain for the parameters. In
[19], a minimax approach to synthetize the optimal experi-
ment is described, using the Gram matrix of sensitivity func-
tions and specific criteria are developed. These approaches
take into account the bounds of the prior domain for the pa-
rameters into the search of the optimal experiment but do
not take into account the set-membership estimation process
which leads to the set estimate.
In this paper, to minimize the set of estimate of parameters,
we exhibit an explicit expression linking this set of parame-
ters with the Gram matrix of sensitivites. This work follows
a study on the optimization of the initial conditions in the
same context but with a different approach [12]. To obtain
an explicit expression of the set of parameters to be esti-
mated, in [11], the authors have used a centered inclusion
function (which is a set-membership extension of the equal-
ity obtained by the Mean Value Theorem) for the model out-
put and they have built an operator of contraction for the set
of parameter to be estimated based on sensitivity functions.
Starting from this idea, we build explicitly some criteria to
find an optimal experiment in the bounded-error context. In
our work, we consider only the optimal input design. The
proposed methodology requires a parametrization of the in-
put using elementary functions with a reasonable number of
parameters.
This paper is organized as follows. In Section 2, the prob-
lem statement is presented. Section 3 describes some basic
tools of interval analysis. Section 4 introduces the proposed
criteria for optimal input design. An aerospace application
is given in Section 5. In Section 6, some conclusions and
future research directions are discussed.

2 Problem formulation and notations

2.1 Notations

In what follows, boxes, i.e., cartesian products of intervals
are denoted as [x] = [x,x] (see [7]). This paper deals with
optimal input design for estimating the unknown parameters
of a nonlinear dynamical model described by the following
form: {

ẋ(t,p,u) = f(x(t,p,u),u(t),p),

ym(t,p,u) = h(x(t,p,u),p),
(1)

where x(t,p,u) ∈ Rnx and ym(t,p,u) ∈ Rny denote respec-
tively the vectors of state variables and the model output.
The initial conditions for x(.) at t = 0 are supposed to belong
to an initial bounded box [x0]. u(t) represents the input, it is
supposed to belong to an admissible set of inputs Uad and the
input is supposed to be composed of elementary functions.
The vector p ∈ Rnp is the vector of parameters to be esti-
mated, which is supposed to belong to an a priori box [p0].
The time t is assumed to belong to [0, tmax].
The functions f and h are nonlinear functions.

f is supposed analytic on M for every p ∈ [p0], where M is
an open set of Rnx such that x(t,p,u)∈M for every p∈ [p0]
and t ∈ [0, tmax].
The model output at the sample time tk, with k from 1 to
N is denoted yk

m(p,u) = ym(tk,p,u). yk
m(p,u) is a vector

with components yk
m,i(p,u) = ym,i(tk,p,u) for i = 1, ...,ny,

k = 1, . . . ,N.
Let y(tk,u) be the vector of the measurements at the sample
time tk. Suppose that there exists a ”true” value of parame-
ters p∗ such we have:

y(tk,u) = ym(tk,p∗,u)+v(tk), k = 1, ...,N, (2)

where the measurement noise v(tk) is supposed bounded by
v(tk) and v(tk) which are known as lower and upper bounds.
Such bounds may, for instance, correspond to a bounded
measurement noise or tolerance on sensors.

2.2 Parameter estimation in a bounded error context

In a bounded-error estimation context, one is interested in
estimating the set P ⊂ [p0] of all parameters p consistent
with the model structure and the bounds on the measurement
noise. In order to obtain the most accurate estimates, we
choose to minimize a cost function, for example the volume,
of the set P (or of an enclosure of P). It may generally depend
on the values of the input, the initial time, the sample times,
among others. In this work, only the input is considered. Our
aim is to design an input that minimizes the cost function.
More formally, one has to find an input u∗ such that:

u∗ = arg min
u∈Uad

Φ(P). (3)

Obtaining P is difficult in practice. Nevertheless there are
efficient algorithms to obtain an outer-approximation [p] of
P. The Problem (3) is thus relaxed as follows:

u∗ = arg min
u∈Uad

Φ([p]),

where [p] is an outer-approximation of P obtained by a
bounded-error estimation algorithm from interval analysis.

The next section briefly describes the tools from interval
analysis used to perform the set-membership estimation.

3 Basic tools of interval analysis

Interval analysis provides tools for computing with sets
which are described using outer-approximations formed by
union of non-overlapping boxes. The following results are
mainly taken from [7] and [14].
A real interval [u] = [u,u] is a closed and connected subset of
R. The width of an interval [u] is defined by w([u]) = u−u,
and its midpoint by m([u]) = (u+u)/2.
An interval vector (or box) [x] is a vector with interval com-
ponents and may equivalently be seen as a cartesian product
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of scalar intervals [x] = [x1]× [x2]...× [xn]. An interval ma-
trix is a matrix with interval components. The set of n×m
real interval matrices is denoted by IRn×m. The width of an
interval vector (or of an interval matrix) is the maximum of
the widths of its interval components. The midpoint of an
interval vector (resp. an interval matrix) is a vector (resp. a
matrix) composed of the midpoints of its interval compo-
nents.
Classical operations for interval vectors (resp. interval ma-
trices) are direct extensions of the same operations for scalar
vectors (resp. scalar matrices) [14].
The magnitude of an interval [x], noted |[x]| is given by the
largest absolute value of [x] that means the absolute value
of the real with the largest value in [x]. The mignitude of an
interval [x], noted mig([x]) is the smallest absolute value of
the elements of [x] that means the absolute value of the real
with the smallest value in [x]. In this work, the notions of
magnitude and mignitude of an interval are extended to each
component of an interval matrix. The corresponding matri-
ces are respectively denoted |[A]| and mig([A]). For exam-
ple if [x] = [−20,−10] then |[x]|= 20 and mig([x]) = 10.
The determinant det(.) of a square interval matrix is defined
as in the case of real square matrices except that the deter-
minant of an interval matrix is an interval.
A square interval matrix [B] is regular if 0 6∈ det([B]). Let
[B]−1 the inverse interval matrix of [B] which means the
narrowest interval matrix enclosing the set of inverse ma-
trices {B−1/B ∈ [B]}. Considering the matrix [Iε] whose
entries are [1− ε,1+ ε] on the main diagonal and outside
[0−ε,0+ε]. Then there exists ε∈R+∗ such that [B]−1[B]⊂
[Iε].
An interval matrix [A] is said to be positive definite if each
A ∈ [A] is positive definite (in the classical sense). Positive
definiteness of symmetric interval matrix is closely related
to regularity. A symmetric interval matrix is positive definite
if and only if it is regular and contains at least one positive
definite matrix [22].
For an interval vector [z] with components [zi], the real ||[z]||
is given by ‖[z]‖= max

i
(|[zi]|).

The Frobenius norm for an interval matrix [A] is denoted

by ||[A]||F and ||[A]||F =
√
| tr([A]T [A]) |=

√
∑i, j | [ai j] |2

where tr([B]) is the trace of the interval matrix [B].

4 Criteria for optimal input

4.1 Problem formulation

In this section, we exhibit criteria involving the input u to
be used, to minimize the volume of [p] for an appropriate
choice for u. In [11], the authors have used a centered inclu-
sion function at m ∈ Rnp for the model output. The use of
sensitivity functions leads to reduce more quickly the size
of outer approximations of the sets of interest. Thus we start
from this idea which leads to obtain an explicit expression
of [p]−m.
Considering [p] such that P⊂ [p]⊂ [p0], m∈ [p] and a mean

value form for ym(tk, [p],u), [p] has to satisfy:

yk
m(m,u)+

np

∑
j=1

([p j]−m j)

[
∂yk

m

∂p j

]
([p],u)⊆ [yk], (4)

where [yk] = [y(tk,u)]. Then:

np

∑
j=1

([p j]−m j)

[
∂yk

m

∂p j

]
([p],u)⊆ [yk]−yk

m(m,u). (5)

Denoting [Sk
i ] the row vector whose entries are:

[Sk
i j] =

[
∂yk

m,i

∂p j

]
([p],u), [Sk

i ] ∈ IR1×np , j = 1, ...,np.

The interval matrix [Sk] ∈ IRny×np is built with the ny rows
[Sk

i ] and [vk] = [yk]−yk
m(m,u).

In the following, the interval matrix [Sk]
T
[Sk] is assumed

to be positive definite and we note ([Sk]
T
[Sk])−1[Sk]

T
[Sk] =

[Ik]. One has to find u such that ||[p]−m|| is as small as
possible. By noting [vk] = [v(tk)], (5) becomes:

[Sk]([p]−m)⊆ [vk]. (6)

From (6), we obtain [Sk]
T
[Sk]([p]−m)⊆ [Sk]

T
[vk], then by

using ([Sk]
T
[Sk])−1 the following inclusion is obtained:

[Ik]([p]−m)⊆ ([Sk]
T
[Sk])−1[Sk]

T
[vk]. (7)

The following proposition gives two upper bounds for
[Ik]([p]−m).

Proposition 4.1 For all k ∈ {1, ...,N}

||[Ik]([p]−m)||2 ≤ ||([Sk]
T
[Sk])−1[Sk]

T ||2F ||ṽk||22, and

||[Ik]([p]−m)||2 ≤ ||tr([Ik]([Sk]T [Sk])−1)|| ||ṽk||22
with ṽk = |[vk]| .

Proof:
Let [A] = ([Sk]

T
[Sk])−1[Sk]

T and [ai j] be the entries of [A]:

[Ik]([p]−m)⊆ [A][vk], (8)

and:

||[Ik]([p]−m)||2 ≤ ||[A][vk]||2 ≤

(
max

i

np

∑
j=1
|[ai j]| |[vk

j]|

)2

.

(9)

Since
(

∑
np
j=1 |[ai j]| |[vk

j]|
)2
≤ ∑

np
j=1 |[ai j]|2 ∑

np
j=1 |[vk

j]|2.

One obtains:

max
i

(
np

∑
j=1
|[ai j]| |[vk

j]|

)2

≤max
i

np

∑
j=1
|[ai j]|2||ṽk||2,

≤ ||[A]||2F ||ṽk||2.
(10)
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Then ||[A]||2F = |tr([Ik]([Sk]
T
[Sk])−1)| because tr([A][A]T ) =

tr([A]T [A]) and:
[A][A]T = ([Sk]

T
[Sk])−1[Sk]

T
[Sk]([Sk]

T
[Sk])−1,

= [Ik]([Sk]
T
[Sk])−1.

This leads to Proposition (4.1).�
An upper bound of |tr([Ik]([Sk]

T
[Sk])−1)|, depending on

|tr(([Sk]
T
[Sk])−1)|, is given in Proposition 4.2.

Proposition 4.2 For all k ∈ {1, ...,N}

|tr([Ik]([Sk]
T
[Sk])−1)| ≤ λmax(|[Iε]|) |tr(([Sk]

T
[Sk])−1)|,

where λmax(|[Iε]|) = 1+ npε is the maximum eigenvalue of
|[Iε]|.

Proof:
For each k ∈ 1, ...,N there exists εk such that [Ik]⊂ [Iεk ],
[Ik]([Sk]

T
[Sk])−1 ⊆ [Iεk ]([S

k]
T
[Sk])−1.

Let ε = maxk∈{1,...,N} εk then [Iεk ]⊂ [Iε].

Let [C] = ([Sk]
T
[Sk])−1, the following inequalities are ob-

tained:

|tr([Ik] [C])| ≤ |tr([Iε] [C])| ≤ tr(|[Iε]| |[C]|)≤
λmax(|[Iε]|)tr(|[C]|),

because the matrices |[Iε]| and |[C]| are symmetric matrices.
This leads to the announced result.�

Then ||[Ik]([p]−m)|| depends on |tr(([Sk]T [Sk])−1)|. Previ-
ous Propositions 4.1 and 4.2 lead to for all k ∈ {1, ...,N}:

||[Ik]([p]−m)||2 ≤ λmax(|[Iε]|) | tr(([Sk]T [Sk])−1)| ||ṽk||22,
which gives a possible criterion J1 for optimal input. It may
be defined as follows:

J1(u) = ∑
k
|tr(([Sk]T [Sk])−1)|.

Then this leads to the following definitions.

Definition 4.1 The criterion J1 is called the set-membership-
A-optimality criterion.

This criterion consists in considering the largest absolue
value of tr

(
([Sk]

T
[Sk])−1

)
.

Definition 4.2 An input u∗ is said to be set-membership-A-
optimal when:

u∗ = arg min
u∈Uad

J1(u).

In order to avoid the inverse matrix computation ([Sk]
T
[Sk])−1,

the following criterion is proposed:

J2(u) = ∑
k

mig
(

tr
(
[Sk]

T
[Sk]
))

. (11)

This criterion consists in considering the smallest absolue
value of tr

(
[Sk]

T
[Sk]
)

.

Definition 4.3 The criterion J2 is called the set-membership-
T-optimality criterion.

Definition 4.4 An input u∗ is said to be set-membership-T-
optimal when:

u∗ = arg max
u∈Uad

J2(u).

In this case it is necessary to verify the invertibility of the
matrix [Sk]

T
[Sk] by verifying that 0 /∈ det([Sk]

T
[Sk]).

Remark 4.1 If the matrix [Sk]
T
[Sk] is not invertible, pos-

sible solutions are available: the reduction of the a priori
domain of the parameters, a sensitivity analysis to limit the
number of influential parameters or the elimination of inputs
leading to singular matrices. If these attempts fail, another
criterion must be chosen: the MIGMAG criterion based on
interval sensitivity analysis [12] or another based on the
interval determinant of the gram matrix of sensitivities are
available [13].

Next section is devoted to optimal input design and param-
eter estimation of the case study.

5 Application

5.1 A model from aerospace

Consider a model describing the longitudinal motion of a
glider [4]. This model has no undermodelling:

V̇ = −gsin(θ̃)− 1
2m

ρSV 2(C0
x +Cxαα̃+Cxδm δ̃m),

α̇ =
2

2mV +ρSlVCzα̇

{
mV q+mgcos(θ̃)− 1

2
ρSV 2CzD

}
,

q̇ =
1

2B
ρSlV 2

{
C0

m +Cmαα̃+Cmq
ql
V

+Cmα̇

2l
2mV 2 +ρSlV 2Czα̇

[
mV q+mgcos(θ̃)

−1
2

ρSV 2CzD

]
+Cmδm δ̃m

}
,

θ̇ = q, δ̃m = δm−δm0 , α̃ = α−α0,
(12)

in which CzD =C0
z +Czαα̃+Czq

ql
V

+Czδm δ̃m and θ̃ = θ−α.
The projection of the general equations of motion onto
the aerodynamic reference frame of the aircraft and the
linearization of aerodynamic coefficients give the previous
system. In these equations, the state vector x is given by
(V,α,q,θ)>, the observation ym is full (i.e., ym = x), the
input u is δm given in degree (δm0 represents the initial
condition). The variable V (m/s) denotes the speed of the
aircraft, α(deg) the angle of attack, α0 the trim value of
α, θ(deg) the pitch angle, q(deg/s) the pitch rate. The
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other constants represent δm the elevator deflection angle,
ρ the air density, g the acceleration of gravity, l a reference
length and S the area of a reference surface. B represents
a moment of inertia. The parameters to be estimated are
p = (Czα̇,Czq,Cmα̇,Cmq)

T , which are assumed to be un-
certain. The other coefficients correspond to the dynamic
stability derivatives and are supposed to be known. The
initial conditions are supposed to belong to [28.48,28.52]
for V , [6.2682,6.7265] for α, [−0.2292,0.2292] for q
and [2.2002,2.6585] for θ. The prior domain for the pa-
rameters is given by [p0] = [1.71,1.89] × [4.75,5.25] ×
[−5.25,−4.75]× [−23.1,−20.9]. The measurement noise
(2) is supposed to be bounded by [−0.0447, 0.0447] for
V and [−0.2521, 0.2521] for α, q and θ. The measure-
ments have been simulated by using the parameters equal
to p∗ = [1.8 5 −5 −22]T . The test duration is fixed at one
second. The stop criterion for the algorithm SIVIA (Set
Inversion Via Interval Analysis [8]) used in the estimation
parameter process is ε = [0.01 0.05 0.05 0.1]T that means
that the stop threshold for the first parameter is 0.01, the
second and third are 0.05 and the last one is 0.1. The pack-
age VNODE-LP ([17], [18]) has been used to calculate the
solutions of (12) and the sensitivities.

5.2 Optimal input

In this application, the admissible input has been limited to
full amplitude square waves only. In fact, analytic works for
similar problems demonstrate that inputs similar to square
waves were superior to sinusoidal inputs for parameter es-
timation [2]. In our application, the test time is divided into
discrete steps called stages. The inputs tested by our proce-
dure are given by:

u(t) = u0 +
r

∑
i=1

(aiεi−ai−1εi−1)H(t− τi−1), ε0 = 0 , (13)

where u0 is an input trim value (given by δm0 ) and H is
the Heaviside function. The variables τi are the switching
times with τ0 the initial test time. Indeed, the variables ai
are chosen to be equal to the square wave positive amplitude
[16]. The given variables τi satisfy τ0 < τ1 < ... < τr−1 and
εi ∈ {−1,0,1} for i = 1, ...,r. This step gives the optimal
number of square waves r and the optimal values of εi (with
fixed time and fixed amplitude) to be realized. The variables
τi are not optimized during this step. In order to obtain an
optimal input, the set-membership-T-optimality criterion J2
is considered.

The criterion J2 has been maximized for different total num-
bers of stages r. The values are given in Table 1. The variable
T represents the computing time (in seconds). The fourth
column of this Table represents the optimal value of u(t) on
each stage, for the value of r given in the first column. The
time length of each stage is linked to the number of stages;
the test time being fixed at one second. For example, if the
test time is divided in four stages: each stage duration is
fixed at 0.25 seconds. The total number of sample times is
N = 10. Through this Table, we show that the optimal num-

Table 1
Values of the optimal input u∗ = arg max

u∈Uad
J2(u).

Number of stages J2(u∗) T u∗(t)

2 249 49 [-4.2 -4.2]

3 264 151 [-4.2 -1 -4.2]

4 252 442 [-4.2 -4.2 -1 -4.2]

5 272 1340 [-4.2 -4.2 -1 -4.2 -4.2]

6 263 4036 [-4.2 -4.2 -1 -1 -4.2 -4.2]

ber of stages is five. With an other total number of sample
times N = 120, we obtain the same optimal number of stages
and the same optimal input with five stages but the comput-
ing time is multiplicated by approximatively 4. Therefore,
in the next section, we use N = 10 points to estimate the
parameters of interest.

Remark 5.1 The proposed approach can be applied to a
large class of dynamical systems; particularly when the in-
put is piecewise continuous, parametrized by a finite num-
ber of parameters including a number of stages. It can be
applied, for example, in the aeronautical domain, in marine
systems [3], in pharmakokinetics [12]. In the methodology
described in [15] concerning aircraft parameter estimation
experiments, the maximum number of stages for practical
input optimization is given by T

Tstage
where T is the fixed test

time chosen a priori and Tstage is the constant value of the
stage time (depending on the dynamics of system and instru-
mentation).

5.3 Parameter estimation

To highlight the efficiency of the proposed optimal input
design, we compare the estimation results obtained by us-
ing two different inputs: the first one is an optimal in-
put proposed in [5] for the same case study (with Gaus-
sian noise and parameters in an a priori known box) and
the second one is the optimal input obtained above (with
five stages) u∗(t) = δm0 +a∑

5
i=1(εi− εi−1)H(t− τi−1) with

a= 1.6 degrees and τ0 = 0 s, τ1 = 0.2 s, τ2 = 0.4 s, τ3 = 0.6 s,
τ4 = 0.8 s.

0 0.2 0.4 0.6 0.8 1

−4

−3.5

−3

−2.5

−2

−1.5

−1

Time (s)

In
pu

t (
de

gr
ee

s)

Fig. 1. Non optimal input (left); optimal input (right).

In Table 2, we give the eliminated percentage of initial pa-
rameter box, where the eliminated percentage %p is calcu-
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lated by %p = 1−
w([paccepted])

w([p0])
, in which [paccepted] means

the boxes which have been proved to be solution.

Table 2
Eliminated percentage of initial box.

Parameter %pnon−optimal %poptimal

Czα̇ 0 81.50

Czq 75.00 93.75

Cmα̇ 80.00 93.75

Cmq 65.62 96.87

Through this Table, we see that Czα̇ is not well estimated
by using the non-optimal input contrary to the case with
optimal input. For the other parameters, the use of optimal
input clearly improves the estimation.

6 Conclusion

In this contribution, two set-membership optimal input cri-
teria have been proposed to improve parameter estimation:
the set-membership-T-(and A)-optimality criteria. They con-
cern a class of nonlinear dynamical models requiring a
parametrization of the input with a finite number of param-
eters. The set-membership-T-optimality criterion has been
successfully used to improve parameter estimation of a case
study providing from the aeronautical domain. Moreover,
with the set-membership-T-optimal input, the computing
time for parameter estimation process of the model is re-
duced compared to the computing time obtained with a non-
optimal input.
Other optimality criteria could be considered. One of our fu-
ture research directions is to reduce the computational time
of the parameter estimation process by minimizing the to-
tal number of sample times to obtain a given accuracy on
parameter estimation.
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