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This paper deals with the regulation problem of irrigation channels using a particular form of control by internal model (IMC). The control problem is stated as a boundary control of hyperbolic Saint-Venant Partial Differential Equations (pde). Regulation is done around an equilibrium state and spatial dependency of the operator parameters is taken into account in the linearized model. The Internal Model Boundary Control (IMBC) used in a direct approach allows to make a control parameters synthesis by semigroup conservation properties. In this paper previous stability results are generalized using perturbation theory in infinite dimensional Hilbert space, including more general hyperbolic systems and sufficient conditions for the closed loop stability are given explicitely by the spectrum calculation e.g.. Simulation and experimental results from Valence experimental micro-channel show that this approach shoud be suitable for more realistic situations.

INTRODUCTION

Open surface hydraulic systems were studied by different approaches [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau. IC2, Systèmes automatisés[END_REF][START_REF] Malaterre | Le contrôle automatique des canaux d'irrigation : Etat de l'art et perspectives[END_REF] in modelling or control for mono and multireaches. The usual model is the Saint-Venant equations with regard to the control. In this area, two approaches are currently used: indirect approach in finite dimension (the pde's are approximated) and the direct one in infinite dimension (methods and tools directly relate to pde's). This paper belongs to the second approach, using directly partial differential equations for control synthesis [START_REF] Pohjolainen | Robust multivariables PI-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF][START_REF] Touré | Controller design for distributed parameter systems[END_REF]. The internal model boundary control is investigated for control synthesis for multireach regulation. The spatial dependency of variables is taken into account. Conservation properties of semigroup stability give the control synthesis, using some previous perturbations theory results [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF][START_REF] Pohjolainen | Robust multivariables PI-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF]. In the first section, the non linear model for a rectangular channel is given in order to define a linear regulation model around an equilibrium state. The equations include lateral flow perturbations. The regulation problem is then defined for a channel composed of reaches in cascade. In the third section, the boundary control model is well posed to set up the essential properties of the open loop system to be conserved. Previous stability results are developed in order to consider a more general class of hyperbolic operators. In the fourth part, the closed loop system, considered as a structural perturbation of the open loop one, is associated to a particular form of the internal model control structure [START_REF] Touré | Controller design for distributed parameter systems[END_REF]. The internal multivariable control law choosen is a proportional integral feedback. Then, synthesis parameters obtained by a direct application of some previous results [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF][START_REF] Pohjolainen | Robust multivariables PI-controller for infinite dimensional systems[END_REF] are recalled and the analytical expression of the resolvent allows to get best estimations of those parameters. In the last part, simulations and experimentations are given in mono and multireaches case for water level control.

THE CANNAL REGULATION PROBLEM:

A BOUNDARY CONTROL SYSTEM

Non Linear Multireach Model

The hydraulic system considered in this paper is a cascade of p reaches separated by underflow gates and ended with an overflow as represented in Fig. 1. Considering a reach, e.g. i th one, the following notations are used:

• L i is the reach length, • Q i (x, t) denotes the water-flow, x ∈]0 i , L i [, t > 0, Q i ∈ L 2 , • Z i (x, t) is the water level, x ∈]0 i , L i [, t > 0, Z i ∈ L 2 , • U i (t) is the opening of the (i + 1) th gate, U 0
is the first one. The shallow water non linear pde for a rectangular channel can be written as follows for a given reach [START_REF] Georges | Automatique pour la Gestion des Ressources en Eau. IC2, Systèmes automatisés[END_REF][START_REF] Malaterre | Le contrôle automatique des canaux d'irrigation : Etat de l'art et perspectives[END_REF]:

∂ t Z i = -∂ x Q i b + q l,i (t) (1) ∂ t Q i = -∂ x ( Q 2 i bZ i + 1 2 gbZ 2 i ) + f i (x, t) (2) 
Z i (x, 0) = Z 0,i (x), Q i (x, 0) = Q 0,i (x), ( 3 
)
where b is the channel width, g the gravity constant. The function

f i (x, t) = gbZ i (x, t)(I i -J i (x, t))+kq l,i (x, t) Q i (x, t) bZ i (x, t
) stands for friction perturbations, where I i is the bottom slope, J i the slope's friction expressed with the Manning-Strickler expression and R i the hydraulic radius:

J i = n 2 Q 2 i (bZ i ) 2 R 4/3 i , R i = bZ i b + 2Z i . (4) 
The function q l,i (t) represents a lateral flow by unit length (m 2 .s -1 ), q l,i > 0 (k = 0) for supply (rain) and negative for loss (evaporation)(k = 1).

Each underflow gates imposes a boundary condition of the form:

Q(0 i , t) = U i-1 (t)Ψ 1,i (Z(0 i , t)), (5) 
with Ψ 1,i (Z(x, t)) = K i-1 2g(z up -Z(x, t)), Z < z up and z up is the water level before the upstream gate. K i is the product of (i) th gate (or overflow) width and water-flow coefficient of the gate. In addition for the last reach, the downstream boundary condition is:

Z(L p , t) = Ψ 2,p (Q(L p , t)), (6) 
with

Ψ 2,p (Q(x, t)) = ( Q(x,t) 2 2gK 2 p ) 1/3 + h s , h s is the overflow height.
The control problem is the stabilization of the height and/or the water-flow, around an equilibrium behavior for each considered reach. The output to be controlled in this paper is the water level at each downstream.

A Regulation Model

Let (z e (x), q e (x)) be an equilibrium state for a given reach. A linearized model with variable coefficients can be involved to describe the variations around this equilibrium behavior. This equilibrium state of the system satisfies the following equations: ) -kq l q e bz 2 e (9)

∂ x z e =
Considering one equilibrium state for the i th reach, the linearized system around an equilibrium state (z e,i (x), q e,i ) is,

ξ i = z i q i t ∈ X i = L 2 (0 i , L i ) × L 2 (0 i , L i ): ∂ t ξ i (t) = (∂ t z i (t) ∂ t q i (t)) t = A 1,i (x)∂ x ξ i (x) + A 2,i (x)ξ i (x) (10) ξ i (x, 0) = ξ 0,i (x) (11) 
The boundary conditions for an upstream gate (UG) and a downstream overflow (DO) are:

(U G) q i (0 i , t) -u i-1,e ∂ z Ψ 1 (z e,i (0 i ))z i (0 i , t) = u i-1 (t)Ψ 1 (z e,i (0 i )) (12) (DO) z i (L i , t) -∂ q Ψ 2 (q e,i )q i (L i , t) = 0 (13)
where u i,e is the i th gate equilibrium state opening and u i is the opening variations of this gate. Moreover

A 1,i (x) = - 0 a 1,i (x) a 2,i (x) a 3,i (x) , (14) 
A 2,i (x) = 0 0 a 4,i (x) -a 5,i (x) , (15) 
with Coefficients a 4,i (x) anda 5,i (x) are given by the relations (8) and(9). The overall linearized system around an equilibrium state is then written as:

a 1,i (x) = 1 b , a 2,i (x) = gbz e,i (x) - q 2 e,i bz 2 e,i (x) , a 3,i (x) = 2qe,i bze,i(x) .
∂ t ξ(t) = A e (x)∂ x ξ(x) + B e (x)ξ(x) (16) ξ(x, 0) = ξ 0 (x) (17) F (ξ, u e ) = G(u(t)), (18) 
where ξ = (z 18) represents the boundary conditions ( 12)-( 13).

1 q 1 z 2 q 2 . . . z p q p ) t ∈ X where X = p i=1 L 2 (0 i , L i ) × L 2 (0 i , L i ) . Equation (
Operators A e (x) and B e (x) are the generalization of operators A 1,i (x) and A 2,i (x) respectively:

A e = diag(A 1,i ) 1≤i≤p , B e = diag(A 2,i ) 1≤i≤p .
Output variable y is the water levels variation around the equilibrium behaviour at each

x j = L j , 1 ≤ j ≤ p, y(t) = Cξ(t) ∈ Y = R p , t ≥ 0
where C is a bounded operator (representation of the measurement):

Cξ = (diag(C i )) 1≤i≤p ξdx, µ > 0,
and

C i ξ = 1 2µ xi+µ xi-µ 1 xi±µ 0 ξdx, µ > 0, with 1 xi±µ (x) = 1 [xi-µ,xi+µ] (x) the function that equals 1 if x ∈ [x i -µ, x i + µ], else 0, and µ > 0.
The control is given by u

(t) ∈ U = R p , u ∈ C α ([0, ∞], U ) (Regularity coefficient is generally taken as α = 2.
). The control problem is to find the variations of the control action u(t) such that the water levels at each downstream reach x = L i (i.e. the output variables) track reference signals r i (t), different for each reach. The reference signal r i (t) is chosen, for all cases, constant or no persistent.

OPEN LOOP CHARACTERIZATION

The system is first written as a classical boundary control system. Associated to the internal model structure, the closed loop system is described as an open loop perturbation. The control problem can be expressed as a stabilization problem around an equilibrium state, defined e.g. as ∂ t ξ = 0. The linearized boundary control model can be formulated as follows:

∂ t ξ(t) = A d (x)ξ(t), x ∈ Ω, t > 0 (19) F b ξ(t) = B b u(t), on Γ = ∂Ω, t > 0 (20) ξ(x, 0) = ξ 0 (x) (21)
where

A d (x) = A e (x)∂ x + B e (x) is an hyperbolic operator, and F b (ξ) = F 0 ξ(0, t) + F L ξ(L, t).
Results from [START_REF] Fattorini | Boundary control systems[END_REF][START_REF]A bound on the boundary input map for parabolic equations with application to time optimal control[END_REF] works, show that the abstract boundary control system ( 19)-( 21) has a solution that exists and belongs to D(A d ) if A d is a closed, densely defined operator, and generates a C 0 -semigroup.

Conditions have been yet given in order to get a well-posed system (Dos-Santos and Touré, 2005;[START_REF] Dos-Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF], when q l = 0 e.g.. An extension to a larger class of operators is proposed here.

Well defined operator

Proposition 1. The operator

A d (x) = A e (x)∂ x + B e (x)
of the system ( 19)-( 21) is a closed and densely defined operator, if:

a) B e (x) is A e (x)∂ x -bounded with b < 1 on a Hilbert space (b < 1/2 for a Banach), b) -A e (0)F 0 -A e (L)F L is invertible, c) B e (x) is densely defined, d) A e is invertible, densely defined and A -1 e is bounded.
Proposition 2. Open loop system is well posed, i.e. generator of a C 0 -semigroup if A e (x) and B e (x) are bounded and A e (x) invertible, densely defined and A -1 e is bounded ∀x ∈ Ω. Those properties established, the stability can be studied.

Open Loop Stability

The idea is to consider A d (x) as a perturbation of the operator A e (x)∂ x by an operator B e (x) which is A e (x)∂ x -bounded. Recall that the open loop system, without control is:

φ(t) = Aϕ(t) t > 0, x ∈ Ω ϕ(0) = ϕ 0 ∈ D(A(x)) and ϕ(t) = T A (t)ϕ 0 is the open loop state, where T A (t) is the C 0 -semigroup generated by A(x) = A e (x)∂ x + B e (x), and D(A) = D(A d ) ∩ Ker(F b ). Proposition 3. Let suppose that ℜe(σ(A e (x)∂ x )) < 0, ∀x ∈ Ω. Then, A e (x)∂ x generates a C 0 - semigroup exponentially stable. Moreover, A e (x)∂ x ϕ, ϕ ≤ 0, ∀ ϕ ∈ D( A e (x)∂ x ).
Proof : The idea of the proof is to use the resolvent compacity of A e (x)∂ x [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], and the spectral growth property [START_REF] Triggiani | On the stability problem in banach space[END_REF], then results from [START_REF] Curtain | An introduction to Infinite Dimensional Linear Systems[END_REF] 

allow to conclude. Proposition 4. Let consider A(x) = A e (x)∂ x + B e (x), x ∈ Ω such that A e (x)∂ x verifies ℜe(σ(A e (x)∂ x )) < 0 and B e (x) is A e (x)∂ x -bounded with b < 1, ∀ x ∈ Ω. Suppose that: i) B e (x) is semi-definite negative, ii) 0 ∈ ρ(A(x)) = ρ(A e (x)∂ x + B e (x)).
Then, A(x) is generator of a C 0 -semigroup exponentially stable.

Proof : The idea is similar as for the previous proposition, indeed i) implies that:

A(x)ϕ, ϕ < 0, ∀ϕ ∈ X et ∀x ∈ Ω,
and if 0 ∈ ρ(A(x)) then ℜe(σ(A(x))) < 0. Moreover A(x) has a compact resolvent too.

The channel operator A(x) = A e (x)∂ x + B e (x), ( 16)-( 18), generates a C 0 -semigroup exponentially stable, as it verifies propositions 3 and 4 ( with b = 0) in the fluvial case, with q l = 0 or not (Dos-Santos et al., 2005;Dos-Santos and Touré, 2005).

The control objective can be now achieved by a simple control law employed in the IMBC control structure.

THE IMBC STRUCTURE: CLOSED LOOP

The Internal Model Boundary Control (IMBC) structure is an extension of the classical IMC structure with an additional internal feedback on the model (Fig. 2). The tracking model M r and Fig. 2. IMBC structure the low pass filter model M f are stable systems of finite dimension (states x r (t) and x f (t) are associated to matrices A r , A f resp.).

A multivariable proportional-integral feedback control is chosen for the control law:

u(t) = α i κ i ε(s)ds + α p κ p ε(t) = α i κ i ζ(t) + α p κ p . ζ (t), with . ζ (t) = ε(t). Moreover, ε(t) = y d (t) -y(t)
acts like an integrator compared to the "real" measured output, indeed: ε(t) = r(t)-y(t)-y f (t). The exogeneous signals r(t) and e(t) is supposed to be no persistent, i.e.: ∀ǫ > 0, ∃ t 0 > 0 : ||r(t) -r(t 0 )|| < ǫ, ∀t > t 0 , idem for e(t).

Closed

Loop State Space Let x a (t) = (ϕ(t) ζ(t)) t the new state space then, . x a (t) = A(α)x a (t) + Bv(t) x a (0) = x a0 (22)
As the extended IMBC state space X a (t) = x r (t) x f (t) x a (t) t does not improved the comprehension and has yet been discussed (Dos-Santos and Touré, 2005), we only focus on ( 22).

A can be viewed as a bounded perturbation of A: Following the stability of both tracking and filter models (M r and M f ), matrices A r and A f can be choosen as stable Hurwitz ones. So the stability of the global system depends on the stability study of A(α) in ( 23).

A(α) = A e (α) + α i A (1) e (α) + α 2 i A (2) e ( 

Closed Loop Stability Results

Fig. 3. Spectrum

Now the perturbation theory, from Kato's works [START_REF] Kato | Pertubation Theory for Linear Operators[END_REF], for control problem of infinite dimensional system [START_REF] Pohjolainen | Robust multivariables PI-controller for infinite dimensional systems[END_REF][START_REF] Pohjolainen | Robust controller for systems with exponentially stable strongly continuous semigroups[END_REF] can be used. For the multireach operator, assumptions needed to preserve the open loop stability for the closed loop one are (Dos-Santos et al., 2005)

: -rank(CD) = p, rank(CDW ) = p, -κ p = [CD] ‡ ( ‡ is the right pseudo inverse), -κ i = -θ[CD] ‡ , 0 < θ < 1, Re(σ(CDWκ i )) < 0, -0 ≤ α i < α i,
max , (for Γ cf Fig. 3)

α i,max = min λ∈Γ (a R(λ; A e ) + 1) -1 (24) -(I + α p κ p CD) is invertible and its inverse is W = k(I -α p κ p CD), with k = (1 -α 2 p ) -1 and a = Dκ p C , such that: 0 ≤ α p < α p,max = (sup λ∈Γ a R(λ; A) ) -1 . (25)
One of the difficulties is to get correct estimations of the control parameters α i,max and α p,max . Values obtained by simulations or experimentations are not optimum. Thus, their expression (( 24)-( 25)) must be developped before the simulations by the explicit calculus of the resolvent.

Analytical Expression of the Synthesis Parameters

For an hyperbolic operator, its resolvent can be given explicitely as its spectrum. Indeed, let consider A(x) = A e (x)∂ x + B e (x), it is supposed that it is well posed, it generates a C 0 -semigroup exponentially stable. Let µ(x) = A -1 e (x)(λ(x)Id-Be(x)), and the boundary conditions are as follows 26) is not defined when A e (0)F 0 + A e (L)F L e µ(0)L e L 0 µ(s)ds = 0, it gives the spectrum. For example, for the operator A 1 (x)∂ x , its spectrum is when an overflow and an underflow gates are considered:

F 0 ξ(0) + F L ξ(L) = 0, then R(λ, A) = (λId - A) -1 equals: R(λ, A)v = e µ(0)x e x 0 µ(s)ds R(λ, A)v A e (0)F 0 + A e (L)F L e µ(0)L e L 0 µ(s)ds , (26) 
R(λ(x), A(x))v(x) = -A e (0)F 0 x 0 f (y)dy +A e (L)F L e µ(0)L e L 0 µ(s)ds L x f (y)dy with f (y) = e -µ(0)y e - y 0 µ(s)ds A -1 e (y)v(y) Relation (
σ(A 1 (x)∂ x ) = {λ n : λ n (x) = λ(x) + 2inπ 2L θ(x)} with λ : Ω → R -\ {0}, λ(x) = -ln(α L ) 2L θ(x) = -ln(α L ) 2L a 1 a 2 (x) a 3 (x) + a 2 (x)
.

Moreover, one get:

||R(λ, A)|| L 2 (Ω) = ||(λId -B e ) -1 ||,
for the semigroup stability (T A (t)), so the synthesis parameters evaluation depends on the open loop operator; λ expression allows to define Γ (Fig ( 3)), coupled together with the previous resolvent expression, α p,max in ( 25) can be analytically evaluated (and in the same way for α i,max ).

RESULTS

Fig. 4. Pilot channel of Valence

Simulations gave satisfactory results for a single reach (cf. [START_REF] Dos-Santos | Régulation de canaux d'irrigation : Approche par contrôle frontière multivariable, et modèle interne d'edp[END_REF]) and for the multireach cases, too. Then, the proposed control law was implemented on the Valence channel (LCIS/INPG, France). This pilot channel is an experimental process (length=8 m, width=0.1 m) with a rectangular basis, a variable slope and with three gates (three reaches and an overflow). In both cases, Simulink is used. 

parameters B L K slope 0 /00 Qmax (m) (m) (m 1/3 s -1 ) (m 3 s -

Simulation : Infiltrations

The case of one reach is treated, and infiltrations are considered with ql = -0.001dm 2 .s -1 by unit length. It stands for 0.1mm.s -1 by dm 2 or 3.6dm.h -1 by dm 2 . The aim of the simulation is to compare the effect when infiltrations are taking into account on the model (ql = 0 in (7) called AI) or not (infiltrations are considered as perturbations ql = 0, called SI).

The reference is to stay at equilibrium r(t) = 1.16dm, and initial conditions are the following:

z e (0) = 0.95dm, q e (0) = 3dm 3 .s -1 .

The model including the infiltrations is the bet- ter. Nevertheless, in both cases the system tracks the reference asked quite similarly. The difference is stressed on the variations of the gates openning, the model AI (with infiltrations) seems more suitable. The variations are less importants than for the second model, allowing to manage other kinds of perturbations.

On the next simulation, rain and infiltrations are coupled (2cm 3 s -1 when t = 690s), initial conditions are the same, and the infiltrations too.

The results obtained show the suitability of this approach, experimentations have so been realized on the micro-channel.

Experimentation: two reaches

For this experimentation, the aim is to show that the conditions ( 24) and ( 25) are sufficients but Fig. 6. Rain and infiltrations not necessaries. Indeed, the synthesis parameters are equals to α i = 2, α p = 0 with α i,max ≃ 0, 73, α p,max ≃ 0, 65. Initial conditions are: q e = 1 dm 3 .s -1 , z e1 (0) = 1.22 dm, z e2 (0) = 1.02 dm. References are for (each with a length of 3.5dm): -the first reach, r 0 = 1.28dm: r(t) = r 0 dm when 0s ≤ t ≤ 85s r(t) = 1.2 * r 0 when 90s ≤ t ≤ 330s r(t) = 0.9 * r 0 when 330s ≤ t ≤ 475s r(t) = 1.1 * r 0 when 480s ≤ t. -and for the second reach, r L = 1.077dm: r(t) = r L dm when 0s ≤ t ≤ 160s r(t) = 0.76 * r L when 160s ≤ t ≤ 320s r(t) = 0.9 * r L when 325s ≤ t. Even if α i >> α i,max and that the variations are greater than ±20%, the error between the model and the system is less than 10%, and the system tracks the references on both reaches. Experimental results show too that this approach is suitable for the regulation. Indeed, given a control space of ±20% around the equilibrium state, the results are satisfactory. Beyond those ±20%, the error between the system and the reference (and the model too) can increase dramatically. It seems important to develop necessary conditions for the closed loop stability.

CONCLUSION

The direct approach developped here, seems suitable for the irrigation channel regulation. Previous theorical results have been extended to a more general class of hyperbolic equations, which can be writtel as A(x) = A e (x)∂ x + B e (x), for a system such that ( 19)-( 21). They are applied to the multireach case for which lateral perturbations of the water flow are added with succes. Spatial evolution of the parameters allow to manage in a better way the perturbations, and to transpose it to real situation. Simulation and experimentation results are encouraging for network applications.
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 1 Fig. 1. Channel scheme: multireaches in cascade

  α), (23) and where A e (α) = (I + D κp C)A 0 -(I -CDW κp )C 0 contains the open loop operator A. W is the left pseudo inverse of (I + α p κ p CD), such that W (I + α p κ p CD) = I and κp = α p κ p , κi = α i κ i , α = (α i , α p ). A as C, D and CD.
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 5 Fig. 5. Comparison of the models with (AI) or without infiltrations (SI)
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