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Abstract 

At larval and adult stage of life cycle sponges (Porifera) possess differentflagellated cellsthat 

plays different role in their body. Cells of larval epithelium serve as locomotory organs, while 

collar cells (choanocytes) of adults have a feeding function.Here, we describe for the first time 

the detailed structure of the flagellar apparatus (kinetid) in larval cells and choanocytes of the 

demosponges Haliclona aquaeductus and Halichondria panicea, and propose schemes of its 

organization based on longitudinal and transversal serial ultrathin sections. The kinetid of larvae 

has proved to be more complicated than that of choanocytes. It includeswell-developed 

transverse and longitudinal cytoskeletons that strengthen the larval flagellum. The longitudinal 

skeleton in H. aquaeductus is represented by unusual structures previously understudied: large 

tubular rootlets made of oblique crossed fibers and connecting the kinetosome with 

mitochondria. We also found out the kinetid composition varies between different cell types of a 

highly structured parenchymella of H. aquaeductus. In simply organized parenchymella of H. 

panicea flagellated cells are identical and its kinetid includes a consistent additional centriole 

absent in choanocytes of adult sponges.We tried to evaluate the diversity of sponge larval kinetid 

organization based on literature data and found it variable within Haplosclerida and quite 

conservative within other sponge lineages. 

Key words: Porifera, larvae, choanocytes, ultrastructure, kinetid 
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Introduction 

Invertebrates have evolved wide variety of life cycles, among which the biphasic bentho-pelagic 

life cycle stands out. It realizes in alternation between a small motile larvae emerging from the 

egg and larger benthic adult, which is often sedentary or sessile. The appearance of dispersing 

larval stage in evolution was obviously a great step for development of diverse life forms known 

for today. Investigation of larvae can shed the light on the intricate evolutionary questions as 

they can retain fundamentalancestral features that allow us to look in depths of time. The larva of 

certain invertebrates display a core set ofsynapomorphic traits and gene expression patterns that 

are lacking in the adult form.  

Sponges (Porifera) belong to one of the most ancient metazoan lineage that represents one of the 

earliest branches of the animal tree (Simion et al. 2017). Sponge larvaeare regarded as sharing 

more traits and complexity with eumetazoans than adults (Maldonado 2004; Nielsen 2008). 

These facts induce to reflect who appeared first, the sponge larva or the adult. But this question 

is probably far from solution. Even though the sponge larva is an object of numerous thorough 

studies, many aspects of its biology remain largely obscure. For example, 

AmphimedonqueenslandicaHooper and van Soest, 2006 is one of the most-studied sponge with 

deciphered genome and larval gene expression patterns, but we still cannot precisely identify all 

types of its larval cells (MahandLeys 2017). For more complete understanding of the sponge’s 

life morphological studies of both stages are needed. The present work is intended to contribute 

the knowledge about sponge ultrastructure.  

We focused on sponge flagellated cells, trying to reveal how elements of the flagellar apparatus, 

or the kinetid are arranged. It is worth to notice that larval flagellated cells serve as locomotory 

(or, rarely, sensory) organs, while the flagellum inadults’ choanocytes participate in water 

pumping. Thus, flagella are essentially important for sponges on both stages. The kinetid is 

composed of three main parts: a free part, or the flagellum itself; a basal intracellular part 

containing normally two kinetosomes (the non-flagellated one is often called accessory centriole) 

with attached microtubular or fibrillar rootlets; and the transition zone connecting the free and 

basal parts, often containing phylogenetically important structures (Moestrup 1982, 2000; 

Andersen et al. 1991; Karpov 2000; Barr 2001). It has been shown that kinetid structure can be 

used in the taxonomy and phylogeny of unicellular eukaryotes (e. g., Yubuki and Leander 2013). 

In sponges, kinetid is also known as a very perspective morphological phylogenetic marker, 

since it includes evolutionary conservative structures along with variable ones(Pozdnyakov et al. 

2017; 2018). Kinetid structure of choanocytes, collar cells of adults,can be successfully 

superimposed on phylogenetic tree of sponges based on molecular surveys (Pozdnyakov et al. 

2018), while in sponge larva it is largely understudied.  
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The larval kinetid was first specially studiedby Woolacott and Pinto (1995); the authors found it 

more complex and more diverse than that of choanocytes whose kinetid was not well studied that 

time (Pozdnyakovand Karpov 2013).  Some components of the flagellar apparatus were properly 

illustrated in many papers(Boury-Esnault 1976; Nielsen 1987; GallisianandVacelet 1991; 

Woolacott 1993; AmanoandHori 1992, 1994, 1996, 2001; Ivanova 1997;  LeysandDegnan 2001; 

Uriz et al. 2001; Boury-Esnault et al. 2003; Maldonado et al. 2003; Ereskovsky andTokina 2004; 

UsherandEreskovsky 2005; Gonobobleva 2007; EreskovskyandWillenz 2008; Maldonado 2009; 

LannaandKlatau 2012; Stephens et al. 2013). Due to these studies one can reveal some 

distinctions between kinetids of the adult and larva, trace common characters of their 

arrangement and compare sponges of different taxonomic position.  

Phylum Porifera comprise classes Demospongiae, Calcarea, Homoscleromorpha, and 

Hexactinellida with over 9 000 extant species. The biggest class Demospongiae includes three 

subclasses: Verongimorpha, Keratosa and Heteroscleromorpha (Morrow and Cardenas 2015).  

A special attention should be paid to the large and phylogenetically problematic order 

Haploscleridathatforms most basal branch at the phylogenetic tree ofsubclass 

Heteroscleromorpha(Morrow and Cardenas 2015). Kinetid structure of its representatives 

significantly differs. For example, Stephens et al. (2013) investigated both larva and adult of 

Haliclona indistincta(Bowerbank, 1866), and the provided illustrationsof the kinetid are not in 

accordance with previously studied haplosclerids and even genus Haliclona (WoolacottandPinto 

1995; AmanoandHori 1996; LeysandDegnan 2001; Maldonado et al. 2003).  

To contribute the assessment of the distribution of larval kinetid structure within polyphyletic 

genusHaliclona(Redmond et al. 2011), we have chosen Haliclona aquaeductus(Schmidt 1862) 

as an object of the current study.  

Other sponge under consideration, the representative of the order Suberitida 

(Heteroscleromorpha), Halichondria panicea (Pallas 1766), is distantly related to Haliclona 

aquaeductus (Morrow and Cardenas 2015). The kinetid structure offlagellated cells of larvae in 

H. paniceais interesting: Woolacott and Pinto (1995) drawn an accessory centriole in kinetid 

scheme of the suberitidsHalichondria melanodociaLaubenfels, 1936, Halichondria 

coeruleaBergquist, 1967and Hymeniacidonheliophila(Wilson, 1911) (fig. 2 in their paper), while 

choanocytes of suberitids are supposed to be devoid of the permanentcentriole 

(PozdnyakovandKarpov 2016).  

Kinetid of both larvae and adults of the studied species, Haliclona aquaeductus and 

Halichondria panicea were investigated on serial consecutive sections at TEM, the kinetid 

schemes were reconstructed and discussed. This research is aimed to enlarge our knowledge on 

the sponge flagellar apparatus and contribute to morphological basis for phylogenetic studies. 
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Materials and methods 

Sponges with mature larvae were collected in the Kandalashsky Bay of the White Sea (WSBS 

MSU) in first couple of weeks of July 2017. Larvae were gathered via glass Pasteur pippete after 

the sponge had been put in the tank with stagnant water. Larvae and adults’ pieces were fixed 

and treated for transmission electron microscopy according the following protocol. For 

prefixation, 1 mL of 1% osmium tetroxide in cacodylate buffer (0.1 mol l−1, pH 7.4) was added 

to 3 mL of water containing a sponge fragment. Next, 4 mL of 4% glutaraldehyde in the same 

buffer was added and the sponge fragment was kept in this mixture for 15 min on ice in the dark. 

Then, the fixative mixture was replaced with 2% glutaraldehyde for 1 h on ice. Afterwards, 

samples were rinsed twice in the buffer and postfixed in 1% osmium tetroxide for 1 h at room 

temperature. The samples were then washed twice for 10 min in the same buffer, dehydrated in a 

graded ethanol series and embedded in Spurr resin. After polymerization, the resin blocks with 

sponge fragments were trimmed and treated with 10% hydrofluoric acid for 5 min to remove 

siliceous skeletal elements. Ultrathin sections (60 nm) were cut with a Leica EM UC6 

ultramicrotome using a glass knife. The sections were double stained in uranyl acetate (15 min) 

and subsequently lead citrate (3 min) and were observed in a JEM 1400 and Morgagni 268 D 

electron microscopes equipped with an Olympus Veleta digital camera. For scanning electron 

microcopy fixed larvae were put in series of ethanol with increasing concentration of aceton 

dried in critical point and observed via Quanta 250 and Hitachi S-465A microscopes.  

Several larvae and choanosomal pieces collected in different time were investigated for each 

species.  

Descriptions follow the terminology used by Andersen et al. (1991)andWoolacott and Pinto 

(1995).  

 

Results 

Haliclona aquaeductus 

The mature larva of H.aqueductus is highly mobile ellipsoid parenchymella of nearly 500-700 

µm length and 200-300 µm width. Three morphological zones can be distinguished in its body 

(fig. 1 a): 1) anterolateral zone covered with slightly spiral longitudinal rows of short (about 20 

µm) cilia; 2) tuft, or narrow (5-7 cells) ring of long (about 110 µm)cilia combined in‘compound 

cilia’(fig. 1 b); 3) a non-flagellated pigmented posterior pole ringed by the tuft. The posterior 

pole includespigmented dark-brown ring, which is well seen against the background of the pale 

larva. 

The surface layer is formed by single-row ciliated cells of at least three types: anterolateral 

columnar cells, tuft cells and flask cells. 
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The most common cells are elongated narrow columnar cells(fig. 1 c).Their nuclei are basal and 

anucleolated, and the proximal part of flagellar axoneme isoften immersed in the apical 

cytoplasm (fig. 1 d). Their flagellum has an axoneme with typical (9+2)+2microtubular 

organization. In transitional zone the central microtubules are covered with prominent central 

sheath (fig. 2 e-g) that becomes barely distinguishable up from this zone (fig. 2 h). Nine spokes 

radiate from the central sheath to the transitional cylinder, an electron-dense structure constituted 

by two-layered membrane (fig. 2 e-g). Central microtubules start at the same level with 

transitional cylinder or somewhat lower, while the sheath starts at the same level with the 

cylinder. More proximal from the cylinder there is usually a heterogeneous electron-dense 

material (fig. 2 d). Thin transverse plate (fig. 3 b), sometimes slightly inflated at the center, 

marks the distal end of the kinetosome, having typical (9×3)+0 organization.Transversal cell 

skeleton is represented by lateral microtubules extending to the rootlets, mitochondria and cell 

membrane, and lateral arm (sensuWoolacottand Pinto 1995), which is constituted by 

microtubules associated with electron-dense material (fig. 2 a). The lateral arm is attached to 

microtubular organization center (MTOC) shaped as a basal foot. The distal part of the foot, 

bean-like cap, is attached to the kinetosome by several stalks (fig. 2 a, fig. 3 a).Nine transitional 

fibers (=alar sheets) attach the kinetosome to the plasmallema: each filament raises from a single 

triplet and connects it to the cell membrane via an electron-dense anchoring point (fig. 2 c, fig. 3 

e). Longitudinal cytoskeleton is comprised of peculiar rootlets. They appear to be large hollow 

tubes of various diameter (probably contractive) with the surface looking crisscross-striated due 

to the opposite orientation of oblique fibers (fig. 3 c-g). Rootlets start from the kinetosome and 

extend toward the proximal part of the cell. Bunch of asymmetric mitochondria is closely 

associated with the rootlets, but direct contact was not observed (fig. 3 f, g).  

Columnar cells of the tuft(tuft cells) bear a prominent single protrusion (fig. 4 b); axoneme of 

their flagellum iscompletely covered by the flagellar membrane. Unlike anterolateral columnar 

cells, these cells are often covered with glycocalyx(fig. 4b).Transitional zone 

arrangementcoincides with that in previous cell type, but central microtubules start more distal 

than the transitional cylinder (fig. 4 b). The kinetosome bears an electron-dense element with 

unresolved structure, which is located proximal to the basal foot and, probably, represents an 

accessory MTOC (4 d-f). 

In tufts of studied larvae, we observed a prominent tendency to rootlets reduction. Rootlets can 

be completely absent or as long as half or third of the long rootlets in anterolateral columnar 

cells. When rootlets are lacking, mitochondria are associated directly with the kinetosome (fig. 4 

b, d, f).  

Flagellated flask cells(fig. 5 a, b) that wedge between columnar cells are quite rare (about 10-20 

per larva) cell type. These cells form the lobopodia throughout their entire length and has 
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somewhat irregular flask shape. The kinetid of flask cellshas no rootlets (fig. 5 c). MTOC 

associated with the kinetosome looks like a dense mass of irregular shape (fig. 5 c). Bicorn-

shaped parabasal nucleus has no direct link with the kinetosome, but is often associated with a 

centriole (fig. 5 f). The centriole is somewhat smaller than the kinetosome; its location in relation 

to the kinetosome is not standing. We failed to figure out whether this centriole is a constant 

element of the cell or match a certain state of cell cycle. 

Choanocyte chamber of adult H. aquaeductus consists of choanocytes (fig. 6 a, b) of roundish 

shape. Its kinetid hastransverseplate more prominent than in larval cells (fig. 7a). The 

kinetosome is associated with the Golgi apparatus by thin fibrillary rootlets (fig. 7 b), and 

sometimes the vesicles rest on the kinetosome (fig. 7 b). Its kinetosome serves as MTOC for 

radially arranged microtubules (fig.7c, e), and basal foot is absent (fig. 7d).  

Halichondria panicea 

H. panicea develops a middle-size (about 300 µm) ellipsoid bright-yellow parenchymella (fig. 8 

a) covered by loosely arranged identical flagellated cells (fig. 8b, c). Its flagellum emerges from 

a pit, and the pit’s walls contain excretory granules (fig. 9 a). 

Its larval kinetid is closely associated with pear-shaped nucleolated nucleus by thin rootlets 

projected from the distal part of kinetosome (fig. 9a). The Golgi apparatus lies on the rootlets, so 

does the accessory centriole(fig. 9 a, b). Mitochondria are scattered in the cytoplasm, mainly in 

distal half of the cell (fig. 9 d). In the transitional zone of the flagellum one can see the 

transitional cylinder (fig. 9 b). Central axonemal microtubules start at the level of the cylinder 

(fig. 9 b). Axial granule hangs on the filaments at the level of the plasma membrane (fig. 9 b). 

Nine transitional fibers attach the kinetosome to the cell membrane (fig. 9 b). Long (about 160-

190 nm) cone basal foot with roundish cap gives rise to the transverse skeleton formed by lateral 

microtubules (fig. 9c).  

Choanocyte chamber of adult H. panicea (fig. 10 a)is constituted by irregularly arranged 

flattened choanocytes that have kinetosome-nucleus connection. The Golgi apparatus lies close 

to the nucleus (fig. 10 b). The rootlets are much more short and rare than in larvae (fig. 10 b, c); 

the accessory centriole is absent. Basal foot is also shorter, and there is small additional MTOC 

(satellite) on the opposite side of the kinetosome (fig.10 b-d). As in other sponges, the flagellum 

includes so-called ‘dark zone’ (PozdnyakovandKarpov 2015, 2016;Pozdnyakov et al. 2018), 

which appears to be the poorly fixated area of the transitional cylinder and central sheath. 

 

Discussion 

Flagellated cells of larval epithelium in Haplosclerida (Amano and Hori 1996; Leys and Degnan 

2002; Nakanishi et al. 2014) and Suberitida (Ereskovsky 2010) are known to be 

transdifferentiated during the metamorphosis and havingno continuity betweenflagellumof the 
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larva and choanocytes.It is not surprising, therefore, that the kinetid structure in flagellated cells 

of Haliclona aquaeductus and Halichondria panicea displays a profound difference. The 

schemes of studied flagellar apparatusesof these species are presented in figures 11 and12. 

Kinetid comparison of larvae and adults ofthe two spongesfrom different orders reveals more 

complex flagellar structure in larval cells. Their flagellum is strengthening by transverse (lateral 

arm in H. aquaeductus and multiple microtubules in H. panicea) and longitudinal (well-

developed fibrillar rootlets) cytoskeleton. Also, in H. aquaeductustheflagellum is immersed in 

apical part of columnar cell which probably defends its most fragile basic part (Blum 1971; 

Chakrabarti 1998).  Kinetid structures of choanocytes are in accordance with those of closely 

relatedspecies (Pozdnyakov and Karpov 2015, 2016; Pozdnyakov et al. 2017).  

Trying to figure out how variable the kinetid organization is among sponge larvae and whether 

or not it has phylogenetic relevance within certain groups, it is necessary to compare the 

obtained results with the already known data.  

 

Haplosclerid larvae had been investigated in several studies, and some information on their 

kinetid structure is available. According to the literature data, kinetid structure is variable within 

the order Haplosclerida and evenwithin the genusHaliclona, which is polyphyletic (Redmond et 

al. 2011).System of flagellar rootlets is apparently the most plastic element of thekinetid in these 

sponges. 

Rootlets.The most peculiar feature found in the flagellar apparatus of H. aquaeductus, large tube 

fibrillar rootlets, is alsorecognizable on the photos of Amphimedonqueenslandica 

(LeysandDegnan2001, fig. 9c) and Haliclona (Soestella) caerulea(Hechtel, 1965)(Maldonado et 

al. 2003, fig. 3a-c; 5c) and clearly seen in Haliclona tubifera(George & Wilson, 

1919)(Woolacott 1993, fig. 7; WoolacottandPinto 1995, fig. 3; 10), though the kinetid scheme 

proposed in the last article does not reflect their three-dimensional tube organization. The 

layered structure of rootlets described by WoolacottandPinto(1995) has not been revealed in H. 

aquaeductus. Unlike H. tubifera, the rootlets of H. aquaeductus are multiple (up to four) and 

have its criss-cross cortical pattern starting just from the kinetosome. Rootlets of other 

haplosclerids studied look like a bunch of filaments with closelyassociated mitochondria: 

Haliclona sp. 1 (Nielsen 1987), Haliclona sp. 2 (AmanoandHori 1994)and Haliclona 

permollis(Bowerbank, 1866) (accepted name – Haliclona cinerea (Grant, 1826))(AmanoandHori 

1996). 

Basal footstructure also appears to be a variable morphotrait. It is quite similar insome 

haplosclerid larvae and presented by double (H. caeruleaand, apparently, Haliclona sp.2) or 

triple (A. queenslandica) foot connected with the kinetosome by bands (Amano and Hori 1994; 

Leys and Degnan 2001). In H. tubifera the foot is shown stalked, with roundish cap in 
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longitudinal section (as in H. aquaeductus), but without cross sections it is not possible to 

identify its real shape.  

Lateral arm found in H. aquaeductus was also reported for H. tubifera by Woolacott and Pinto 

(1995). However, it is worth to note that the arm is well-seen on cross sections but not on 

longitudinal ones, and this kinetid element could be missed in previous studiesdevoted to other 

species. 

A personal discussion deserves Haliclonaindistinctadealt byStephens et al. (2013). Being clear 

haplosclerid according to the genetic studies (Stephens2013), this sponge has larva that differs 

from larvae of other haplosclerid species by several features such as lacking of spicules, ciliary 

tuft and unciliated posterior pole. Its adults also have an unusual for haploscleridmorphotrait: 

choanocyte chambers directly contact with mesohyl, which matches topoecilosclerids rather 

thanhaplosclerids (Langenbruchand Jones 1990). Kinetid ofboth larva and adult also does not 

look like characteristic of Haplosclerida. It has an axial granule, typical of several sponge 

lineages but not haplosclerids (Pozdnyakov et al. 2018), and pear-shape nucleus in larval cells, 

which was noted in Suberitida (Woolacott 1990; WoolacottandPinto 1995), Spongillida (Ivanova 

1997), Poecilosclerida (WoolacottandPinto 1995), Keratosa(WoolacottandPinto 1995; 

Ereskovskyand Tokina 2004; UsherandEreskovsky 2005; Gonobobleva 2007; Maldonado 2009) 

and calcareous sponges (Borojevic 1969; Amano and Hori 1992; Gallisianand Vacelet 1992; 

Amano and Hori 2001; Ereskovsky and Willenz 2008; Gallisian 1983; Lannaand Klatau 2012).  

It is likely that the nucleus of H. indistincta has a connection with the kinetid, which sometimes 

can be definitely detected only on series sections, as well as the accessory centriole.Flagellar 

rootlets of H. indistinctalarva look like short tuft of filaments not associated with mitochondria, 

but adjoining the Golgi apparatus, and the kinetosome contains the axial granule. Such set of 

charactersresembles the kinetid in Poeciloscleridaand Suberitida (Woolacott and Pinto 1995;Uriz 

et al. 2001;Pozdnyakov and Karpov 2016), although the axial granule is also seen in larval cells 

ofHaliconasp. (Nielsen 1987). Complex of the abovementioned features prompts to pay more 

attention to this species and make sure that the material of morphological studies matches to that 

of moleculargenetic analyses.  

 

In our study, three types of flagellated cells were detected in larvae of H. aquaeductus: 1) 

columnar cells, the main cell motors; 2) photosensitive tuft cells that detect light and serve as 

rules (Leys andDegnan 2001; Maldonado et al. 2003); 3) flask cells that are probably in charge 

of settlement processes and apparently fulfill a sensory function (Nakanishi et al. 2015; Mahand 

Leys 2017).These cell types possess distinct kinetid components (fig. 11).Differences in the 

kinetid structure of different cells of a sponge larva were briefly discussed in few works.Kinetid 

structures of anterolateral cells and long-flagellated cells of the tuft werecomparedforH. 
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caeruleaby Maldonado et al.(2003). The authors pointed out that central pair of microtubules of 

the short flagellastartmore distal than surrounding plasma membrane, while in long-flagellated 

tuft cellsit rises at the level of the surrounding membrane, which corresponds to the scheme 

observed in H. aquaeductus. In both sponges there is also an additional MTOC-like structure 

under the basal foot in tuftcells. However, unlike H. aquaeductus, in H. caerulea rootlets of tuft 

cells are more developed than in common columnar cells.In A. queenslandicakinetid structure of 

long posterior flagella does not appear different from that of the short lateral cilia 

(LeysandDegnan 2001). 

Flask cells were reported to be devoid of rootlets and additional centriole in H. tubifera. They 

possess round nucleus and kinetosome serving as MTOC, but series sections were not 

investigated (Woolacott 1993). In H. aquaeductus these cells also have no rootlets, but possesses 

prominent MTOC of irregular shape and the centriole attached to the protrusion of the nucleus. 

The inconsistent position of the centriole and absence of bridges that usually connect the 

accessory centriole with the kinetosome allow us to doubt about its participation in the flagellar 

functioning.  

It should be also noted that the third central microtubule in the transition zone of larval flagellum 

in H. caerulea (Maldonado et al. 2003; Maldonado 2004) actually can be interpreted as an 

element of the central sheath, which is thickened in the area of the central cylinder in 

H.aquaeductus(fig. 2 f1) and may give an appearance of an additional central tubule in this 

region.   

 

Kinetid structure in Suberitida larvae is known from three species: Halichondria melanodocia, 

H. coerulea, Hymeniacidonheliophila(Woolacottand Pinto 1995). Its organization corresponds to 

the obtained scheme forHalichondria panicea and differs from the scheme of choanocyte kinetid 

proposed for Suberitida and Poecilosclerida (PozdnyakovandKarpov 2016)primarily by the 

presence of the permanentadditional centriole situated on the rootlets, quite far from the 

kinetosome. It should be noted that poecilosclerid larvae studied for today also have the 

accessory centriole (Mycale ceciliaLaubenfels, 1936 (Woolacottand Pinto 1995), 

Crambecrambe(Schmidt, 1862) (Uriz et al. 2001),HymedesmiairregularisLundbeck, 1910 

(Sokolova et al. in preparation)). 

 

Thus, one can observea significant diversity of sponge larval kinetid within the only one order of 

demosponges, Haplosclerida. This seems not surprising because this order is really large; it is 

considered as the sister clade with the rest of Heteroscleromorpha, the group which includes the 

majority of Demospongiae species (Morrow and Cardenas 2015). Given the relative consistency 

of the flagellar apparatus in adult sponges (Pozdnyakov et al. 2017), it is of interest to reveal the 
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patterns underlying such a diversity. Choanocytes of different demosponges function in the same 

way, while flagella of larval locomotory cells can realize diverse moving patterns (Maldonado 

2006). It can be supposed that the kinetid structure correlates with locomotion patterns of larvae: 

the more complex the kinetid is, the mobile and agile larva is. However, larvae of 

Haliclonaaquaeductus possess kinetid structure that sharesfew features with larvae ofthe 

dictyoceratidIrciniaoros(Schmidt, 1864)(EreskovskyandTokina 2004) having similar body plan 

(tufted parenchymella with bare posterior pole).  

One should note that it is the high-speed maneuverable larva of H. aquaeductus that possess the 

stout rootlets, which serve actually as the pipelines leading to mitochondria and obviously 

effective machinery for energy transformation/transport/accumulation and usage. Probably, 

rootlet reduction in the cells of tuft reflects the low energy requirement of these cells (serving 

rather as a rule than as a motor). But the reverse trend in H. caerulea(Maldonado et al. 2003) 

does not correspond to this assumption. The biochemical processes taking place in the tube 

rootlets are a relevant theme for prospective studies. 

At the same time, other sponge lineages display some consistency in larval kinetid structure, as 

can be inferred for today. Particularly, studied calcareous sponges (Borojevic 1969; Amano and 

Hori 1992; Gallisianand Vacelet 1992; Amano and Hori 2001; Ereskovsky and Willenz 2008; 

Gallisian 1983; LannaandKlatau 2012)as well as homoscleromorphs (Boury-Esnault et al.2003, 

Maldonado andRiesgo 2008)and eumetazoans (Nielsen 1987) possess apical nuclei linked to the 

kinetid in larval ciliated cells, accessory centriole and striated rootlets. Kinetids of 

Poecilosclerida Crambecrambe(Uriz et al. 2001), Mycale cecilia (Woolacottand Pinto 1995), 

Hamigerahamigera(Schmidt, 1862)(Boury-Esnault 1987)and Hymedesmiairregularis(Sokolova 

et al. in preparation) comprise kinetosome which bears laminar rootlets and, apparently, 

accessory centriole (seen in H. irregularis, C. crambe, M. cecilia). The abovementioned kinetids 

of Suberitida (Halichondria melanodocia, H. coerulea, Hymeniacidonheliophila(Woolacottand 

Pinto 1995)) are also similar within the group. Spicule-less spongesHalisarca dujardiniJohnston, 

1842 (Gonobobleva2007), Irciniaoros(Ereskovsky and Tokina 2004), Aplysina 

aerophoba(Nardo, 1833)(Maldonado 2009), Aplysilla sp. (Woolacottand Pinto 1995), 

CacospongiamolliorSchmidt, 1862(Uriz et al. 2008), ChondrillaaustraliensisCarter, 1873(Usher 

and Ereskovsky 2005), also possess the kinetidquite similar to that in calcareous and 

homoscleromorph sponges iterating the situation observed in choanocytes (Pozdnyakov et al. 

2017); though unlike Calcarea larval kinetid of these sponges lack striated rootlets, they are 

shown present in embryos of H. dujardini(Gonobobleva 2007). It should be emphasized that 

Verongimorpha representatives were shown to possess the apical nucleus associated with the 

kinetid (A. aerophoba, H. dujardini, C. australiensis), while studied Keratosa have the basal 

nucleus placed far from the flagellum (C. molior.I. oros, Aplysilla sp., 
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Pleraplysillaspinifera(unpubl. data)). However,Aplysillasp. (WoolacottandPinto 1995), is out of 

that line as its kinetid has MTOC shaped as lateral arms (as in some Haliclona representatives) 

and laminar rootlets (as in Poecilosclerida representatives), and Halichondria mooreiBergquist, 

1961 (Evans 1977) possesses the basal nucleus. Also, large portion of illustrations have no 

enough resolution for resolving of fine structures and no series sections and scarce cross sections 

that allow us to detect precisely the configuration of the flagellar apparatus. Thus, any 

conclusions about phylogenetic signal of kinetid components should be made carefully and until 

more sponge larvae are studied, this issue awaits elucidation. 
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Figure legends 

Fig. 1 Larval stage of Haliclona aquaeductus. a – generalview of the larva (SEM), b – tuft 

consisting of the compound cilia (SEM), c – generalview of the anterolateral columnar cells 

(SEM), d - longitudinal section through the anterolateral columnar cells. Abbreviations: sc – 

short cilia, lpc – long posterior cilia, pp – posterior pole, cc – compound cilia,fl– flagellum, n – 

nucleus. Scale bars: a – 80 µm, b – 2 µm, c – 5 µm, d – 1.5 µm 

Fig. 2 Distal part of the kinetid in Haliclonaaquaeductus larval cells. a – transversalsection at the 

level of the basal foot, b-h – serial sections of the same cell. f1 – section of another cell. 

Abbreviations: bf – basal foot, st – stalks of the foot, la - lateral arm,tf– transitional fibers, mct – 

microtubules, ap – anchoring points, pd – peripheral doublet, cm – central microtubules, sh – 

sheath, tc – transitional cylinder. Scale bar: 0.2 µm 

Fig. 3Details of the kinetid structure in antero-lateral columnar cells of Haliclona 

aquaeductuslarva.  a, b – longitudinal sections through the kinetosome, c-e – longitudinal 

sections through the rootlets, f-g – cross sections of the rootletssurrounded by mitochondria 

(arrows indicate the rootlets). Abbreviations: cm – central microtubules, tc – transitional 

cylinder, bf – basal foot,st –stalks of the foot,fl – flagellum, k – kinetosome, tp – transverse plate, 

mct– microtubules, rtl – rootlets, mtch – mitochondrion, rtl (ep) – external part of rootlets, rtl 

(ip) – internal part of rootlets,of – oblique fibers,ap – anchoring points. Scale bars: a-g – 0.5 µm, 

c – 0.25 µm. 

Fig. 4Tuft cells of Haliclonaaquaeductus and their kinetid. a – common view of the cells, b-f – 

details of the kinetid structure. Abbreviations: cc – compound cilia, tc – transitional cylinder, gl 
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– glycocalyx, cm – central microtubules, MTOC – microtubule organizing center,mtch – 

mitochondria, tp – transverse plate,rtl – rootlet. Scale bars: a – 3 µm, b-h – 0.5 µm 

Fig. 5Flask cells of Haliclona aquaeductus and their kinetid. a, b – common view of the cells, c 

– kinetid appearance, d-h – serial longitudinal sections of the same cell. Abbreviations: fl – 

flagellum, n – nucleus, mtch – mitochondria, ac – accessory centriole, cm – central 

microtubules,mct– microtubules, MTOC – microtubule organizing center, k – kinetosome. Scale 

bars: a, b – 1 µm, c, d – 0.5 µm 

Fig. 6Flagellated cells of adult Haliclona aquaeductus. a –choanocyte chamber, b – choanocyte. 

Abbreviations: fl– flagellum, mcv – microvilli, n – nucleus. Scale bars: a – 10 µm, b – 1 µm 

Fig. 7 Details of the choanocyte kinetid of Haliclona aquaeductus. a, b – longitudinal sections 

through the kinetosome, c – cross section of the apical part of choanocyte, d – seral cross 

sections of through the kinetid of the same cell, e – cross section trough the kinetosome of 

another cell. Abbreviations: tf – transitional fiber,tp – transverse plate, mct – microtubules, Ga – 

Golgi apparatus, mcv – microvilli,pd – peripheral doublet of microtubules. Scale bars: a, b - 0.25 

µm, c – 1 µm, d, e – 0.2 µm 

Fig. 8Larva of Halichondria panicea.a – common view of larva (SEM), b – surface of larva 

(SEM), c – longitudinal section of flagellated cell.Abbreviations: fl – flagellum, n – nucleus, nu – 

nucleolus. Scale bars: a – 100 µm, b – 2 µm, c – 1 µm. 

Fig. 9 Details of kinetid structure in larva of Halichondria panicea. a, b – longitudinal sections 

through the kinetosome, c – cross section at the level of basal foot, d – cross section of a cell at 

the level of the Golgi apparatus. Abbreviations: eg – excretory granule, ag – axial granule, bf – 

basal foot, mct– microtubules, rtl – roolets, Ga – Golgi apparatus, n – nucleus, k – kinetosome, 

cm – central microtubules,tc– transitional cylinder, ac – accessory centriole, mtch – 

mitochondria. Scale bars: 0.5 µm 

Fig. 10 Choanocytes of the adult Halichondria panicea. a – choanocyte chamber, b-d apical part 

of the three choanocytes. Abbreviations: mcv – microvilli,fl– flagellum,k – kinetosome, Ga – 

Golgi apparatus, n – nucleus, bf – basal foot,st– satellite, tf – transitional fiber, ag – axial 

granule, rtl– rootlets. Scale bar: a – 2 µm, b-d – 0.5 µm 

Fig. 11 Scheme of kinetid structures of Haliclona aquaeductus. a-b – antero-lateral columnar 

cells at longitudinal (a) and transversal(b) sections (lateral arm is not shown on the longitudinal 

section), c – flask cell, d – tuft cell, e – choanocyte. Abbreviations: cm – central 

microtubules,sh– sheath, tc– transitional cylinder,tp– transverse plate, bf – basal foot, mct – 

microtubules, rtl – rootlets, rtl (ip) – rootlet (internal part), rtl (ep) – rootlet (external part), k – 

kinetosome, mtch – mitochondria, MTOC – microtubule organizing center, ac – accessory 

centriole, n – nucleus, Ga – Golgi apparatus, mcv – microvilli 
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Fig. 12 Scheme of the kinetid found in flagellated cells of Halichondria panicea. Abbreviations: 

n – nucleus, nu - nucleolus 
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